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Phase space localization of chaotic eigenstates: Violating ergodicity
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The correlation between level velocities and eigenfunction intensities provides a new way of exploring phase
space localization in quantized nonintegrable systems. It can also serve as a measure of deviations from
ergodicity due to quantum effects for typical observables. This paper relies on two well known paradigms of
guantum chaos, the bakers map and the standard map, to study correlations in simple, yet chaotic, dynamical
systems. The behaviors are dominated by the presence of several classical structures. These primarily include
short periodic orbits and their homoclinic excursions. The dependences of the correlations deriving from
perturbations allow for eigenfunction features violating ergodicity to be selectively highlighted. A semiclassi-
cal theory based on periodic orbit sums leads to certain classical correlations that are superexponentially cut off
beyond a logarithmic time scale. The theory is seen to be quite successful in reproducing many of the quantum
localization features.
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I. INTRODUCTION were chosen to be a wave packet well localized in such
spaces.

For a bounded, classically chaotic system, ergodicity is In a system with a nondegenerate spectrum the time av-
defined with respect to the energy surface, the only availablerage of an observabl in state|a) is
invariant space of finite measure. In an extension developed
just over twenty years ago, the consequences of ergodicity _ AUA R it _ 2 A
{‘or the eigenstz;{[eys of a c%rresponding guantum systegm wené’b‘(t»t_«aIe tAem Y |a>>t—; (al )| (gl Alghn),
conjectured to give rise to a locally, Gaussian random behav- )
ior [1,2]. Shortly thereafter, work ensued on defining the
concept of eigenstate ergodicity within a more rigorouswhere|y,) are the eigenstates of the Hamiltonidn Since
framework[3]. Some of the paradoxes and peculiarities haveexperimental data exist, it is convenient to study systems that
been recently explored as wél]. One expression of eigen- depend upon a parameterwhich varies continuously. The
state ergodicity is that a typical eigenstate would fluctuatgyarameter may include electromagnetic fields, temperatures,
over the energy surface, but otherwise be featureless, in aipplied stresses, changing boundary conditions, etc. The
appropriate pseudophase-space representation such as fheniionian can be rewritten to first order #(\)=H,

Wigner transform representatid®]. Any statistically sig- - A~ .
nificant deviation from ergodicity in individual eigenstates is TAA whereA—aH()\)_/a)\. Using the 59 called Hellmann-
Feynman theorerffor instance, Ref[20]):

termed phase space localization.
It came as a surprise when Heller discovered eigenstates -

were “scarred” by short, unstable periodic orb(§,7]. A (¥ |A|¢// Y=t |ﬁ|¢/ )= ’9_En )

great deal of theoretical and numerical research followed : " TN o

[8—-13], and experiments aldd4,15. In fact, scarring is just

one of the means by which phase space localization can exidEn/\ is defined as an energy level “velocity” for the"

in the eigenstates of such systems. Another means would B@vel (velocity is a bit of a misnomer for it is actually just a

localizing effects due to transport barriers such as cantoflope—we are not evolving the system parameter in jtime

[16,17] or broken separatricg48]. Despite these studies and Hence, for our specific choice & we are examining corre-

the semiclassical construction of an eigenstaé, the prop-  lations between level velocities and wave function intensi-

erties of individual eigenstates remain somewhat a mystenties, but Eq.(1) is applicable to more general observables.
Individual eigenfunctions may not be physically very rel- One of us has already studied the correlation between

evant in many situations, especially those involving a highlevel velocities and wave function intensities in connection

density of states. In this case, groups of states contributeith localization[21]. This can be directly connected to the

towards localization in ways that may be understood withissues raised above, and our treatment thus extends the pre-

available semiclassical theories. One simple and importantious work. The present paper is a companion to a study of

quantity where this could arise is the time average of arsimilar problems in continuous Hamiltonian systefas op-

observable as this is a weighted sum of sevéraprinciple  posed to Hamiltonian maps, i.e., discrete time sysjeansl

all) eigenfunctions. In the Heisenberg picture, where the opbilliards[22]. The methods used in these two papers comple-

erator is evolving in time, the expectation value of the ob-ment each other and the results in the present paper are de-

servable could be measured with any state. Phase space lailed as the systems studied are much simpler. The compan-

calization features would be especially evident if this statdon paper contains a review of the general theories of the
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level velocities and wave function intensities and also giveserved localization with classical features of the map. On the

revelant discussions pertaining to how these quantities denother hand, the standard map is more complex. It has a con-
onstrate localization. It must be noted that while we call thetinuous parameter whose variation takes the map through a
operator average Edql) a “correlation” it is not the true transition from integrable to chaotic dynamics. Such a sys-

correlation that is obtained by dividing out the rms values oftem is more typical and we are able to comment on some of

the wave function intensities and the operator expectatiothe difficulties of such systems. Nevertheless, with some

value (as defined in Ref.21]). In other words we are going simple approximations the standard map demonstrates the
to study the covariance rather than the correlation. This isame general features as the bakers map in its chaotic re-
followed in this paper for two reasons; first, dividing out gime. We also compare quantum results with the semiclassi-
these quantities does not retain the meaning of the time awal theory in its transitional regime.

