Physics 550

Problem Set 3: Matrix Mechanics 1

Name:

Instructions / Notes / Suggestions:

- Each problem is worth five points.
- In order to receive credit, you must show your work.
- Circle your final answer.
- Unless otherwise specified, answers should be given in terms of the variables in the problem and/or physical constants and/or cartesian unit vectors $(\hat{\mathbf{e}}_x, \hat{\mathbf{e}}_x, \hat{\mathbf{e}}_z)$ or radial unit vector $\hat{\mathbf{r}}$.
- Staple your work.

Problem #1:

Let A be a diagonal and real 2×2 matrix whose diagonal elements are not equal.

Find the Hermitian matrices that commute with A.

Problem #2:

The (classical) definition of angular momentum is $\mathbf{L} = \mathbf{r} \times \mathbf{p}$, where \mathbf{r} and \mathbf{p} are position and momentum vectors, respectively. Note that \mathbf{L} too is a vector.

The expression for \mathbf{L} can be carried over to quantum mechanics, by reinterpreting \mathbf{r} and \mathbf{p} as operators. Thus, \mathbf{L} too becomes a (vector) operator: the orbital angular momentum operator.

- (a) Explicitly evaluate $[L_x, L_y]$.
- (b) Using the result from part (a) and symmetry arguments, obtain expressions for $[L_y, L_z]$ and $[L_x, L_z]$.
- (c) Compare your results from parts (a) and (b) to (classical) Poisson brackets.

Problem #3:

Like any vector, a (squared) magnitude can be defined for the orbital angular momentum operator:

$$\mathbf{L} \cdot \mathbf{L} = \mathbf{L}^2 \equiv L_x^2 + L_y^2 + L_z^2$$

 \mathbf{L}^2 is another operator.

Evaluate $[\mathbf{L}^2, L_x]$.

Problem #4:

For all functions $F(\mathbf{q}_i)$ and $G(\mathbf{p}_i)$ that can be expressed as power series in their argument:

$$[\mathbf{q}_i, G(\mathbf{p}_i)] = i\hbar \frac{\partial G}{\partial \mathbf{p}_i}$$
 $[\mathbf{p}_i, F(\mathbf{q}_i)] = -i\hbar \frac{\partial F}{\partial \mathbf{q}_i}$

Explicitly verify these formulas.

Problem #5:

The Baker–Campbell–Hausdorff (BCH) formula is very important in quantum mechanics.

The BCH formula for the product of the exponentials of two operators ${\bf A}$ and ${\bf B}$ is:

$$e^{\mathbf{A}}e^{\mathbf{B}} = e^{\mathbf{A} + \mathbf{B} + \frac{1}{2}[\mathbf{A}, \mathbf{B}] + \dots}$$

where \dots represents terms that are at least cubic in ${\bf A}$ and ${\bf B}$, and involve nested commutators.

Show that the above formula holds up to second order in operator multiplication.