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Phase space localization of chaotic eigenstates: Violating ergodicity
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The correlation between level velocities and eigenfunction intensities provides a new way of exploring phase
space localization in quantized nonintegrable systems. It can also serve as a measure of deviations from
ergodicity due to quantum effects for typical observables. This paper relies on two well known paradigms of
quantum chaos, the bakers map and the standard map, to study correlations in simple, yet chaotic, dynamical
systems. The behaviors are dominated by the presence of several classical structures. These primarily include
short periodic orbits and their homoclinic excursions. The dependences of the correlations deriving from
perturbations allow for eigenfunction features violating ergodicity to be selectively highlighted. A semiclassi-
cal theory based on periodic orbit sums leads to certain classical correlations that are superexponentially cut off
beyond a logarithmic time scale. The theory is seen to be quite successful in reproducing many of the quantum
localization features.
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I. INTRODUCTION

For a bounded, classically chaotic system, ergodicity
defined with respect to the energy surface, the only availa
invariant space of finite measure. In an extension develo
just over twenty years ago, the consequences of ergod
for the eigenstates of a corresponding quantum system w
conjectured to give rise to a locally, Gaussian random beh
ior @1,2#. Shortly thereafter, work ensued on defining t
concept of eigenstate ergodicity within a more rigoro
framework@3#. Some of the paradoxes and peculiarities ha
been recently explored as well@4#. One expression of eigen
state ergodicity is that a typical eigenstate would fluctu
over the energy surface, but otherwise be featureless, i
appropriate pseudophase-space representation such a
Wigner transform representation@5#. Any statistically sig-
nificant deviation from ergodicity in individual eigenstates
termed phase space localization.

It came as a surprise when Heller discovered eigenst
were ‘‘scarred’’ by short, unstable periodic orbits@6,7#. A
great deal of theoretical and numerical research follow
@8–13#, and experiments also@14,15#. In fact, scarring is just
one of the means by which phase space localization can
in the eigenstates of such systems. Another means woul
localizing effects due to transport barriers such as can
@16,17# or broken separatrices@18#. Despite these studies an
the semiclassical construction of an eigenstate@19#, the prop-
erties of individual eigenstates remain somewhat a myst

Individual eigenfunctions may not be physically very re
evant in many situations, especially those involving a h
density of states. In this case, groups of states contrib
towards localization in ways that may be understood w
available semiclassical theories. One simple and impor
quantity where this could arise is the time average of
observable as this is a weighted sum of several~in principle
all! eigenfunctions. In the Heisenberg picture, where the
erator is evolving in time, the expectation value of the o
servable could be measured with any state. Phase spac
calization features would be especially evident if this st
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were chosen to be a wave packet well localized in su
spaces.

In a system with a nondegenerate spectrum the time
erage of an observableÂ in stateua& is

^Â~ t !& t5^^aueiĤ t/\Âe2 iĤ t/\ua&& t5(
n

^aucn&u2^cnuÂucn&,

~1!

whereucn& are the eigenstates of the HamiltonianĤ. Since
experimental data exist, it is convenient to study systems
depend upon a parameterl which varies continuously. The
parameter may include electromagnetic fields, temperatu
applied stresses, changing boundary conditions, etc.
Hamiltonian can be rewritten to first order asĤ(l)5Ĥ0

1lÂ whereÂ5]Ĥ(l)/]l. Using the so called Hellmann
Feynman theorem~for instance, Ref.@20#!:

^cnuÂucn&5^cnu
]Ĥ

]l
ucn&5

]En

]l
. ~2!