erage of an observable and second, the root mean square of

the wave function intensities which is essentially the inverse Il. THE BAKERS MAP

participation ratio in phase space is itself a fairly complex

quantity reflecting on phase-space localization. A. Semiclassical evaluation

Thus, the correlation introduced in R¢R1] is The bakers map is a very attractive system to study the
- guantities discussed in the Introduction. The classical dy-
Cala)=(A(1)), (3 namics is particularly simplét is sometimes referred to as
. . the “harmonic oscillator of chaog’ A simple quantization
with A=9H/J\. The statg«) represents a wave packet that js due to Balazs and Vord®6] (where a discussion of the
is well localized in the §,p) coordinate$12,23. We willbe  classical dynamics may also founds a model of quantum
interested in the quantum effects over and above the classicghaos it shows many generic features including the one cen-
limit and we will require that the operator is traceless. Oth-tra| to this study, namely, scarring localization of eigenfunc-
erwise we will need to subtract the uncorrelated product otions[12]. There are detailed semiclassical theories that have
the averages of the eigenfunctidimity) and the trace of the been verified substantiallj23,27—-29. We neglect certain
operator. This immediately also implies that the correlationanomalous features of the quantum bakers f2ap29 that
according to random matrix theoRMT) [24] is zero as  would eventually show up in the classical limit. This is rea-
well. The ensemble average Gf(«) will wash out random  sonable in the range of scaled Planck constant values we
oscillations that are a characteristic of the Gaussian distribhave used in the following.
uted eigenfunctions of the random matrices. Specific local- We use the second time averaged expression(4gfor
ization properties that we will discuss are then not part of thehe correlation. We do not repeat here details of the quanti-
RMT models of quantized chaotic systems. In the frameworkzation of the bakers map or the semiclassical theories of this
of level velocities, we are considering the situation where theperator except note that we use the anti-periodic boundary
average level velocity is zero, i.e., there is no net drift of theconditions as stipulated by Saracei@] in order to retain

levels. fully the classical symmetries.
A physically less transparent identity that is nevertheless For the bakers magand other maps as wglthe quantum
useful in subsequent evaluations is kinematics are set in a space of dimensin26,30,3]
" . where this is related to the scaled Planck constaniNas
Cala)=((ale” M | a)Tr(Ae"h)),. (4) =1/, and the classical limit is the lardé limit. The quan-
tum dynamics are specified by a unitary operatggquantum
This may be written more symmetrically as map that propagates states by one discrete time step. The
" . quantum stationary states are the eigensolutions of this
Cala)=(Tr(|a)(ale” V") Tr(Aeh)), . (5)  “propagator.” TheN eigenfunctions and eigenangles are de-

o _ noted by{|i),¢;; i=0,... N—1}. The eigenvalues lie on

Thus, the correlation is a sort of Atme evolved averagghe unit circle and are members of the detxp(—ip);
correlation between the two operatoksand |a){«|. The i=0,... N—1}.
semiclassical expressions for these are however different as The semiclassical theory of the bakers map deals with the
complications arise from the classical limit faf)(a| which  powers of the propagator. The tracelt, the timen propa-
would be varying over scales éfthat govern the validity of gator, has been written in the canonical form of a sum over
the stationary phase approximations. However, we may arclassical hyperbolic periodic orbits with the phases being
ticipate, based on the last form, that the semiclassical expresctions and the amplitudes relating to the linear stability of
sion would be roughly the correlations of the classical limitsthe orbits. The complications with Maslov phases is absent
of these two operatof®5]. here[27,28. Also, the semiclassical expressions have been

The classical dynamical systems that are investigated hererived for matrix elements of the timepropagator in the
are discrete maps on the dimensionless unit two-torus whosgave packets basif23]. The time domain dominates the
cyclical coordinates are denoted,p). The first part of the study of the quantum maps, the Fourier transform to the
paper explores the correlation in the bakers map, while thepectrum being done exactly. Our approach to the correlation
latter involves the standard map. The bakers map is the sinis then naturally built in the time domain. The situation is
pler of the two and a complete semiclassical evaluation oflifferent in the case of Hamiltonian time independent flows
the correlation is given. This allows us to connect the ob-where the energy domain is very useful.
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We use the semiclassical expression for the propagator The first step is to multiply the two semiclassical periodic

diagonal matrix elements derived in RE23]: orbit sums in Eq.{6) and in Eq.(7). Since there is a time
averagen is assumed large enough, but not too laigethat
N exp(iS, /%) these expansions retain some accuyagil hyperbolic func-
(alU |“>~Ey Jcoshian) tions are approximated by their dominant exponential depen-
dences. The diagonal approximation and the uniformity prin-
cosiin\)—1 ) 5 ciple [34] is used as well:
XEXR T S coshinnh (oq7+ 6p7)
i5q3p CA<a>=<2 VZexg—n2 (2 F(q,—p,—))
B tanh(n\) |. (6) Y T\
X A(Tqg ,Tp; . 8
Here y labels periodic orbits of period including repeti- EJ: (T pl))>n ®

