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Quantum-Dot Ground-State Energies and Spin Polarizations: Soft versus Hard Chaos
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We consider how the nature of the dynamics affects ground state properties of ballistic quantum dots.
We find that ‘‘mesoscopic Stoner fluctuations’’ that arise from the residual screened Coulomb interaction
are very sensitive to the degree of chaos. It leads to ground state energies and spin polarizations whose
fluctuations strongly increase as a system becomes less chaotic. The crucial features are illustrated with
a model that depends on a parameter that tunes the dynamics from nearly integrable to mostly chaotic.
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tions without drastically altering the results.
Our interest in this Letter lies in microstructures fab-
ricated using electrostatic gates or etching that pattern a
two-dimensional electron gas in a semiconductor hetero-
structure, for example, GaAs=AlGaAs. Typically, the
electronic transport mean free path is significantly larger
than the dimensions of the device, and the electrons
essentially travel ballistically across the microstructure.
Their motion is governed by the shape of a smooth, self-
consistent, steep-walled, confining potential which is
often conceptualized as a quantum billiard.

For many physical properties, the simplifying assump-
tion that the dots’ underlying classical dynamics are fully
chaotic (hard chaos) is consistent with the experimental
data [1–4]. It has been used to justify various hypotheses
from the applicability of random matrix theory (RMT)
and random plane wave modeling (RPW) to statistical
assumptions applied within semiclassical mechanics
[5–7]. Indeed, chaotic systems manifest a large variety
of universal behaviors. Furthermore, chaotic quantum
dots are often very similar to diffusive ones (given a
properly defined Thouless energy). Consequently, most
techniques, developed much earlier to study disordered
metals (diagrammatic approaches [8], nonlinear sigma
model [9]) and applied to disordered quantum dots
[10–12], are applicable to ballistic quantum dots.

Nevertheless, unlike billiards, there are no known
smooth potentials which are fully chaotic. Unless de-
signed otherwise (as was done for the weak localiza-
tion line shape [13]), an odd-shaped, smooth potential
generically exhibits soft chaos, i.e., significant contribu-
tions of both stable and unstable motion. The general
assumption of hard chaos is unfounded.

As opposed to a genuine belief that the electrons’
dynamics are strongly chaotic, the implicit assumption
is that for many properties the distinctions between soft
and hard chaos are more subtle than spectacular. This has
been shown explicitly, for instance, for the fluctua-
tion properties of Coulomb blockade (CB) peak heights
[14] or for their correlations [15]. In such circumstances,
using a chaotic model allows for simpler analytic deriva-
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Our purpose is to demonstrate that even this weaker
assumption may not always hold and that for some prop-
erties a strong sensitivity to the nature of the dynamics
arises. Because the distinction between chaos and inte-
grability becomes most apparent at long (infinite) times,
long electron confinement within the dot holds the prom-
ise of exposing the dynamics.We therefore consider [zero-
temperature] properties of isolated dots and find that
ground state energies (whose second differences are
probed by CB peak spacings) and spin polarizations are
markedly affected by the dynamics. To proceed, we start
with a general discussion of why, in principle, chaotic
dots should be ‘‘atypical,’’ at least for their ground state
properties. Then we consider a time-reversal noninvariant
coupled quartic oscillator system and show quantitatively
the relevance of the underlying dynamics.

We assume that a Fermi-Landau liquid description is
valid [10,11,16], and, thus, the ground state energy is due
to three terms

Egr�N� � ETF � E1p � Eri: (1)

ETF�N� � �eN�2=2C is an electrostatic energy, E1p�N� is
the sum of the single particle energies (SPE) of N inde-
pendent particles, and Eri is a residual interaction term.
Specifically,

E 1p�N� �
X
i;	

f	i �i; (2)

with f�ig the SPEs corresponding to an effective potential
Veff�r� (that can be determined self-consistently within
the electrostaticlike approximation) and f	i � 0 or 1 is
the occupation number of orbital i with spin 	 � 	,
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is the direct-plus-exchange, first order perturbation con-
tribution in terms of the weak screened Coulomb inter-
action Vsc. For the experimentally relevant electronic
densities, Vsc is a short range function, and we model it as