]En /]l is defined as an energy level ‘‘velocity’’ for thenth

level ~velocity is a bit of a misnomer for it is actually just
slope—we are not evolving the system parameter in tim!.
Hence, for our specific choice ofÂ we are examining corre
lations between level velocities and wave function inten
ties, but Eq.~1! is applicable to more general observables

One of us has already studied the correlation betw
level velocities and wave function intensities in connecti
with localization@21#. This can be directly connected to th
issues raised above, and our treatment thus extends the
vious work. The present paper is a companion to a study
similar problems in continuous Hamiltonian systems~as op-
posed to Hamiltonian maps, i.e., discrete time systems! and
billiards @22#. The methods used in these two papers comp
ment each other and the results in the present paper are
tailed as the systems studied are much simpler. The com
ion paper contains a review of the general theories of
©2000 The American Physical Society09-1
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LAKSHMINARAYAN, CERRUTI, AND TOMSOVIC PHYSICAL REVIEW E 63 016209
level velocities and wave function intensities and also gi
revelant discussions pertaining to how these quantities d
onstrate localization. It must be noted that while we call
operator average Eq.~1! a ‘‘correlation’’ it is not the true
correlation that is obtained by dividing out the rms values
the wave function intensities and the operator expecta
value ~as defined in Ref.@21#!. In other words we are going
to study the covariance rather than the correlation. Thi
followed in this paper for two reasons; first, dividing o
these quantities does not retain the meaning of the time
erage of an observable and second, the root mean squa
the wave function intensities which is essentially the inve
participation ratio in phase space is itself a fairly comp
quantity reflecting on phase-space localization.

Thus, the correlation introduced in Ref.@21# is

CA~a![^Â~ t !& t ~3!

with Â5]Ĥ/]l. The stateua& represents a wave packet th
is well localized in the (q,p) coordinates@12,23#. We will be
interested in the quantum effects over and above the clas
limit and we will require that the operator is traceless. O
erwise we will need to subtract the uncorrelated produc
the averages of the eigenfunctions~unity! and the trace of the
operator. This immediately also implies that the correlat
according to random matrix theory~RMT! @24# is zero as
well. The ensemble average ofCA(a) will wash out random
oscillations that are a characteristic of the Gaussian dis
uted eigenfunctions of the random matrices. Specific loc
ization properties that we will discuss are then not part of
RMT models of quantized chaotic systems. In the framew
of level velocities, we are considering the situation where
average level velocity is zero, i.e., there is no net drift of
levels.

A physically less transparent identity that is neverthel
useful in subsequent evaluations is

CA~a!5^^aue2 iĤ t/\ua&Tr~ÂeiĤ t/\!& t . ~4!

This may be written more symmetrically as

CA~a!5^Tr~ ua&^aue2 iĤ t/\!Tr~ÂeiĤ t/\!& t . ~5!

Thus, the correlation is a sort of time evolved avera
correlation between the two operatorsÂ and ua&^au. The
semiclassical expressions for these are however differen
complications arise from the classical limit ofua&^au which
would be varying over scales of\ that govern the validity of
the stationary phase approximations. However, we may
ticipate, based on the last form, that the semiclassical exp
sion would be roughly the correlations of the classical lim
of these two operators@25#.

The classical dynamical systems that are investigated
are discrete maps on the dimensionless unit two-torus wh
cyclical coordinates are denoted (q,p). The first part of the
paper explores the correlation in the bakers map, while
latter involves the standard map. The bakers map is the
pler of the two and a complete semiclassical evaluation
the correlation is given. This allows us to connect the o
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served localization with classical features of the map. On
other hand, the standard map is more complex. It has a
tinuous parameter whose variation takes the map throug
transition from integrable to chaotic dynamics. Such a s
tem is more typical and we are able to comment on some
the difficulties of such systems. Nevertheless, with so
simple approximations the standard map demonstrates
same general features as the bakers map in its chaotic
gime. We also compare quantum results with the semicla
cal theory in its transitional regime.

II. THE BAKERS MAP

A. Semiclassical evaluation

The bakers map is a very attractive system to study
quantities discussed in the Introduction. The classical
namics is particularly simple~it is sometimes referred to a
the ‘‘harmonic oscillator of chaos’’!. A simple quantization
is due to Balazs and Voros@26# ~where a discussion of the
classical dynamics may also found!. As a model of quantum
chaos it shows many generic features including the one c
tral to this study, namely, scarring localization of eigenfun
tions @12#. There are detailed semiclassical theories that h
been verified substantially@23,27–29#. We neglect certain
anomalous features of the quantum bakers map@27,29# that
would eventually show up in the classical limit. This is re
sonable in the range of scaled Planck constant values
have used in the following.