tions. The Lyapunov exponent is which is In(2) for the
usual bakers mafpcorresponding to the (1/2,1/2) partition Here we have taken a more general dependencé fon-
and Bernoulli procegs Also i =h/(2m)=1/(2wN), 9  cluding the possibility of momentum dependenck repre-
=0;—d, and a similar relation fop. The position ofjth  sents elements of the symmetry group of the system includ-
periodic point on the periodic orbi is (q;,p;). The cen- ing time-reversal symmetry and including, of course, unity.
troids of the wave packets, assumed circular Gaussians, amhese symmetries imply in general, though not as a rule,
(de.P.)- The choice of type of wave packets is not crucial distinct (for T+#1) orbits with identical actions. One assumes
for the features we seek. We note that the simplicity of thisthat the overwhelming number of action degeneracies are
expression for the propagator derives from the simplicity ofdue to such symmetries.
the classical bakers map, especially the fact that the stable The functionF is the approximated Gaussian
and unstable manifolds are everywhere aligned with the
(g,p) axes. That Eq(6) happens to be a periodic orbit sum 1 i6q8p
differs from the similar treatment for billiards as found in F(q; apj):exf{_ ﬁ(5q2+ 5p?)— — | O
Ref. [32] where such sums are treated as homoclinic orbit
sums. Note however, that the local linearity of the baker
map renders the two approach@eriodic orbit, homoclinic
orbit) equivalent.

A generalization of the trace formula for the propagator is M
given below that is easily derived by the usual procedure _ =
employed for the propagator its¢@8]. Such a formula was Cala)= \/52 |:2_M Crlh), (10
derived in Ref[33] for the case of Hamiltonian flows in the
energy dom:’;un. We make the simplifying assumption tha(/vheref:(l) is a classical-step correlation
the operatoA is diagonal in the position representatigme
could treat the case @ being diagonal in momentum alone _ 10
as wel). This avoids the problem of a Weyl-Wigner associa- C(h)= o > F(a;,p)ATG 41, TP+ ) (11
tion of operators to functions on the torus. The quantum =1

operatorA under this simplifying assumption has an obwous.l.he time average is taken overtypical orbit. We abandon

classical limit and associated function which is denoted byany specific periodic orbit and appeal to ergodicity, taking

A(Q). The ot_her major assumption used in derving the for'and alsaMl as practically infinite. This is with the assumption
mula below is that it does not vary on scales comparable %hat such correlations will decay with timelIn fact, below

or smaller thark. we calculate such correlations explicitly and display the de-

Thus we derive ~ ~
cay. Note thatC(l)# C+(—1) in general. Although these
_is. /h are classical correlations, in the sense tijjap; represent a
Tr (AU—M~> eXpIS,/h) > A 7 classical orbit appears as a parameter in them throégh
r( ) - > AQ)). (7 . 95 2 P ;
7 2sinh(n\/2) 5 Further, using the ergodic principle we can replace time av-
erages inC1(l) by appropriate phase space averages

SUsing A=In(2) and the fact that there are approximately
2"/n orbits of periodn, one finds

The indexj again labels points along the periodic orhit

The sum over the periodic orbit is the analog of the integral  _

of the Weyl transform over a primitive periodic orbit in the CT(|)=f dQJ dp F(q,p)A[Tf(q,p), Td'(q.p)],
Hamiltonian flow cas¢33]. The special casA=1 the iden- (12

tity corresponds to the usual trace form{2%,28. Note that

we have written the sums above as being over periodic orwhere we have used the fact that the total phase space vol-
bits, while the trace formulas have been often written asime (area is unity, andf'(q,p)=q,, ¢'(q,p)=p, are the
sums oveffixed points classicall-step integrated mappings.
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B. Special case and verifications Therefore

We first consider the case that=Ao(T,+ T])/2, where

1 1/2
T, is the unitary single-step momentum translation operator Ci(-D= fo dQL dp F(q,p)cog 7q)
that is diagonal in the position representation akis a
constant real number. This implies that the associated func- 1 1
tion is A(q) = A, cos(2q). Below we consideA,=1 as the - fo dqfl/zdp Fapicogma). (17
strength of the perturbation. The elementsTofapart from
the identity (), are time-reversalTR) symmetry and parity In fact, since costq) vanishes at 1/2, there is no discontinu-
(P). Time reversal in the bakers map [i§(q)=p,T(p) ity in the full integral, but it is more difficult to evaluatand
=q] followed by backward iteration, while parity is the to approximatg If one were to take the upper limits of tipe

transformatiof T(q)=1—4q,T(p)=1—p]. integrals to be infinity, there would be errors pt=1/2.
We begin with the evaluation of the forward correlation However, this is not terribly damaging, and tolerating a small
(1=0) corresponding td=1. discontinuity at this point due to this approximation leads to
E|(|)=J’ dgdp Fg,p)cog272'q). (13 E|(—l):iiexq—'ﬂ/(SN)]COSan) (18)
— \/EN
This follows from the equality the sign depending on {§,<1/2 or if p,>1/2, respectively.

