Physics 550

Problem Set 4: Matrix Mechanics 2

Name:

Instructions / Notes / Suggestions:

- Each problem is worth five points.
- In order to receive credit, you must show your work.
- Circle your final answer.
- Unless otherwise specified, answers should be given in terms of the variables in the problem and/or physical constants and/or cartesian unit vectors $(\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_x, \hat{\mathbf{e}}_z)$ or radial unit vector $\hat{\mathbf{r}}$.
- Staple your work.

Problem #1:

Consider the (matrix) function \mathbf{g} of the canonical matrices \mathbf{q} and \mathbf{p} :

$$\mathbf{g}(\mathbf{p}\mathbf{q}) = a\mathbf{q}^2\mathbf{p} + b\mathbf{p}\mathbf{q}^2 + c\mathbf{q}\mathbf{p}\mathbf{q}$$

where a, b, and c are scalars.

Derive the Heisenberg equation of motion for g.

Note that you may make reasonable assumptions on \mathbf{H} , e.g., about its \mathbf{q} and \mathbf{p} dependencies, if needed.

Problem #2:

The (quantum) Hamiltonian ${\bf H}$ for the harmonic oscillator can be written in terms of the canonical matrices ${\bf q}$ and ${\bf p}$:

$$\mathbf{H}(\mathbf{p}\mathbf{q}) = \frac{\mathbf{p}^2}{2m} + \frac{1}{2}m\omega^2\mathbf{q}^2$$

Assume the initial conditions $\mathbf{q}(0) = \mathbf{q}_i$ and $\mathbf{p}(0) = \mathbf{p}_i$.

- (a) Find the equation of motions for \mathbf{q} and \mathbf{p} .
- (b) Find the equation of motion for **H**.
- (c) Find equations for $\mathbf{q}(t)$ and $\mathbf{p}(t)$.

Problem #3:

Let **B** be a real and symmetric 2×2 matrix:

$$\mathbf{B} = \begin{pmatrix} 0 & b \\ b & c \end{pmatrix}$$

- (a) Diagonalize **B**.
- (b) Give a mathematical interpretation of the matrix elements obtained in part (a).

Assume that ${\bf B}$ corresponds to the (quantum) Hamiltonian for some system.

(c) Give a physical interpretation of the matrix elements obtained in part (a).

Problem #4:

Let A be a real and diagonal 2×2 matrix whose diagonal elements are equal.

Let ${\bf B}$ be a real and symmetric 2×2 matrix:

$$\mathbf{B} = \begin{pmatrix} 0 & b \\ b & c \end{pmatrix}$$

- (a) Show that **A** and **B** commute.
- (b) Find the eigenvalues and eigenvectors of **A**.
- (c) Find simultaneous eigenvectors of $\bf A$ and $\bf B$, if such exist.

Problem #5:

In quantum mechanics, the Pauli equation describes spin-1/2 particles, taking into account their interaction with an external electromagnetic field.

In the Pauli equation occurs the (Pauli) matrices:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

- (a) Find the eigenvalues and eigenvectors of σ_1 .
- (b) Find the eigenvalues and eigenvectors of σ_2 .
- (c) Show whether there is a unitary matrix that diagonalizes both σ_1 and σ_2 .

Problem #6:

Consider the 2×2 (quantum) Hamiltonian matrix:

$$\mathbf{H}(\mathbf{p}\mathbf{q}) = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$$

Let **g** be a 2×2 matrix that represents some dynamical quantity, which at time t=0 is:

$$\mathbf{g}(\mathbf{p}\mathbf{q}) = \begin{pmatrix} 3 & 1 \\ 1 & 4 \end{pmatrix}$$

Assume above and in what follows that units work themselves out.

- (a) Find the spectrum of **H**.
- (b) Find the spectrum of \mathbf{g} at t = 0.
- (c) Find the spectrum of \mathbf{g} at t=2.