We use the second time averaged expression, Eq.~4!, for
the correlation. We do not repeat here details of the qua
zation of the bakers map or the semiclassical theories of
operator except note that we use the anti-periodic bound
conditions as stipulated by Saraceno@12# in order to retain
fully the classical symmetries.

For the bakers map~and other maps as well!, the quantum
kinematics are set in a space of dimensionN @26,30,31#
where this is related to the scaled Planck constant aN
51/h, and the classical limit is the largeN limit. The quan-
tum dynamics are specified by a unitary operatorU ~quantum
map! that propagates states by one discrete time step.
quantum stationary states are the eigensolutions of
‘‘propagator.’’ TheN eigenfunctions and eigenangles are d
noted by$uc i&,f i ; i 50, . . . ,N21%. The eigenvalues lie on
the unit circle and are members of the set$exp(2ifi);
i50, . . . ,N21%.

The semiclassical theory of the bakers map deals with
powers of the propagator. The trace ofUn, the timen propa-
gator, has been written in the canonical form of a sum o
classical hyperbolic periodic orbits with the phases be
actions and the amplitudes relating to the linear stability
the orbits. The complications with Maslov phases is abs
here@27,28#. Also, the semiclassical expressions have be
derived for matrix elements of the timen propagator in the
wave packets basis@23#. The time domain dominates th
study of the quantum maps, the Fourier transform to
spectrum being done exactly. Our approach to the correla
is then naturally built in the time domain. The situation
different in the case of Hamiltonian time independent flo
where the energy domain is very useful.
9-2
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PHASE SPACE LOCALIZATION OF CHAOTIC . . . PHYSICAL REVIEW E 63 016209
We use the semiclassical expression for the propag
diagonal matrix elements derived in Ref.@23#:

^auUnua&;(
g

exp~ iSg /\!

Acosh~ln!
(

j

3expF2
cosh~nl!21

2 cosh~nl!\
~dq21dp2!

2
idqdp

\
tanh~nl!G . ~6!

Here g labels periodic orbits of periodn including repeti-
tions. The Lyapunov exponent isl which is ln(2) for the
usual bakers map@corresponding to the (1/2,1/2) partitio
and Bernoulli process#. Also \5h/(2p)51/(2pN), dq
5qj2qa and a similar relation forp. The position of j th
periodic point on the periodic orbitg is (qj ,pj ). The cen-
troids of the wave packets, assumed circular Gaussians
(qa ,pa). The choice of type of wave packets is not cruc
for the features we seek. We note that the simplicity of t
expression for the propagator derives from the simplicity
the classical bakers map, especially the fact that the st
and unstable manifolds are everywhere aligned with
(q,p) axes. That Eq.~6! happens to be a periodic orbit su
differs from the similar treatment for billiards as found
Ref. @32# where such sums are treated as homoclinic o
sums. Note however, that the local linearity of the bak
map renders the two approaches~periodic orbit, homoclinic
orbit! equivalent.

A generalization of the trace formula for the propagato
given below that is easily derived by the usual proced
employed for the propagator itself@28#. Such a formula was
derived in Ref.@33# for the case of Hamiltonian flows in th
energy domain. We make the simplifying assumption t
the operatorÂ is diagonal in the position representation~we
could treat the case ofÂ being diagonal in momentum alon
as well!. This avoids the problem of a Weyl-Wigner assoc
tion of operators to functions on the torus. The quant
operatorÂ under this simplifying assumption has an obvio
classical limit and associated function which is denoted
A(q). The other major assumption used in deriving the f
mula below is that it does not vary on scales comparabl
or smaller than\.

Thus we derive

Tr ~ÂU2n!;(
g

exp~2 iSg /\!

2 sinh~nl/2! (
j

A~qj !. ~7!

The index j again labels points along the periodic orbitg.
The sum over the periodic orbit is the analog of the integ
of the Weyl transform over a primitive periodic orbit in th
Hamiltonian flow case@33#. The special caseÂ5I the iden-
tity corresponds to the usual trace formula@27,28#. Note that
we have written the sums above as being over periodic
bits, while the trace formulas have been often written
sums overfixed points.
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The first step is to multiply the two semiclassical period
orbit sums in Eq.~6! and in Eq.~7!. Since there is a time
average,n is assumed large enough, but not too large~so that
these expansions retain some accuracy!. All hyperbolic func-
tions are approximated by their dominant exponential dep
dences. The diagonal approximation and the uniformity pr
ciple @34# is used as well:

CA~a!5K (
g

A2 exp~2nl!(
T

S (
j

F~qj ,pj ! D
3S (

j
A~Tqj ,Tpj ! D L

n

. ~8!