The time-reversed, forward correlati@yg(1) is the same
as this except for interchanging the rolesopfandp,, .
The generalization of this to higher times (ke | >0

f'(q)=2'q(mod 1) (14)

for the bakers map. The limits of the integrals can be ex- low-
tended to the entire plane as long as the centroid of thBe ow:

weighting factor ¢, ,p,) is far enough away from the edges 21, ;

of the unit phase space square that the Gaussian tails age, _ |\ _ f J'(V+1)/ /2
small there. The integral is elementary, and using1/N - Z’o odq w2 dp F(a.p)cog 2m(q+»)/2],
one gets (19

where v represents a partition of the bakers map at time

~ 1 -
Ci(1=0)= J——eXF[ —2%7/(2N)]cog 272'q,,). andv results from the bit-reversal of the binary expansion of
2N 15 v. The momentum gets exponentially partitioned with time,
(15 and it precludes going beyond the log time here as (@slin

This explicit expression shows the super-exponential de'Ehe forward correlatiop although there is apparently no su-

crease with timéd in the correlation coefficients. It is inter- perexponential decrease here. Indeed if we evaluate the

esting to note that the logarithmic time scale which sets aﬁbove after neglecting finite gm!ts in ('aac.h. of tpéntegrals

important quantum-classical correspondence scale of diveﬁg?ve’ so that we would have discontinuities at timé, we

gence for chaotic systems, herer=1/\In(1/27h) 9

=In(N)/In(2), enters the correlation decay. In fact, the cor- 1

relations are significant to precisely half the log time. We ¢ (—|)=——exd — /(2 *YN)]cog 2m(q,+ v)/2']

anticipate this feature to hold in general, including autono- \/EN

mous Hamiltonian systems. (20
Sinceg~'(p)=2'p(mod 1), for (=0), the time-reversed

backward correlationl €0) is depending on ifp,, lies in the interval v/2',(v+1)/2]. So

that for | large andN fixed, the exponential goes to unity;
effectively, for largeN and anyl, the exponential can be
~ 1 .
Cir(1<0)= ——exd —2 2 7/(2N)]cog 272 'p,) replac_ed by unity. Even _thqa-(_jepeno_lent part qf the argu-
\/EN ment in the functior(cog itself is tending to vanish, so that
(16)  the integral seems to give the area of the GausdianThe
. _ . _ approximation of putting alp limits to infinity makes sense
which also decays super-exponentially and is responsible fasnly if the Gaussian state is well within a zone of the parti-
the (@< p) symmetry in the final correlation. _ tion and this is necessarily violated at half the log time.
Next we turn to the other, apparently more curious, cor-Therefore, the approximate expression of E20) breaks
relations: the backward identity correlations and the forwarddown beyondr/z_ This lack of a Superexponentia| cutoff as
time-reversed one. As an example of a backwdré{)  seen with the previous correlations considered is due to two

identity correlation consider=—1: special conditions. First, the argument of the cosine hgs no
dependence. Second, all the stable manifolds are perfectly
g q/2 for p<1/2, parallel to thep axis. We would recover super-exponential
(@= (g+1)/2 for p>1/2. decay in all the correlations if the operatlrbeing consid-
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ered was a constant function along neither the stable nor the
unstable manifold. In this sense, we have chosen a maxi-
mally difficult operator with which to test the semiclassical
theory, though it simplifies the quantum calculations.

As before,Crg(1)(q,p)=C/(=1)(p,q). Parity symmetry =
is benign and leads to an overall multiplication by a factor of ~—
2. Thus, the final semiclassical expression for the full corre- ©
lation for the quantum bakers map is

Ty
CA(a)=% ;O exf — 22 7/(2N)]cog272'q,)

T2

+|21 exd — /(227 IN) ]
2l-1 —~
x 3, {cog2m(q,+)/2] <
v=0 [©]
XG)(pa_V/2|)®[(V+1)/2l_pa]} +(qa<_>pa)1

(21)

where T, can be infinite but it is sufficient to stop just be- FIG. 1. (a) The absolute value of the quantum correlation with

yond _half the log time. As just discusséd is m_ore prob- the cos(2rq) operator forN=100. (b) Corresponds to a semiclas-
lematic here, and we do not have an expression to use bgj.,| evaluation of the same.

yond 7/2. O is the Heavyside step function that is zero if the
argument is negative and unity otherwise. The correlation is C. Classical features in the correlation
of the order IN or #. If one were to divide by the number of
states in Eq(3) so that it is a true average, this quantity fix
would decrease asNf or #2.

For the case oN=100, we compare in Fig. 1 the full

A strong(positive correlation is indicated at the classical
ed points (0,0) and (1,1), with the rest of the significant
correlations being negative. They are dominated by several

ntum correlation given by E@) with the final semicl classical structures as illustrated in Fig. 3. Here khealue
quantum corretation given by € final Semicias- — \seq js 200, and superposed on the significant contour fea-

sical ev_aluatlon given by Eq21). The absolute value of the tures are the following classical orbits
correlation function is contoured and superposed on a gray
scale. Figure (8) shows the quantum calculation for the full
phase space. In other words, the intensitglue of each
point (g,p) on the plot represents th&,(«) calculation for

a wave packet centered & (=q,p,=p). The first sum in

Eqg. (21) (over T, termg is a smooth function, and it also
displays an additional symmetry about 1/2 in both canonical
variables separately. This extra symmetry is broken by the
second sunfover T, termg. Figure 1b) compares the semi-
classical formula to the exact quantum calculation. We have
taken eight “forward” correlations(excluding zerg, i.e.,
T,=8, while we have only taken two “backward” correla-
tions, i.e.,T,=2. This is because it appears that the approxi-
mations that go into the latter expressions lead to nonuni-
formly converging quantities and it works better to stop at a
earlier point in the series. Theurtificial) discontinuities at

1/2 and 1/4 are seen prominently in the semiclassical results.
Otherwise, it turns out that the semiclassical approximation

. . Qa
captures many fine-scale features of the correlations, some of
which will be discussed below. Figuresa?, 2(b) are for FIG. 2. Sections of the correlation foi=100. (8) p,=0.33
specific one dimensional sections of the same quantities. Th&ction,(b) p,=0.72 section. The points are the quantum calcula-
agreement is very good. tion while the solid lines are semiclassical evaluations.
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FIG. 3. Comparison of classical structures in the correlatiod-atL00. Details in the text.