Vsc �
�
�
��r� r0�; (3)

with � the total density of states (including the spin
degeneracy, gs � 2) and � 2 �0; 1�, which can be related
to the electron density (i.e., the electron gas parameter rs)
and is typically in the range �0:5; 0:8�. To this zero range
approximation, the residual interaction contributions read

E ri � �
�

gs

X
i;j

f���
i f���

j Mij; (4)

with � the (local) mean SPE spacing and

Mij � A
Z
drj i�r�j2j j�r�j2: (5)

A is the dot area, the Mij are dimensionless, and semi-
classical reasoning gives their mean (i � j) to be unity.

It is crucial that in Eq. (4) only electrons with opposite
spins contribute. Aligning two spins decreases the resid-
ual interaction by a quantity of O���. There is thus a
competition between the SPE term, which favors the
occupation of the lowest orbitals, and the residual inter-
action term, which tends to align the electron spins. The
relative strength of these two effects is governed by the
dimensionless parameter � . If � > 2, the ground state is
completely polarized. This is the well known Stoner
instability [17].

Here � is just less than one. Although full polarization
is excluded, the proximity of the Stoner instability makes
the ground state spin very sensitive to the fluctuations of
the Mij and �i, which affects the fluctuation properties of
the ground state [7,10,11,18]. This is sometimes referred to
as the ‘‘mesoscopic Stoner fluctuation.’’

Now consider the diagonal term

Mii � A
Z
drj i�r�j4: (6)

Mii is the inverse participation ratio (IPR) in position
representation of the state  i, which measures its extent
of localization. Hard chaotic systems possess eigenfunc-
tions that are the least localized in the sense that their
Wigner transforms uniformly cover the energy surface
[19]. However, mixed systems are known to display phase
space localization by various mechanisms [20]. The most
familiar one is associated with torus quantization (WKB).
It may affect only a few states, yet localize them very
strongly. Another mechanism is associated with the pres-
ence of partial transport barriers in phase space [20],
which are quite typical in mixed systems. Such partial
barriers, if they are effective, should affect almost all
eigenstates, but produce a lesser degree of localization.
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Similarly, it can be shown that the mean of the off-
diagonal termsMi;j�i is independent of the dynamics, and
their fluctuations are extremely small for chaotic systems
(vanishing in the semiclassical limit [7]). However, they
would be of O��� if significant phase space localization
were present. Thus, chaotic systems, rather than behaving
typically, are the limiting class of systems for which the
interaction is the least effective.

To explore the effects of soft chaos on the ground state
properties, let the effective Hamiltonian ĤHeff resulting
from the lowest order, electrostaticlike, self-consistent
calculation be [r � �x; y�, r � jrj]

ĤH eff �
�p� �

����������
a���

p
x2 r

r�
2

2
� a���

�
x4

b
� by4 � 2�x2y2

	
:

(7)

Weyl operator ordering is assumed for the quantized
version. To have the symmetry of the rectangle instead
of the square, b is set to !=4. For convenience, a��� is set
so that the mean number of states to energy E is given by
N�E� � E3=2, regardless of the choice of � or �. � gives
the oscillator coupling. Finally, � breaks time-reversal
invariance (TRI). Note that for TRI systems, higher order
terms in the ground state energy expansion, in particular,
the Cooper series, should be taken into account. So � is
chosen to break TRI completely; the form of the TRI
breaking term has been chosen to ensure that the phase
space portrait of the dynamics is energy independent. We
consider the following dynamical regimes: ��; �� �
��0:20; 1:00� [nearly integrable], ��0:20; 1:00� [mixed],
and ��0:80; 1:00� [mostly chaotic]. Because of the TRI
breaking term somewhat stabilizing the dynamics, the
motion in the chaotic case is still not quite fully chaotic.

