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Breaking time reversal in a simple smooth chaotic system
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Within random matrix theory, the statistics of the eigensolutions depend fundamentally on the pfesence
absencg of time reversal symmetry. Accepting the Bohigas-Giannoni-Schmit conjecture, this statement ex-
tends to quantum systems with chaotic classical analogs. For practical reasons, much of the supporting nu-
merical studies of symmetry breaking have been done with billiards or maps, and little with simple, smooth
systems. There are two main difficulties in attempting to break time reversal invariance in a continuous time
system with a smooth potential. The first is avoiding false time reversal breaking. The second is locating a
parameter regime in which the symmetry breaking is strong enough to transform the fluctuation properties fully
to the broken symmetry case, and yet remain weak enough so as not to regularize the dynamics sufficiently that
the system is no longer chaotic. We give an example of a system of two coupled quartic oscillators whose
energy level statistics closely match with those of the Gaussian unitary ensemble, and which possesses only a
minor proportion of regular motion in its phase space.
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Since its introduction into nuclear physics by Wigh&f,  tentials with x?y? as a limiting case whose fluctuations
random matrix theoryRMT) has grown to encompass a closely approximate GOE statistics, and whose classical dy-
broad variety of applications and can be viewed as a signifinamics contain negligible phase space zones of stable trajec-
cant portion of the foundation of the statistical mechanics ofories. Therefore, to construct a close approximation of a
finite systems. One of the central tenets of RMT emphasizetamiltonian without an antiunitary symmetry and GUE sta-
by Wigner was that the ensembles carry no information othefistics, we begin by considering the symmetry preserving
than that required by the symmetries of the system. A vernjwo-degree-of-freedom-coupled quartic oscillators whose
important symmetry is time reversal, which determinesSchralinger equation is given by
whether the ensemble is composed of real symmetric matri-
ces, Gaussian orthogonal ensemi@©E—good symmetny
or complex Hermitian matrices, Gaussian unitary ensemble
(GUE—Dbroken symmetpy This distinction leads to quite
different predictions for the statistical properties of both theTne potential can be expressed as
energy levels and the eigenfunctions. In fact, Wigner pro-

h2v2

HoW(r)=— V(N +V(NDY()=E¥(r). (1)

2m

posed it as a test of time reversal invariance in the strong x4

interaction, using slow neutron resonance dafa His sug- V(r)=a(\) E+by“+ 2 x%y2 |, 2
gestion was not fully realized until more than 20 years

later[3].

Time reversal is well known to be an antiunitary symme-"Wherea(}) is a convenient constart#1 lowers the sym-

try in quantum mechanics, and Robnik and Berry generalize@'€ty, and\ gives the strength of the couplingb€ 1,z

the criterion for expecting the statistical properties of the=—1) is equivalent toV(r)=x?y® by a=/4 rotation of the
GOE to include any antiunitary symmef{#]. An elementary  (X,y) coordinates. The corresponding classical Hamiltonian
example of an antiunitary symmetry would be the product ofis

some reflection symmetry and time reversal. Some of the

early investigations of noninvariant systems were of .. 52 .

Aharanov-Bohm chaotic billiard$5], symmetry breaking Ho(r,p) =5+ VI(r). ()]
guantum map$§6], and combinations of magnetic and scalar

forces_[?]._ More recent investigations found mostly chaotic This system is symmetric under time reversal and reflections
behavior in nonvariant time-dependent systéBis . .
. ; . with respect tax andy. For strong couplings\< —0.6, the
There is no known mechanical-type system of a particle_, .. .. .
. . . statistics have been shown to agree extremely well with the
moving under the influence of a simple, closed, smooth po: o . .
. T GOE predictiong10]. As a first attempt to break time rever-
tential whose dynamics is rigorously proven to be fully cha-

L : A sal symmetry, we add the following term to the quantum
otic, independent of the question of antiunitary symmetry; RN
we exclude diffusive dynamics associated with random poHamiltonian (H=Hq+H,):
tentials. For some period of time, tixy? quartic potential ]
was a prime candidate, but eventually stable trajectories were 'hf( J J 2) (4)

found[9]. Nevertheless, there exists a family of quartic po-
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0.1 FIG. 2. Thex=0 Poincaresurface of section for the Hamil-

tonian with the term from Eq(11), and parameters\(=—0.8,
0 05 1 15 2 e=1) as in the bottom panel of Fig. 1. The coordinatesidp, are
' S ' in scaled units.