(i) The period-2 orbit at (1/3,2/3), (2/3,1/3) is by far the which is based on a complete binary coding of the orbits
most prominent structure. This is shown in Figa)3oy two  [26]. For example, the first few periodic orbits of the family
circular dots. Also, we can look at these structures closelyare associated with the binary codes (00101), (0010101),
through one-dimension&lD) slices. In Fig. 2a), the corre- and (001010101). They are also shown in Fig) 3includ-
lation is seen to be large and negative @},€0.66). The ing the symmetric image points. In the 1D slice of Figa)2
period-2 structure is dominating the landscape. we see this orbit as well.

(i) Next in importance is the primary homoclinic orbit to  (iii) There is an infinite number of orbits homoclinic to
the period 2 orbit in(i) (1/3,1/3) which goes to (2/3,1/6), the period-2 orbit. They become increasingly more compli-
quickly gets into the region of the period two orbit and is cated. The next associated periodic orbit family (0Q119
difficult to resolve. The parity and time-reversal symmetricshown in Fig. 8c), including the symmetric image points.
image points are also indicated. It turns out that there is afhis family was noted by Saraceno to scar eigenfunctions
infinite set of periodic orbits which approximate this orbit [12]. Also shown in this figure is the period-4 along the
more and more closely. Its effects may be present simultadiagonal lines (3/5,3/5) (1/5,4/5)— (2/5,2/5)— (4/5,1/5).
neously, and indistinguishable from the homoclinic orbit it- Figure 4 shows sections at,= 3/5,4/5,2/5 to highlight this
self [12]. The relevant family(se} is denoted by (00%)  orbit. In Fig. 4a) p,=3/5 and has a local minimum a,
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FIG. 4. Sections of the correlatioNE 100) to highlight the
period-4 orbit.(a) p,= 3/5 and has a local minimum gt,= 3/5, (b)
p.=4/5 and has a local minimum gt,=1/5, (c) p,=2/5 and has
a local minimum ag,=2/5.

=3/5; (b) p,=4/5 and has a local minimum g{,= 1/5; and
(¢) p,=2/5 and has a local minimum gt,=2/5. These are

marked, to indicate location alorgy, by filled circles. The FIG. 5. The correlation &) N=128 and(b) N=200. Note the
other minima are due to competing nearby structures of thgharp features ifa), where the peak height is about twice as large

period-2 orbit and its principal homoclinic excursion. as that in(b).
(iv) The orbit homoclinic to the period-4 orbit included in

ric partner$ is shown in Fig. &d). ) )

(v) Points, such as (0,1/4), which are homoclinic to the 1€ results so far have dealt with the special cae)
fixed points (0,0), (1,1) also show prominently. :.CO$(ZTQ). _It seems natgral to suspect that the structures

That these structures are in a sense invariant, i.e. not spBighlighted in the correlation are dependent on the choice of
cific to N=100 is shown in Figs. @), 5(b) where the corre- the operator. This turns out to be true, and we show here how
lation (absolute valuigis shown forN= 128 and 200, respec- NS Works in the bakers map. We reemphasize though that
tively. The phase-space resolution of the correlation javere the eigenstates behaving ergodically, the correlations
increasing withN, while the overall magnitude is decreasing would have been consistent with zero to within statistical

as 1N. The peculiar properties of the quantum bakers maﬁmcertainties independent of the choice of the operator. In
for N equaling a power of £26,12,27 is tested byN=128 this sense, a complete view of the extent to which the eigen-

Here the correlation is “cleaner” and the stable and unstable
manifolds at 1/4, 1/2, and 3/4 of the fixed points are clearly
visible. The peaks are well enunciated as well. Both Figs.
5(a), 5(b) have contours up to 2/3 peak height, so a direct 4

comparison is meaningful. HigheN values show more —_ ‘/ 4 /
clearly the secondary homoclinic orbit to the period-2 orbit. & | } 4

We may compare these structures with the inverse partici- E: 0.1

0.05 \
N—-1 -

P(a)= EO (| )] (22) 0

2
44

pation ratio defined as

.-
»*

It is illustrated in Fig. 6. It shows marked enhancements at

v
‘\\ . /0.8
N 0. 6
{ 70.4 D
L]
the period-2 and period-dalong the symmetry lingsorbits, 9 0.
and closer examination reveals all orbits up to period-4 are

present and one orbit of period-6 along the symmetry lines FIG. 6. The inverse participation ratio for the bakers map. Clas-
(the diagonals see Ref[27] for a more detailed discussion. sical structures are present in this quantity as well.
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FIG. 7. The correlation for the series of operators FIG. 8. The correlation for different harmoniés= cos(2ma).