The reflection symmetries lead to four irreducible rep-
resentations, which we take as independent quantum dots
with the same dynamics. We consider the four systems as
an ensemble; in fact, the ensemble size is increased by
allowing � to vary 	0:02, which is enough to get nearly
independent quantum eigenproperties, but small enough
that the structure of the dynamics is essentially un-
changed. Each statistical measure calculated within a
given dynamical regime is thus the result of averaging
over an ensemble of 12 similar quantum dots.

For each parameter set and symmetry class, we com-
pute the eigenvalues �i and eigenvectors  i, from which
the residual interaction terms can be deduced [Eqs. (4)
and (5), see [21] for the numerical details]. We begin with
a few interesting statistical properties of the fMijg and
afterward see how the spin distribution and ground state
energy fluctuations are affected.

In Fig. 1, values of sets of diagonal terms Mii are
represented for the symmetry class ��;�� in the various
dynamical regimes. The presence of very localized states
in the nearly integrable and mixed regimes is immedi-
ately apparent. Curiously enough, it turns out that for all
dynamical regimes, the IPRMii is not very far from 2 for
176801-2
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FIG. 1 (color online). Inverse participation ratio as a function
of the orbital index for ��;��. From top down: ��; �� �
��0:20; 1:00� [nearly integrable], ��0:20; 1:00� [mixed], and
��0:80; 1:00� [mostly chaotic].
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most states, but the distribution has a very long tail if the
dynamics are not sufficiently chaotic. Consequently, it is
reasonable to assume that the localization mechanism at
work here is associated with stable periodic orbits or tori.
A more detailed analysis of the classical dynamics re-
veals that partial barriers are actually present in ��; �� �
��0:20; 1:00�, but that their position with respect to the
symmetry lines of the system make them ineffective in
changing the statistics of the Mii. Furthermore, and as
can be seen in Table I, the off-diagonal terms Mij (i � j)
are also affected by eigenstate localization as their vari-
ance is significantly larger if the state i is localized.

The difference between the distribution of Mij ob-
served for the quartic oscillator system and that predicted
for a chaotic system is essentially that a non-negligible
number of very localized states  i gives much larger
diagonal terms and much larger variation of the corre-
sponding off-diagonal terms. The question is how this
affects the ground state properties. The answer for given
��; �� and number of electrons in the dot N follows from
the �i and Mij. To compute the energy E�ff	i g�, we use
Eqs. (1), (2), and (4) for the various occupations ff	i g such
that

P
i	f

	
i � N. The ground state follows by selecting

the occupation sequence minimizing this energy.Varying
TABLE I. Conditional variance of the interaction terms Mij
with 0< ji� jj � 10, i � 51. Rows top down: (i) dynamical
case, (ii) superior limit, (iii) inferior limit, (iv) conditional
variance with localized orbitals, and (v) conditional variance
with delocalized orbitals.

� �0:20 �0:20 �0:80
Isup 2.0 1.8 1.2
Iinf 1.2 1.2 1.0

Mii=gs > Isup 0.097 0.108 0.070
Mii=gs < Iinf 0.024 0.023 0.009
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N in the range �100; 200� for each parameter set, one
constructs a distribution of total spins and second differ-
ences in the ground state energy "�N� � Egr�N � 1� �
Egr�N � 1� � 2Egr�N�. "�N� is experimentally accessible
by measuring CB peak spacings, and we therefore refer to
it as a ‘‘peak spacing.’’ The various dynamical regimes’
peak spacing distributions are shown in Fig. 2.

We see that the observed distributions are strikingly
different from the RMT/RPW predictions (shown on the
same plot) that should apply for fully chaotic systems.
Even our most chaotic case shows significant deviations,
and this increases considerably as the system moves away
from hard chaos. The peak spacings fluctuate much more,
and very large spacings appear for the mixed and nearly
integrable regimes. Moreover, as shown in Table II, larger
spins become significantly more probable.