Here we have taken a more general dependence forA ~in-
cluding the possibility of momentum dependence!. T repre-
sents elements of the symmetry group of the system inc
ing time-reversal symmetry and including, of course, uni
These symmetries imply in general, though not as a r
distinct ~for TÞI ) orbits with identical actions. One assum
that the overwhelming number of action degeneracies
due to such symmetries.

The functionF is the approximated Gaussian

F~qj ,pj !5expF2
1

2\
~dq21dp2!2

idqdp

\ G . ~9!

Using l5 ln(2) and the fact that there are approximate
2n/n orbits of periodn, one finds

CA~a!5A2 (
T

(
l 52M

M

C̃T~ l !, ~10!

whereC̃( l ) is a classicall-step correlation

C̃T~ l !5
1

n (
j 51

n

F~qj ,pj !A~Tqj 1 l ,Tpj 1 l !. ~11!

The time average is taken over atypical orbit. We abandon
any specific periodic orbit and appeal to ergodicity, takingn
and alsoM as practically infinite. This is with the assumptio
that such correlations will decay with timel. In fact, below
we calculate such correlations explicitly and display the
cay. Note thatC̃T( l )ÞC̃T(2 l ) in general. Although these
are classical correlations, in the sense thatqj ,pj represent a
classical orbit,\ appears as a parameter in them throughF.
Further, using the ergodic principle we can replace time
erages inC̃T( l ) by appropriate phase space averages

C̃T~ l !5E dqE dp F~q,p!A@T fl~q,p!,Tgl~q,p!#,

~12!

where we have used the fact that the total phase space
ume ~area! is unity, and f l(q,p)5ql , gl(q,p)5pl are the
classicall-step integrated mappings.
9-3
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LAKSHMINARAYAN, CERRUTI, AND TOMSOVIC PHYSICAL REVIEW E 63 016209
B. Special case and verifications

We first consider the case thatÂ5A0(T̂p1T̂p
†)/2, where

T̂p is the unitary single-step momentum translation opera
that is diagonal in the position representation andA0 is a
constant real number. This implies that the associated fu
tion is A(q)5A0 cos(2pq). Below we considerA051 as the
strength of the perturbation. The elements ofT, apart from
the identity (I ), are time-reversal~TR! symmetry and parity
(P). Time reversal in the bakers map is@T(q)5p,T(p)
5q# followed by backward iteration, while parity is th
transformation@T(q)512q,T(p)512p#.

We begin with the evaluation of the forward correlatio
( l>0) corresponding toT5I .

C̃I~ l !5E
2`

`

dq dp F~q,p!cos~2p2lq!. ~13!

This follows from the equality

f l~q!52lq~mod 1! ~14!

for the bakers map. The limits of the integrals can be
tended to the entire plane as long as the centroid of
weighting factor (qa ,pa) is far enough away from the edge
of the unit phase space square that the Gaussian tails
small there. The integral is elementary, and usingh51/N
one gets

C̃I~ l>0!5
1

A2N
exp@222lp/~2N!#cos~2p2lqa!.

~15!

This explicit expression shows the super-exponential
crease with timel in the correlation coefficients. It is inter
esting to note that the logarithmic time scale which sets
important quantum-classical correspondence scale of di
gence for chaotic systems, heret51/l ln(1/2p\)
5 ln(N)/ ln(2), enters the correlation decay. In fact, the c
relations are significant to precisely half the log time. W
anticipate this feature to hold in general, including auton
mous Hamiltonian systems.

Sinceg2 l(p)52l p(mod 1), for (l>0), the time-reversed
backward correlation (l<0) is

C̃TR~ l<0!5
1

A2N
exp@2222lp/~2N!#cos~2p22 l pa!