:cos(erqu)..Shown arem=0 (large do}, m=1 (small do}, M ghown aren=1 (solid large dots n=3 (solid line), n=5 (dotted
=2 (dashed ling line), andn==6 (dashed ling

states manifest phase space localization properties Comﬁériod-Z orbit localization is accentuatedrat 3, since for

only from considering both the full phase plane of wave  _ s wheremis a positive integer, cos¢ng) has a maxi-
packets and enough operators to span roughly the space |91fum of +1 at q=2/3, whereas for all other integers

possible perturb_auons of the energy surface. The ﬂeX|b|||tyCOS(2mq):_1/2 at the same point. In short the perturbation
of operator choice does provide a means to enhance sele

. X . ; (:6r measuremejtis more significant at the location of the
tively particular features of interest supposing one had a Speﬁeriod—z orbit forn=3. On the other hand. the case5 is
cific localization question in mind. As an illustration, note ‘ ’

that localization about the period-3 orbit barely appeared iqsr:rgILaerrttsr;gﬁof:?szrlginetzlug?gnﬁ; ic caseqat 2/3 where

the contour plot of Fig. 3, and yet, we show below that it can The casen=7 is interesting as cos(i4y) has a maxi-
be made to show up prominently with other operators. — . Sting X 4 . .
. . s mum at q=1/7 which coincides with a period-3 orbit at
Since the casé\(q)=sin(2mnq) has vanishing correla- . .

. . (2/7,4/7). In Fig. 9, we see the correlatioN € 100) corre-

tions for any integen due to symmetry, the other cases of . ) X S

interest are the higher harmonics of the cosine Therefor(§,p0.ndlng to .th's operator and_the dominant Stf“_Ct“re is this

consider ' period-3 orbit and its symmetric partner. Also visible are the
stable and unstable manifolds of these orbits. In fact, it is the

A(g)=cog2mnQ). (23

If n=2" for some positive integem, a rather remarkable
scaling property of the quantum bakers map is revealed that
is actually implicit in the way the bakers map was originally 0.8}
guantized in Ref[26]. Semiclassically, the correlations are P
identical to the casem=0. For example, consideA(q)
=cos(4rq). Then the one-step back classical correlation be- 0.6
comes identical to the zeroth order correlation corresponding
to A(q)=cos(2rq). The correlations all shift byn in the
sense thatC(l)—C(l+m). Thus, there is a kind of scale 0.4
invariance in the correlation such as classical fractals, al-
though this is not self-similarity in the same curve. Quantum
calculations reflect this invariance to a remarkable degree as 0.2p)
seen in Fig. 7 where thid=200 andp,= 1/3 case is shown.

Other harmonics do weight differently the same localiza-
tion effects(classical structurgsin Fig. 8, N and p, are a
taken the same as in Fig. 7. The caresl,3,5 are all very
different from each other, but note that the case6 almost q
coincides withn=3 for the same reason that powers of two
harmonics are nearly same. Thus only operators of odd har- FIG. 9. The correlation for the operatar= cos(14rq) and case
monics give the possibility of providing new or unique in- N=100. The highlighted areas are in the region of classical
formation about the nonergodicity in the eigenstates. Theeriod-3 orbits.
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multiples of the 2'—1 harmonics which selectively high- Highlighted is the fixed point resonance region at the origin
lights the periodm orbits. that is initially stable. An unstable point is located at the

Summarizing then, the correlations reflect that the bakerpoint (1/2, 0, or 1). The separatrix or the stable and the un-
map eigenstates are not ergodic, and manifest strongly phastable manifolds of this point are aligned along the local
space localization properties. There do not exist transpofidges seen in the correlation. Also the period-2 resonance
barriers such as cantori or diffusive dynamics in the bakeréegion is visible. Higher resolution not shown here, corre-
map, so whatever localization that exists should be due t§Ponding to higher values i reveal weakly the period-3
scarring by the short periodic orbits. This is confirmed in thef€Sonance as well. Cagb) corresponds td=0.3x (2)
examples shown with connections to their homoclinic orbitshile (¢) and(d) to k=0.9x (27) andk=2.3x (2) respec-
illustrated as well. The perturbation or observable determinelVely- We note the gradual destruction of the KAM tori and
the regions of phase space that will light up in the correlatiorf '€ €Mergence of structures that are dominated by hyperbolic
measure. A semiclassical theory predicts reasonably we rbits. A more detailed classical-quantum correspondence is,
many of these structures. The correlation is semiclassicallyowever’ not attempted here.

. . . These contour plots do not reveal the difference in the
written as a sum of classical correlations that are S“perEXp%agnitude between the correlations in the stable and un-
nentially cut off after about half the log-time scale.

stable regions. In Fig. 11, we have plotted the correlation at
the origin (0,0), which is also a fixed point, as a function of
Ill. THE STANDARD MAP the parameter. The valud(27)~1 corresponds to a tran-
sition to complete classical chaos and is reflected in this plot
as erratic and small oscillations. The large correlation in the

The standard maga review is found in Ref[35]) has  mixed phase space regime arises from the nonergodic nature
many complications that can arise in more generic modelsf the classical dynamics. The classical fixed point loses sta-
and we turn to their study. It is also an area preservingbility at k*/(2)=4/(27)~0.63 and this is roughly the re-
two-dimensional map of the cylinder onto itself that may begion at which the correlation starts to dip away from unity
wrapped on a torus. We will consider identical settings of thetoward lower values.
phase space and Hilbert space as for the bakers map dis- The gross features and princigabehavior in this regime
cussed above. The standard map has a parameter that cén-£asy to derive in terms of purely classical correlations as
trols the degree of chaos and thus we can study the effect dpllows:
regular regions in phase space, i.e., the generic case of mixed
dynamics.