We next ask how such a drastic change is made possible
by the presence of a moderate number of very localized
states. Let us consider one example in detail. Figure 3
shows the succession of orbital fillings for a range of N.
Here two of the single particle states (i � 64; 66) are
highly localized. Since the system is not chaotic, there
is also less level repulsion, which allows for the clustering
of levels around �64 or �69 that would otherwise be
improbable. We see that none of the orbital occupations
follow the simple ‘‘up/down’’ scenario characteristic of
noninteracting systems. As would seem natural, the very
localized orbitals i � 64; 66 remain singly occupied
across many values of N. There is an additional non-
intuitive feature, namely, that the other orbitals also
prefer single occupancy despite not being particularly
localized.

This behavior derives from the following mechanism.
Consider a singly occupied orbital i
. Particles in other
orbitals i interact with this later only if their spin anti-
aligns with the one on i
. This typically increases the
energy cost of occupying an orbital with antiparallel spin
a quantity ���=gs�. Assuming Nl such singly occupied
orbitals already exist, and adding the intra-orbital term,
on average the residual interaction energy cost of doubly
occupying some orbital i is ��Nl � 2���=gs� even for a
nonlocalized state. For typical values of � , this is larger
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FIG. 2. Integrated peak spacing distribution with � � 0:8 for
RMT/RPW prediction [7] (dotted line), mostly chaotic (solid
line), mixed (dash-dotted line), and nearly integrable (dashed
line) regimes.
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TABLE II. Probabilities P�s � 2� , P�s � 5=2� to find a spin
two (even N) or five halves (odd N) ground state, and average
value h�si of the ground state spin augmentation [�s � s or
�s� 1=2� for even or odd number of particles, respectively], for
the various dynamical regimes (values of �) with � � 1:0 and
� � 0:8. The last column is the RMT/RPW prediction [7].

� �0:20 �0:20 �0:80 RMT/RPW

P�s � 2� 0.13 0.16 0.07 0.01
P�s � 5=2� 0.08 0.10 0.02 0.00

h�si 0.51 0.54 0.38 0.23

P H Y S I C A L R E V I E W L E T T E R S week ending
2 MAY 2003VOLUME 90, NUMBER 17
than a mean spacing as soon as Nl � 1. Consequently, as
illustrated by Fig. 3, the localized orbitals will not only
remain singly occupied, but also have a tendency to polar-
ize the electrons in the other nearby orbitals. Lack of
level repulsion and larger fluctuations of the Mij will
further enhance such effects.

To conclude, we have shown that for the non-TRI
quartic oscillators the eigenfunction statistics behave
differently than those from a RMT/RPW approach.
The significance is correlated with the degree of chaos
(or lack thereof) in the underlying classical dynamics.
Because of the proximity of the Stoner instability, strong
effects arise in ground state spin polarizations, occupan-
cies, and energies of the corresponding ‘‘model’’ quantum
dot. The quartic oscillators more fairly represent a generic
experimental dot than the hard chaos assumption. The
hard chaos assumption leads to predictions that are
qualitatively and quantitatively incorrect.

Finally, such considerations should affect the under-
standing of realized dots, which needs to be discussed on
a case-by-case basis. For instance, the dots used in
Ref. [22] are certainly far from chaotic. They should
show a large degree of phase space localization in their
single particle properties, whereas this point is debatable
with respect to the dots of Ref. [4]. However, it may be
more interesting to address this question from the oppo-
site point of view. Since creating dots away from the hard
chaos limit leads to behaviors that are qualitatively differ-
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FIG. 3 (color online). Successive filling of the ��;�� orbitals
i � 63 to 69 as the number of particles in the dot goes from
N � 129 to 135 for ��; �� � ��0:20; 1:00� and � � 0:8. The
spacing between the horizontal lines is proportional to the
actual level spacings. The numbers in the right column are
the corresponding IPRs.
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ent from those predicted using chaotic or diffusive mod-
eling, if the interest is in devising a dot to perform some
particular function, such as spin manipulation, for in-
stance, it is in the soft chaos regime that richer behavior
involving large fluctuations of ground state energies and
spins will be found.
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