Syllabus

Chemistry 103

Fall 2019

Class Meetings: MWF: 12:10 am Fulmer 226

Instructor: Dr. Paul Buckley Fulmer 120 335-8282 ptbuckley@wsu.edu
Student Hours: Tuesday 11 am - 12, Thursday 1 pm - 2, or by appointment
 Troy 305

General Chemistry Office:
 Nikki Clark Fulmer 319A 335-1516 nikki_clark@wsu.edu

Course Website: Blackboard Learn (Bb) https://learn.wsu.edu

Grading:

<table>
<thead>
<tr>
<th>Component</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 midterm exams</td>
<td>200</td>
</tr>
<tr>
<td>Final Exam</td>
<td>175</td>
</tr>
<tr>
<td>14 Online Homework Sets (best 12)</td>
<td>240</td>
</tr>
<tr>
<td>~40 “Learn Smart” Assignments (best 35)</td>
<td>105</td>
</tr>
<tr>
<td>~40 Learning Catalytics Sets (best 35)</td>
<td>280</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1000</td>
</tr>
</tbody>
</table>

Grade Ranges (minimum points):

- 14 Online Homework Sets (best 12): 240 A 900 B+ 840 B+ 800 B 770 B-
- ~40 “Learn Smart” Assignments (best 35): 105 740 C+ 700 C 670 C-
- Learning Catalytics: 280 640 D+ 600 D < 600 F

Midterm Exams: Friday, Sept 20, in class
 Friday, Oct 18, in class

Final Exam: Tuesday, Dec 10, 1:00 pm – 3:00 pm

Assessment Criteria:

- **Exams**: Exams will be a combination of multiple choice, and open-ended (show your work) type of problems. Open-ended problems will provide the opportunity to earn partial credit based upon your problem-solving approach to the question.

- **On-line Homework Sets**: Through CONNECT. The points awarded for these questions will be based on the correctness of your answer, but you will be given an unlimited number of attempts to answer the questions.

- **Learn Smart Assignments**: Through CONNECT, done on-line using the same platform as the Homework Sets. The points awarded for these questions will be based on the correctness of your answer, but you will be given an unlimited number of attempts to answer the questions.

- **Learning Catalytics**: These are in-class, bring your own device, question and response exercises designed to test your understanding of the current course concepts. These sessions will be the vehicle through which in-class, group-based problem solving will occur. Each session is worth 8 points. Participation and answering questions will comprise 50% of the points for each session, and correctness of your answer will count for the remaining 50%. You will log in to each session through www.learningcatalytics.com and answer the questions posed to you by the instructor throughout the class period.

Prerequisites for this class are: Concurrent enrollment in CHEM 104; MATH 103, or placement into MATH 105, a minimum ALEKS math placement score of 45%, or concurrent enrollment in or credit for MATH 105, 106, 107, 108, 140, 171, 172, 182, 201, 202, ENGR 107, STAT 205 or 212.

Course Objectives, Learning Goals, and Expected Outcomes: Chemistry 103 is designed to advance students toward the WSU Learning Goals, especially Scientific Literacy, Critical and Creative Thinking, Quantitative Reasoning, and Information Literacy. In particular, students who successfully complete Chemistry 103 will be able to:

1) Apply knowledge in four unifying chemistry concept areas to a wide range of contextual frameworks in chemistry.
2) Make connections between concept areas in different contextual frameworks in chemistry.
3) Explain conceptual connections through classifying, describing, and discussing information.
4) Become confident and prepared for Chemistry 105.

Flipped Class Format: Chem 103 will follow a “flipped classroom” model. In traditional “lecture” classes, students listen to an instructor introduce a topic, and then attempt higher level problem solving exercises later on outside of class. In a flipped classroom, students are introduced to the basic elements of a topic outside of class, typically through a reading assignment or watching a short video. The next class meeting is devoted to higher order processing, problem solving, and analysis of course topics while the instructor and TAs are there to help. Classroom activities will mostly involve group work on assigned tasks, and “bring your own device” assessments of student learning. Lecturing will be kept to a minimum.