The classical standard map is given by the recursion

A. The map and the mixed phase space regime

Cala)=(Tr(|a)(alA(n))),

=< f dq dp[la><a|]w[A(n)]W> . (26
di+1=(di +pi+1)mod1), n
_ (24) where[ - - - |\ is the Weyl-Wigner transform of the operator
Pi+1=[pi— (k/2m)sin(2mq;) Jmod1), in the brackets ané\(n) is the operator after a time With-

. ) , , o out worrying about the toral nature of the phase space and
wherei is the discrete time. The parameteis of principal  he Weyl-Wigner transforms, we treat the problem as in a
interest and it controls the degree of chaos in the map. C|a%lane. This is justified by the use of localized, Gaussian
sically speaking, an almost complete transition to ergodicityyave packets. Otherwise, we could imagine that the Wigner
and mixing is attained above valueslof5, while the last  transform of the projector would follow from an infinite se-

rotational KAM torus breaks arourkk=0.971. ries of Gaussian states that is equivalent to discretizing the
The quantum map in the discrete position basis is giverGaussian. We use a normalized, “circular” Gaussian of
by [36] width \%. The approximation comes in when we replace

[A(n)]w by A[f"(q,p)] where the latter is the classical
1 ) function evaluated at the classically iterated poimt
N\ — 2
(n[U[n")= ﬁexp[lﬂ-(n—n )*IN] =f"(q,p). We expect this approximation to be valid in the
case of regular dynamics over a much longer time scale than
found with chaotic dynamics. To a good approximation,

1 1
CA(a)~< f dq dp(g) exp[— ~1(a-0.)?

A[f”(q,p)]> : (27)

n

Xex;{ [ I;—7’\|Tcos{27r(n+a)/N] . (29
The parameter to be varied will be the “kicking strengtk”
while the phasea=1/2 for maximal quantum symmetries,
andn,n’=0,... N—1. +(p—pa)?]
We use the unitary operator and evaluate the correlation
as in Eq.(3) with A(q) =cos(2rq) here as well. This corre- As intuitively expected, there is no principal dependence
sponds exactly to the level velocity induced by a change inn the correlation since there is a nonzero classical limit. At
the parametek. In Fig. 10 is shown the absolute value of the 7 =0, we could replace the Gaussian forms &yunctions
correlation for various values of paramekeiCase(a) corre-  and would get simplyCa(a) ={(A[f"(d,,Pa)1)n-
sponds tok=0.1X(27) and is dominated by the KAM This, however, vanishes as the classical system becomes
curves as the perturbation has not yet led to significant chaomore ergodic and is no more capable of predicting the cor-
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FIG. 10. The quantum correlation for the standard mip=(@00), (a) k/(27)=0.1, (b) k/(27)=0.3, (c) k/(27)=0.9, (d) k/(27)
=2.3.

relation. Higher-order corrections are needed. It is in this

regime that we studied the bakers map and found that the

correlation has a principal part that scaleénos} as# and

calization features that arise out of quantum interference.

ties. Notice that the simple estimate of EQ7) performs

CA(OaO)

onset of full mixing[aroundk/(27)=1] should follow this

is done and as this increases the estimate would vanish.

B. Chaotic regime

for the quantum bakers map. Of the two ingredients in Eq.
(4) one of them remains the same, namely &9. However
the diagonal elements of the propagator in &j.have to be

FIG. 11. The quantum correlation for the standard maprat generalized. _ _ ' .
=(0,0) as a function of the paramete(N=100 is the solid line In Ref. [32] a semiclassical expression for the matrix el-

classical correlations based on periodic orbits predict the lo-
We return to Fig. 11 to remark on some of these proper-

very well, even as the phase space is becoming increasingly
chaotic. It is quite unexpected that the oscillations after the

estimate. However, after the transition to chaos the classical
estimate will depend on the times over which the averaging

We attempt in some measure a semiclassical theory for
the correlation in the chaotic regime along the lines adopted

andN=200 is the dashed oheThe dotted line is a classical esti- ements of the propagator as a homoclinic orbit sum is given.

mate based on Eq27) and averaged over twenty time steps with Although this was derived with the example of the billiard in
N=100. mind, it can be interpreted as a generalization of @ for

016209-10



PHASE SPACE LOCALIZATION OF CHAQOTC. .. PHYSICAL REVIEW E 63 016209

area-preserving, two-dimensional maps. We, however, intet-ere them;; elements already have the exponential behavior
pret the sum not as a homoclinic orbit sum, but as a periodiactored out. For example, in the case of the bakers map
orbit sum. To each homoclinic orbit there is a neighboringm,,=1 while all the other elements are zero and this gives
periodic orbit that we will use instead. This will form the consistently the approximated Gaussian form in @y. Fur-

points around which the expansions are carried out and th@er steps are identical to the case of the bakers map and
result is identical to that in Ref32]. Thus we write leads to the generalization of E(.0)

