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Breaking time reversal in a simple smooth chaotic system
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Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the presence~or
absence! of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement ex-
tends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting nu-
merical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth
systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time
system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a
parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully
to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that
the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose
energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a
minor proportion of regular motion in its phase space.
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Since its introduction into nuclear physics by Wigner@1#,
random matrix theory~RMT! has grown to encompass
broad variety of applications and can be viewed as a sig
cant portion of the foundation of the statistical mechanics
finite systems. One of the central tenets of RMT emphasi
by Wigner was that the ensembles carry no information ot
than that required by the symmetries of the system. A v
important symmetry is time reversal, which determin
whether the ensemble is composed of real symmetric m
ces, Gaussian orthogonal ensemble~GOE—good symmetry!,
or complex Hermitian matrices, Gaussian unitary ensem
~GUE—broken symmetry!. This distinction leads to quite
different predictions for the statistical properties of both t
energy levels and the eigenfunctions. In fact, Wigner p
posed it as a test of time reversal invariance in the str
interaction, using slow neutron resonance data@2#. His sug-
gestion was not fully realized until more than 20 yea
later @3#.

Time reversal is well known to be an antiunitary symm
try in quantum mechanics, and Robnik and Berry generali
the criterion for expecting the statistical properties of t
GOE to include any antiunitary symmetry@4#. An elementary
example of an antiunitary symmetry would be the produc
some reflection symmetry and time reversal. Some of
early investigations of noninvariant systems were
Aharanov-Bohm chaotic billiards@5#, symmetry breaking
quantum maps@6#, and combinations of magnetic and sca
forces@7#. More recent investigations found mostly chao
behavior in nonvariant time-dependent systems@8#.

There is no known mechanical-type system of a part
moving under the influence of a simple, closed, smooth
tential whose dynamics is rigorously proven to be fully ch
otic, independent of the question of antiunitary symmet
we exclude diffusive dynamics associated with random
tentials. For some period of time, thex2y2 quartic potential
was a prime candidate, but eventually stable trajectories w
found @9#. Nevertheless, there exists a family of quartic p
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tentials with x2y2 as a limiting case whose fluctuation
closely approximate GOE statistics, and whose classical
namics contain negligible phase space zones of stable tra
tories. Therefore, to construct a close approximation o
Hamiltonian without an antiunitary symmetry and GUE s
tistics, we begin by considering the symmetry preserv
two-degree-of-freedom-coupled quartic oscillators who
Schrödinger equation is given by

Ĥ0C~rW !52
\2¹2

2m
C~rW !1V̂~rW !C~rW !5EC~rW !. ~1!

The potential can be expressed as

V̂~rW !5a~l!Fx4

b
1by412lx2y2G , ~2!

wherea(l) is a convenient constant,bÞ1 lowers the sym-
metry, andl gives the strength of the coupling; (b51,l
521) is equivalent toV(rW)5x2y2 by a p/4 rotation of the
(x,y) coordinates. The corresponding classical Hamilton
is

H0~rW,pW !5
pW 2

2m
1V~rW !. ~3!

This system is symmetric under time reversal and reflecti
with respect tox andy. For strong couplings,l<20.6, the
statistics have been shown to agree extremely well with
GOE predictions@10#. As a first attempt to break time reve
sal symmetry, we add the following term to the quantu
Hamiltonian (Ĥ5Ĥ01Ĥ1):

Ĥ15
i\e

2m S r
]

]r
r 1

]

]r
r 2D , ~4!
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wherer is the radial polar variable.Ĥ1 breaks time reversa
invariance in the Hamiltonian without altering the origin
reflection symmetries, and thus does not admit an antiuni
symmetry from any combination of reflection and time r
versal. This term was chosen to maintain a scaling prop
of the eigensolutions of the quartic oscillators due to
homogeneity of the potential@10#. However,Ĥ1 gives us an
excellent example of false symmetry breaking. In fact,
turns out thatĤ1 is given by the cross terms arising from
vector potentialA(rW)5er 2r̂ ~which can also be expressed
the gradient of a scalar function!, i.e.,

Ĥ15
i\

2m
@“•A~rW !1A~rW !•“#. ~5!