~16!

which also decays super-exponentially and is responsible
the (q↔p) symmetry in the final correlation.

Next we turn to the other, apparently more curious, c
relations: the backward identity correlations and the forw
time-reversed one. As an example of a backward (l<0)
identity correlation considerl 521:

f 21~q!5H q/2 for p,1/2,

~q11!/2 for p.1/2.
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Therefore

C̃I~21!5E
0

1

dqE
0

1/2

dp F~q,p!cos~pq!

2E
0

1

dqE
1/2

1

dp F~q,p!cos~pq!. ~17!

In fact, since cos(pq) vanishes at 1/2, there is no discontin
ity in the full integral, but it is more difficult to evaluate~and
to approximate!. If one were to take the upper limits of thep
integrals to be infinity, there would be errors atp51/2.
However, this is not terribly damaging, and tolerating a sm
discontinuity at this point due to this approximation leads

C̃I~21!56
1

A2N
exp@2p/~8N!#cos~pqa! ~18!

the sign depending on ifpa,1/2 or if pa.1/2, respectively.
The time-reversed, forward correlationC̃TR(1) is the same
as this except for interchanging the roles ofqa andpa .

The generalization of this to higher times is~take l .0
below!:

C̃I~2 l !5 (
n50

2l21 E
0

1

dqE
n/2l

(n11)/2l

dp F~q,p!cos@2p~q1 n̄ !/2l #,

~19!

wheren represents a partition of the bakers map at timel,
andn̄ results from the bit-reversal of the binary expansion
n. The momentum gets exponentially partitioned with tim
and it precludes going beyond the log time here as well~as in
the forward correlation!, although there is apparently no su
perexponential decrease here. Indeed if we evaluate
above after neglecting finite limits in each of thep integrals
above, so that we would have 2l discontinuities at timel, we
get

C̃I~2 l !5
1

A2N
exp@2p/~2(2l 11)N!#cos@2p~qa1 n̄ !/2l #

~20!

depending on ifpa lies in the interval@n/2l ,(n11)/2l #. So
that for l large andN fixed, the exponential goes to unity
effectively, for largeN and any l, the exponential can be
replaced by unity. Even theqa-dependent part of the argu
ment in the function~cos! itself is tending to vanish, so tha
the integral seems to give the area of the Gaussian (h). The
approximation of putting allp limits to infinity makes sense
only if the Gaussian state is well within a zone of the pa
tion and this is necessarily violated at half the log tim
Therefore, the approximate expression of Eq.~20! breaks
down beyondt/2. This lack of a superexponential cutoff a
seen with the previous correlations considered is due to
special conditions. First, the argument of the cosine has np
dependence. Second, all the stable manifolds are perfe
parallel to thep axis. We would recover super-exponenti
decay in all the correlations if the operatorÂ being consid-
9-4



t
ax
a

o
re

-

b
he
n
f
ty

ll

ra
ll

o
ica
th
-
av

-
x

un
t

ul
io
e

T

al
nt
eral

fea-

ith
-

la-

PHASE SPACE LOCALIZATION OF CHAOTIC . . . PHYSICAL REVIEW E 63 016209
ered was a constant function along neither the stable nor
unstable manifold. In this sense, we have chosen a m
mally difficult operator with which to test the semiclassic
theory, though it simplifies the quantum calculations.

As before,C̃TR( l )(q,p)5C̃I(2 l )(p,q). Parity symmetry
is benign and leads to an overall multiplication by a factor
2. Thus, the final semiclassical expression for the full cor
lation for the quantum bakers map is

CA~a!5
2

N F(
l 50

T1

exp@222lp/~2N!#cos~2p2lqa!

1(
l 51

T2

exp@2p/~22l 11N!#

3 (
n50

2l21

$cos@2p~qa1 n̄ !/2l #

3Q~pa2n/2l !Q@~n11!/2l2pa#%G1~qa↔pa!,

~21!

whereT1 can be infinite but it is sufficient to stop just be
yond half the log time. As just discussedT2 is more prob-
lematic here, and we do not have an expression to use
yondt/2. Q is the Heavyside step function that is zero if t
argument is negative and unity otherwise. The correlatio
of the order 1/N or \. If one were to divide by the number o
states in Eq.~3! so that it is a true average, this quanti
would decrease as 1/N2 or \2.