Curricular Design: This class takes a non-traditional approach to the chapters in a general chemistry textbook. Rather than go through each chapter one at a time, we will pass through all ten chapters four times, each time through a lens of a different unifying concept. The goal is to strengthen conceptual understanding of general chemistry, and to emphasize the connections between chapters. A framework for this curriculum is found on the last page of this syllabus.

Calculators: You are expected to have and to be able to use a scientific calculator. Graphing calculators are allowed but not required. The use of any stored information/programs in a programmable calculator, such as the TI N-spire will be considered cheating. Calculators with a full keyboard (such as the TI-92 or Voyage 200); PDAs; palmtop, laptop and handheld computers; and cell phone/calculator combinations may not be used during examinations. You are responsible for bringing your calculator to all class meetings and exams.

Classroom Devices: In order to participate in the in-class questions using Learning Catalytics (part of the Mastering Chemistry package) students must bring to lecture a device that is Wi-Fi enabled and log in to their Mastering Chemistry account in the lecture room. This can be a cell phone, tablet, or laptop.

Course Website: We will be using the Bb course management system for the course website. This can be accessed via https://learn.wsu.edu. You are responsible for checking this site regularly. Use your WSU network ID and password to log in. You can also send email to the course instructor, TAs, or other students via the Bb Course Email tool.

Learns Smart Assignments: There will be reading assignments due at 11:30AM before each class meeting. These reading assignments are available through the Blackboard link to the McGraw-Hill Connect site. They are not a replacement for the reading, but do help you check on your understanding of selected concepts and methods from each text section, and help prepare you for the upcoming lecture. Each reading assignment is worth 3 points, and your score is determined by the fraction correct multiplied by the 3 points possible. The best 35 assignments will be counted toward your grade. It is important to note that the completion of these assignments is independent of lecture attendance. If you are sick or out of town, it is still possible to complete the assignments: your grade. Each assignment is graded on both participation (50%) and correctness (50%).

Policy on Late Assignments
Late assignments are not accepted. It is your responsibility to pay attention to due dates and make sure assignments are completed on time. Rather than accepting late assignments for reduced credit, most assignment categories (homework, reading assignments, learning catalytics) have between 2 – 5 “dropped” assignments, where your lowest scores for those assignments categories are not counted. Missed or late assignments will be counted as one of your “drops” in those categories.
Policy on Exam Grading Re-Grade Requests
Any requests for exam re-grading due to suspected errors in grading must be done with the “Chemistry Exam Re-grade Request” form that is posted on Blackboard. The Exam Re-grade Request form must be filled out online, downloaded and printed by you, and given to your TA within two weeks of the exam being handed back to you, or being sent electronically to you. No requests for exam re-grades will be honored beyond the two-week window.

Attendance Policy
It is expected that on-campus students attend every class meeting, and that online students participate in three discussion forums per week. Attendance will not be taken in class, but the use of Learning Catalytics is effectively a check on attendance. Missing class will result in missing a Learning Catalytics assignment, and be counted towards your “dropped” assignments in that assignment category.

Policy on Blackboard grades:
It is your responsibility to check for the accuracy of grades entered in Blackboard. No adjustments to scores of any kind (learning catalytics, etc...) will be done after two weeks of the initial grade posting.

Expectations for Student Effort
As per WSU academic regulation 27, “Academic credit is a measure of the total minimum time commitment required of a typical student in a specific course. For the WSU semester system one semester credit is assigned for a minimum of 45 hours…. Achievement of course goals may require more than the minimum time commitment.” This guideline includes time spent in class.

This guideline essentially states that a student can be reasonably expected to spend two hours outside of class on assignments for every one hour spent in class, or six hours per week outside of class for a three-credit course such as this. This is approximately the amount of time you should expect to spend on viewing pre-class videos, reading the textbook, and doing assigned problem solving exercises.