This means that, up to the addition to the potential of a te
e2r 4, H1 can be understood as deriving from a magne
field B5“3A50, which obviously will not change any
physical quantity. And indeed, it is possible to make a ga
transformation and rewrite the wave function using the Di
substitution

FIG. 1. The number variance for the quartic oscillators~solid
lines! compared to the GOE and GUE~dashed lines!. The upper
panel shows the statistics for the hidden symmetry case, i.e.,
the Hamiltonian term in Eq.~4! with (e50.5, l520.65). The
lower panel shows the results using the Hamiltonian term of
~11! and (e51.0, l520.80). Spectra containing a total of 60
levels were used to generate the statistics. The lowest 50 eige
ues were dropped.
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C~rW !5expS i

\E rW

A~rW8!•drW8DC8~rW !5eir 3/3\C8~rW ! ~6!

in order to cancelĤ1 plus the afore-mentionede2r 4 term.
Furthermore, the transformation is single valued, sinceB
50 implies

R A~rW8!•drW850. ~7!

The expectation, following the considerations of Ref.@4#, is
therefore to find the GOE statistics and not those of
GUE. See the upper panel of Fig. 1, which compares
number variance of the system~i.e., the variance of the num
ber of levels found in an energy interval of widths scaled
locally to mean unit level density! with the predictions of the
GOE and the GUE. The GOE statistics are closely matc
to a mean level spacing and a bit beyond. The paramete
was chosen slightly greater than unity because this forced
eigenlevels through a couple of avoided crossings, wh
would have been sufficient to push the spectral fluctuati
toward the GUE if the symmetry was not being falsely br
ken.

From a classical perspective, the Hamiltonian, not inc
porating the guage transformation, is

H~rW,pW !5
pr

222er 2pr

2m
1

pu
2

2mr21V~r ,u!, ~8!

which itself appears to violate time reversal symmetry,
well as in Hamilton’s equations of motion:

ith

.

al-

FIG. 2. Thex50 Poincare´ surface of section for the Hamil
tonian with the term from Eq.~11!, and parameters (l520.8,
e51) as in the bottom panel of Fig. 1. The coordinatesy andpy are
in scaled units.
1-2



a
he
th

n
a
s,
ls

c-
an
ca

is
ue.
ies

ing
sec-

see

le,
ting

n-
e
uite
y-
tem

o.

BRIEF REPORTS PHYSICAL REVIEW E67, 067201 ~2003!
ṙ 5
1

m
~pr2er 2!, ṗr52

]V~r ,u!

]r
12

e

m
rpr ,

u̇5
pu

mr2 , ṗu52
]V~r ,u!

]u
. ~9!

However, even without considering a canonical transform
tion, just by converting to the Lagrangian description of t
dynamics using the left-hand side equations, it turns out

L5
1

2
~mṙ21mr2u̇2!2V~r ,u!1

e2

2m
r 41er 2ṙ . ~10!

The final term, which appears to break the symmetry, can
enter the equations of motion. They are invariant under
dition of any total time derivative. It is not always obviou
a priori, whether a symmetry breaking term leads to fa
symmetry breaking or not.

If we multiply the symmetry breaking term by any fun
tion of u, it can no longer be a total time derivative, nor c
the vector potential be expressed as the gradient of a s
function. Consider
ng

n
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Ĥ185
i\e

2m
cos2uS r

]

]r
r 1

]

]r
r 2D . ~11!

The vector potential becomesA(rW)5er 2cos2ur̂, and there-
fore B52exy/rÞ0. The integrals * rWA(rW8)•drW8 and
rA(rW8)•drW8 are path dependent. The Dirac substitution
not useful, and the false symmetry breaking is not an iss

Driving the eigenvalues at numerically attainable energ
through a couple of avoided crossings forcese to be chosen
in the neighborhood of unity. This has a strong regulariz
effect on the nature of the dynamics. See the surface of
tion in Fig. 2 for the casel520.8,e51. Only its spectrum
gives number variance statistics close to the GUE results;
the lower panel of Fig. 1.

To summarize, we have given an example of a simp
continuous, dynamical system that comes close to genera
GUE statistics. It is surprisingly difficult to find an esse
tially fully chaotic system that does so. The pitfall of fals
time reversal breaking can lead to symmetries that are q
well hidden, and the addition of a vector potential to a d
namical system has a strong tendency to move the sys
away from fully developed chaos.
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