For the case ofN5100, we compare in Fig. 1 the fu
quantum correlation given by Eq.~3! with the final semiclas-
sical evaluation given by Eq.~21!. The absolute value of the
correlation function is contoured and superposed on a g
scale. Figure 1~a! shows the quantum calculation for the fu
phase space. In other words, the intensity~value! of each
point (q,p) on the plot represents theCA(a) calculation for
a wave packet centered at (qa5q,pa5p). The first sum in
Eq. ~21! ~over T1 terms! is a smooth function, and it als
displays an additional symmetry about 1/2 in both canon
variables separately. This extra symmetry is broken by
second sum~overT2 terms!. Figure 1~b! compares the semi
classical formula to the exact quantum calculation. We h
taken eight ‘‘forward’’ correlations~excluding zero!, i.e.,
T158, while we have only taken two ‘‘backward’’ correla
tions, i.e.,T252. This is because it appears that the appro
mations that go into the latter expressions lead to non
formly converging quantities and it works better to stop a
earlier point in the series. The~artificial! discontinuities at
1/2 and 1/4 are seen prominently in the semiclassical res
Otherwise, it turns out that the semiclassical approximat
captures many fine-scale features of the correlations, som
which will be discussed below. Figures 2~a!, 2~b! are for
specific one dimensional sections of the same quantities.
agreement is very good.
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C. Classical features in the correlation

A strong~positive! correlation is indicated at the classic
fixed points (0,0) and (1,1), with the rest of the significa
correlations being negative. They are dominated by sev
classical structures as illustrated in Fig. 3. Here theN value
used is 200, and superposed on the significant contour
tures are the following classical orbits

FIG. 1. ~a! The absolute value of the quantum correlation w
the cos(2pq) operator forN5100. ~b! Corresponds to a semiclas
sical evaluation of the same.

FIG. 2. Sections of the correlation forN5100. ~a! pa50.33
section,~b! pa50.72 section. The points are the quantum calcu
tion while the solid lines are semiclassical evaluations.
9-5
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FIG. 3. Comparison of classical structures in the correlation atN5100. Details in the text.
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~i! The period-2 orbit at (1/3,2/3), (2/3,1/3) is by far th
most prominent structure. This is shown in Fig. 3~a! by two
circular dots. Also, we can look at these structures clos
through one-dimensional~1D! slices. In Fig. 2~a!, the corre-
lation is seen to be large and negative at (qa50.66). The
period-2 structure is dominating the landscape.

~ii ! Next in importance is the primary homoclinic orbit t
the period 2 orbit in~i! (1/3,1/3) which goes to (2/3,1/6)
quickly gets into the region of the period two orbit and
difficult to resolve. The parity and time-reversal symmet
image points are also indicated. It turns out that there is
infinite set of periodic orbits which approximate this orb
more and more closely. Its effects may be present simu
neously, and indistinguishable from the homoclinic orbit
self @12#. The relevant family~set! is denoted by (001)01
01620
ly

n

a-

which is based on a complete binary coding of the orb
@26#. For example, the first few periodic orbits of the fami
are associated with the binary codes (00101), (001010
and (001010101). They are also shown in Fig. 3~b!, includ-
ing the symmetric image points. In the 1D slice of Fig. 2~a!
we see this orbit as well.

~iii ! There is an infinite number of orbits homoclinic t
the period-2 orbit. They become increasingly more comp
cated. The next associated periodic orbit family (0011)01 is
shown in Fig. 3~c!, including the symmetric image points
This family was noted by Saraceno to scar eigenfuncti
@12#. Also shown in this figure is the period-4 along th
diagonal lines (3/5,3/5)→(1/5,4/5)→(2/5,2/5)→(4/5,1/5).
Figure 4 shows sections atpa53/5,4/5,2/5 to highlight this
orbit. In Fig. 4~a! pa53/5 and has a local minimum atqa
9-6
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53/5; ~b! pa54/5 and has a local minimum atqa51/5; and
~c! pa52/5 and has a local minimum atqa52/5. These are
marked, to indicate location alongqa by filled circles. The
other minima are due to competing nearby structures of
period-2 orbit and its principal homoclinic excursion.