Classroom Safety Statement
Classroom and campus safety are of paramount importance at Washington State University, and are the shared responsibility of the entire campus population. WSU urges students to follow the “Alert, Assess, Act” protocol for all types of emergencies and the “Run, Hide, Flight” response for an active shooter incident. Remain ALERT (through direct observation or emergency notification, ASSESS your specific situation, and ACT in the most appropriate way to assure your own safety (and the safety of others if you are able).

Please sign up for emergency alerts on your account at MyWSU. For more information on this subject, campus safety, and related topics, please view the FBI’s Run, Hide, Fight video and visit the WSU safety portal.

Academic Integrity: Cheating or plagiarism in any form will not be tolerated. Cheating includes, but is not limited to: copying work OR allowing your work to be copied; use of unauthorized material at quizzes and exams, any communication between students during a quiz or exam, and actively looking at another student’s paper during a quiz or exam. Use of any electronic device other than an approved calculator during a quiz or examination is cheating. The first incidence of cheating will result in a score of zero for that assignment, quiz or exam. A second incident of cheating will result in an F (without the option to withdraw) for the course and possible dismissal from the University.

Note that all instances of cheating will be reported to Academic Integrity, regardless of whether they result in an F for the class.

Accommodations: Reasonable accommodations are available for students who have a documented disability. If you need accommodations to fully participate in this class, please visit the Access Center. All accommodations MUST be approved through the Access Center (Washington Bldg, Room 217). Please stop by or call 509-335-3417 to make an appointment with an Access Advisor. Further information is available at http://accesscenter.wsu.edu
Curricular Design

Each box in the grid below represents a connection between a unifying concept and a contextual framework. We will examine each chapter through the perspective of quantitative relationships, then re-examine each chapter through the perspective of energy, etc...until we have passed through each book chapter four times.

<table>
<thead>
<tr>
<th>Ch 1</th>
<th>Ch 2</th>
<th>Ch 3</th>
<th>Ch 4</th>
<th>Ch 5</th>
<th>Ch 6</th>
<th>Ch 7</th>
<th>Ch 8</th>
<th>Ch 9</th>
<th>Ch 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter and Measurement</td>
<td>Atoms and Elements</td>
<td>Molecules, Compounds, Equations</td>
<td>Stoichiometry and Reactions</td>
<td>Gases</td>
<td>Thermo</td>
<td>Quantum</td>
<td>Periodic Properties</td>
<td>Lewis Model, EN, Bond Polarity</td>
<td>Shapes, Valence Bond, MO</td>
</tr>
<tr>
<td>Unit Conversions, Problem Solving</td>
<td>Atomic Mass, Moles</td>
<td>Balance Cations and Anions, Moles of atoms in compounds</td>
<td>Basic Stoichiometry, Limiting Reactants</td>
<td>Gas Laws</td>
<td>Stoichiometry of Reaction Enthalpy</td>
<td>Frequency, Wavelength, EMR</td>
<td>Periodic Trends: Atomic and Ionic Radii</td>
<td>Number of bond types, in molecules and in moles</td>
<td>Conservation of orbitals</td>
</tr>
<tr>
<td>Structure of Phases, Classify Matter</td>
<td>Atomic Structure Isotopes</td>
<td>Naming Ionic and Molecular Compounds</td>
<td>Solute/Solvent Interactions</td>
<td>Kinetic Molecular Theory</td>
<td>Predict AH from Bond Energy</td>
<td>Atomic Orbitals</td>
<td>Electron Configs</td>
<td>Lewis Structures, Bond Polarity, EN</td>
<td>VSEPR</td>
</tr>
<tr>
<td>Physical vs. Chemical Change</td>
<td>Conservation of Mass/ Periodic Reactivity</td>
<td>Balance Equations- Explore rxns in those equations</td>
<td>Pptn rxns Acid-Base Redox</td>
<td>Gas Phase Stoichiometry</td>
<td>Hess’s Law</td>
<td>Photolytic Rxns</td>
<td>Periodic Chemical Behavior</td>
<td>Rxns based on Lewis Structure (e- tracking)</td>
<td>Reactivity in terms of shape and polarity</td>
</tr>
</tbody>
</table>