(a|U"a)~ 2 expliS, /h—imvi2) >, Bj, (28
Y J

2 Mo
where Cala)= \/a:oz 2 G, (33

2 -1
B-:\/—exp[— (tr—2)(89°+ 8p?)
. Ao 2ﬁAo{ d P where the classical correlations are calculated as in(Ek).
with the functionF being that in Eq.(32). We may then
+ 2i[ My 8p% — My,802+ 9 p(My— My 1} ¢ (290  expect all the principal conclusions from the study of the

bakers map to be carried over, principally the decrease in the

B; generalizes the Gaussian fofincluding the prefactrin corrglation as1, the correlations being (;ut off gfter half the
Eq. (6). Again j labels points along the periodic orbit and log-time scale, and the effects of classical orbits.
84=q;—d,, Sp=p;—p, are as before deviations from the  More detailed analysis in the lines of the special case
centroid of the wave packet. The two-dimensional matrixdiscussed in case of the bakers map will run into the follow-
elementsm;; , are the elements of the stability matrix at the ing difficulties. First, them;; elements will depend ow in
periodic point along the periodic orbiyy. The deviationsiq general. Exceptions are uniformly hyperbolic systems such

and &p aftern iterations of the map are given by as the cat or sawtooth mafend, of course, the bakers map
A second difficulty is that the correlations have to be evalu-
<5pn> _ myq le) ( 5p) (30 ated to half the log time while classically iterating the map
80n My, My, \ 8q)° (analytically) over such times is often not possible. The clas-

. . i ) ) . sical correlations that arise in the study of rms values of level
The invariant is the trace of this matrix that is denoted tr.e|ocities[25] involved correlations that exponentially de-
While Ag=my;+ My ti(my;—myy), v is a phase that will - creased in time while here we are likely to get generaliza-
not play a crucial role below. In the case _of the bakers magjons of forms such as in Eq15) that will require us to go
My=my;=0 and my;=2"", my=2" uniformly at all 10 |og times. We have calculated the correlations for times
points in phase space, as wellizs 0. On substitution of this 1 _1 and 2 but will not display them as they are by them-
in Eq. (28) we get Eq.(6). selves not very useful. A third problem with this form of the

The dependence on individual matrix elements of the Stageneralization is that it is not explicitly real.

bility matrix complicates the use of this formula in general. ~ \ye have used Eq33) and for them;; used either those
However we note that the Gaussian is effectively cutting offcgiculated at one point in phase spésech as the originor
periodic points that are not close &and therefore we may i fact assumed those that are relevant for the bakers map.
take them;; elements to be the stability matrix at this point. \while fine structures are not reproduced, the general features
In the chaotic regime each of the matrix elements grow exzre captured equally well in both these approaches. To illus-
ponentially with timen. Thus we have that expAn)mj—  trate the quality of the approximation we again look at the
const, where\ is the Lyapunov exponent. We call this satu- correlation at the posint (0,0) as a functionkdh Fig. 12(as
rated constantn;; as well. Below we will assume that the in the previous figure The solid line is the semiclassical
exponential growth has been factored out of these e|eme”t5rediction based upon using thame 1) values at all values
Also we use expt An)A;—ao. The terms inside the exponen- of k. It is seen that even with thegeven simplifications the
tial function in Eq.(29) saturate in timex while the prefactor  semiclassical expressions capture much of the oscillations

goes as exp{An/2). It follows then that with the parameter and the magnitude.

2

Bj— a—exp(—)\n/Z)F(qj,pj), (3D

0 IV. SUMMARY AND CONCLUSIONS

whereF(q;,p;) is We have studied the details of phase space localization
_ present in the quantum time evolution of operators. This was
F(q; ’pi):e"p[ {(5q2+ 5p2) related to a measure of localization involving the correlation
2hag between the level velocities and wave function intensities.

While individual quantum states show well known interest-

+ 2i[ My 8p% — M18G2+ 89 8p(My— My 1}t ing scars of classical orbits, groups of states weighted appro-
priately provide both a convenient and important quantity to
(32 study semiclassically. We were interested principally in
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display prominent localization features and further that these
localization features are often related to classical periodic
orbits and their homoclinic structures. The time average of
the operator for wave packets was explicitly related semi-
classically to classical correlations. These were shown to be
cut off superexponentially after half the log-time in the quan-
tum bakers map. Thus the localization features in quantum
systems associated with scars were reproduced using long
(periodig orbits but short time correlations. The localization
would disappear in the classical limit as the magnitude of the
quantum correlations or time averages are proportional to
(scaled 7.

General systems were approached using the quantum
standard map and complications that would arise were dis-
cussed. Also the case of mixed phase space was seen to be
well reproduced by a simple classical argument. The gener-

FIG. 12. The quantum correlation for the standard m&b ( glization to Hamiltonian systen{€2] contains many of the
=100) ata=(0,0) as a function of the paramete(dashed line  faatures and structures are alsmt surprisingly present in

0.15

C,(0,0)

0.05

The solid line is the semiclassical estimate. this case.
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