~iv! The orbit homoclinic to the period-4 orbit included
Fig. 3~c! with the initial condition (1/5,2/5)~and its symmet-
ric partners! is shown in Fig. 3~d!.

~v! Points, such as (0,1/4), which are homoclinic to t
fixed points (0,0), (1,1) also show prominently.

That these structures are in a sense invariant, i.e. not
cific to N5100 is shown in Figs. 5~a!, 5~b! where the corre-
lation ~absolute value! is shown forN5128 and 200, respec
tively. The phase-space resolution of the correlation
increasing withN, while the overall magnitude is decreasin
as 1/N. The peculiar properties of the quantum bakers m
for N equaling a power of 2@26,12,27# is tested byN5128.
Here the correlation is ‘‘cleaner’’ and the stable and unsta
manifolds at 1/4, 1/2, and 3/4 of the fixed points are clea
visible. The peaks are well enunciated as well. Both Fi
5~a!, 5~b! have contours up to 2/3 peak height, so a dir
comparison is meaningful. HigherN values show more
clearly the secondary homoclinic orbit to the period-2 orb

We may compare these structures with the inverse par
pation ratio defined as

P~a!5 (
i 50

N21

u^auc i&u4. ~22!

It is illustrated in Fig. 6. It shows marked enhancements
the period-2 and period-4~along the symmetry lines! orbits,
and closer examination reveals all orbits up to period-4
present and one orbit of period-6 along the symmetry li
~the diagonals!; see Ref.@27# for a more detailed discussion

FIG. 4. Sections of the correlation (N5100) to highlight the
period-4 orbit.~a! pa53/5 and has a local minimum atqa53/5, ~b!
pa54/5 and has a local minimum atqa51/5, ~c! pa52/5 and has
a local minimum atqa52/5.
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D. General operators and selective enhancements

The results so far have dealt with the special caseA(q)
5cos(2pq). It seems natural to suspect that the structu
highlighted in the correlation are dependent on the choice
the operator. This turns out to be true, and we show here
this works in the bakers map. We reemphasize though
were the eigenstates behaving ergodically, the correlat
would have been consistent with zero to within statisti
uncertainties independent of the choice of the operator
this sense, a complete view of the extent to which the eig

FIG. 5. The correlation at~a! N5128 and~b! N5200. Note the
sharp features in~a!, where the peak height is about twice as lar
as that in~b!.

FIG. 6. The inverse participation ratio for the bakers map. Cl
sical structures are present in this quantity as well.
9-7
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states manifest phase space localization properties co
only from considering both the full phase plane of wa
packets and enough operators to span roughly the spac
possible perturbations of the energy surface. The flexibi
of operator choice does provide a means to enhance s
tively particular features of interest supposing one had a s
cific localization question in mind. As an illustration, no
that localization about the period-3 orbit barely appeared
the contour plot of Fig. 3, and yet, we show below that it c
be made to show up prominently with other operators.

Since the caseA(q)5sin(2pnq) has vanishing correla
tions for any integern due to symmetry, the other cases
interest are the higher harmonics of the cosine. There
consider

A~q!5cos~2pnq!. ~23!

If n52m for some positive integerm, a rather remarkable
scaling property of the quantum bakers map is revealed
is actually implicit in the way the bakers map was origina
quantized in Ref.@26#. Semiclassically, the correlations a
identical to the casem50. For example, considerA(q)
5cos(4pq). Then the one-step back classical correlation
comes identical to the zeroth order correlation correspond
to A(q)5cos(2pq). The correlations all shift bym in the
sense thatC( l )→C( l 1m). Thus, there is a kind of scal
invariance in the correlation such as classical fractals,
though this is not self-similarity in the same curve. Quant
calculations reflect this invariance to a remarkable degre
seen in Fig. 7 where theN5200 andpa51/3 case is shown

Other harmonics do weight differently the same localiz
tion effects ~classical structures!. In Fig. 8, N and pa are
taken the same as in Fig. 7. The casesn51,3,5 are all very
different from each other, but note that the casen56 almost
coincides withn53 for the same reason that powers of tw
harmonics are nearly same. Thus only operators of odd
monics give the possibility of providing new or unique i
formation about the nonergodicity in the eigenstates. T