FIG. 1. The number variance for the quartic oscillat(sslid - i (r -, o D t3/3harn s >
lines) compared to the GOE and GU@Eashed lines The upper W(r)=ex gf A(r')-dr" |W'(r)=e""w'(r) (6)
panel shows the statistics for the hidden symmetry case, i.e., with
the Hamiltonian term in Eq(4) with (e=0.5, \=—0.65). The N )
lower panel shows the results using the Hamiltonian term of Eqin order to canceH; plus the afore-mentionee’r* term.
(11) and (€=1.0, \=—0.80). Spectra containing a total of 600 Furthermore, the transformation is single valued, siBice
levels were used to generate the statistics. The lowest 50 eigenvai 0 implies
ues were dropped.

jﬁA(F').dFeo. 7)

wherer is the radial polar variabléd; breaks time reversal
invariance in the Hamiltonian without altering the original
reflection symmetries, and thus does not admit an antiunitaryhe expectation, following the considerations of Héf, is
symmetry from any combination of reflection and time re-therefore to find the GOE statistics and not those of the
versal. This term was chosen to maintain a scaling propert{pUE. See the upper panel of Fig. 1, which compares the
of the eigensolutions of the quartic oscillators due to thenumber variance of the systefire., the variance of the num-
homogeneity of the potenti&L0]. However,H; gives us an ber of levels found in an energy interval of widghscaled

excellent example of false symmetry breaking. In fact, itIOCaIIy to mean unit level densuwvith t_he predictions of the
L . GOE and the GUE. The GOE statistics are closely matched
turns out thatH, is given by the cross terms arising from a

) . N _ to a mean level spacing and a bit beyond. The paraneeter
vector potentialA(r) = err (which can also be expressed asyas chosen slightly greater than unity because this forced the
the gradient of a scalar functipni.e., eigenlevels through a couple of avoided crossings, which
would have been sufficient to push the spectral fluctuations

i toward the GUE if the symmetry was not being falsely bro-
Hi=5-[V-A(N+A() V1. (5) ken. _ _ . _
2m From a classical perspective, the Hamiltonian, not incor-

porating the guage transformation, is

This means that, up to the addition to the potential of a term 2_ 52 2
€’r*, H; can be understood as deriving from a magnetic S 0) = Pr—cer P Po

field B=V xA=0, which obviously will not change any 2m 2mr

physical quantity. And indeed, it is possible to make a gauge

transformation and rewrite the wave function using the Diraavhich itself appears to violate time reversal symmetry, as

substitution well as in Hamilton’s equations of motion:
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_&V(r,ﬁ) € . ihe (

01 .
r=5(pr—er2), p,= T+2—rpr, Hi=—— cog6

&+32 11
- om r—r+—r<|. (12

or or

The vector potential becomes(r) = er2co$¢r, and there-
=—, ) (9) fore B=2exy/r#0. The integrals ["A(r’)-dr’ and
mr 90 $A(r')-dr’ are path dependent. The Dirac substitution is
_ o . not useful, and the false symmetry breaking is not an issue.
However, even without considering a canonical transforma-  Driving the eigenvalues at numerically attainable energies
tion, just by converting to the Lagrangian description of thethrough a couple of avoided crossings foree® be chosen
dynamics using the left-hand side equations, it turns out thah the neighborhood of unity. This has a strong regularizing
effect on the nature of the dynamics. See the surface of sec-

Pe . aVv(r,0)

0

1 . _ &2 _ tion in Fig. 2 for the cas@=—0.8=1. Only its spectrum
L==(mr’+mr?6?)—V(r,0)+ =——r*+er’r. (10)  gives number variance statistics close to the GUE results; see
2 2 the lower panel of Fig. 1.

To summarize, we have given an example of a simple,
The final term, which appears to break the symmetry, canngtontinuous, dynamical system that comes close to generating
enter the equations of motion. They are invariant under adGUE statistics. It is surprisingly difficult to find an essen-
dition of any total time derivative. It is not always obvious, tially fully chaotic system that does so. The pitfall of false

a priori, whether a symmetry breaking term leads to falselime rgversal breaking can lead to symmetries that are quite
symmetry breaking or not. well hidden, and the addition of a vector potential to a dy-

If we multiply the symmetry breaking term by any func- namical system has a strong tendency to move the system
tion of 6, it can no longer be a total time derivative, nor can@Way from fully developed chaos.

the vector potential be expressed as the gradient of a scalar We gratefully acknowledge support from ONR Grant No.
function. Consider N00014-98-1-0079 and NSF Grant No. PHY-0098027.
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