FIG. 7. The correlation for the series of operatorsA
5cos(2p2mq). Shown arem50 ~large dot!, m51 ~small dot!, m
52 ~dashed line!.
01620
es

of
y
ec-
e-

n
n

re

at

-
g

l-

as

-

r-

e

period-2 orbit localization is accentuated atn53, since for
n53m wherem is a positive integer, cos(6pmq) has a maxi-
mum of 11 at q52/3, whereas for all other integersn,
cos(2pnq)521/2 at the same point. In short the perturbati
~or measurement! is more significant at the location of th
period-2 orbit forn53. On the other hand, the casen55 is
similar to the fundamental harmonic case atq52/3 where
the perturbation is also equal to21/2.

The casen57 is interesting as cos(14pq) has a maxi-
mum at q51/7 which coincides with a period-3 orbit a
(1/7,4/7). In Fig. 9, we see the correlation (N5100) corre-
sponding to this operator and the dominant structure is
period-3 orbit and its symmetric partner. Also visible are t
stable and unstable manifolds of these orbits. In fact, it is

FIG. 8. The correlation for different harmonicsA5cos(2pnq).
Shown aren51 ~solid large dots!, n53 ~solid line!, n55 ~dotted
line!, andn56 ~dashed line!.

FIG. 9. The correlation for the operatorA5cos(14pq) and case
N5100. The highlighted areas are in the region of classi
period-3 orbits.
9-8
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PHASE SPACE LOCALIZATION OF CHAOTIC . . . PHYSICAL REVIEW E 63 016209
multiples of the 2m21 harmonics which selectively high
lights the periodm orbits.

Summarizing then, the correlations reflect that the bak
map eigenstates are not ergodic, and manifest strongly p
space localization properties. There do not exist trans
barriers such as cantori or diffusive dynamics in the bak
map, so whatever localization that exists should be due
scarring by the short periodic orbits. This is confirmed in t
examples shown with connections to their homoclinic orb
illustrated as well. The perturbation or observable determi
the regions of phase space that will light up in the correlat
measure. A semiclassical theory predicts reasonably
many of these structures. The correlation is semiclassic
written as a sum of classical correlations that are supere
nentially cut off after about half the log-time scale.

III. THE STANDARD MAP

A. The map and the mixed phase space regime

The standard map~a review is found in Ref.@35#! has
many complications that can arise in more generic mod
and we turn to their study. It is also an area preservi
two-dimensional map of the cylinder onto itself that may
wrapped on a torus. We will consider identical settings of
phase space and Hilbert space as for the bakers map
cussed above. The standard map has a parameter that
trols the degree of chaos and thus we can study the effe
regular regions in phase space, i.e., the generic case of m
dynamics.

The classical standard map is given by the recursion

qi 115~qi1pi 11!mod~1!,
~24!

pi 115@pi2~k/2p!sin~2pqi !#mod~1!,

wherei is the discrete time. The parameterk is of principal
interest and it controls the degree of chaos in the map. C
sically speaking, an almost complete transition to ergodic
and mixing is attained above values ofk'5, while the last
rotational KAM torus breaks aroundk'0.971.

The quantum map in the discrete position basis is gi
by @36#

^nuUun8&5
1

AiN
exp@ ip~n2n8!2/N#

3expS i
kN

2p
cos@2p~n1a!/N# D . ~25!

The parameter to be varied will be the ‘‘kicking strength’’k,
while the phasea51/2 for maximal quantum symmetries
andn,n850, . . . ,N21.

We use the unitary operator and evaluate the correla
as in Eq.~3! with A(q)5cos(2pq) here as well. This corre
sponds exactly to the level velocity induced by a change
the parameterk. In Fig. 10 is shown the absolute value of th
correlation for various values of parameterk. Case~a! corre-
sponds tok50.13(2p) and is dominated by the KAM
curves as the perturbation has not yet led to significant ch
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Highlighted is the fixed point resonance region at the ori
that is initially stable. An unstable point is located at t
point (1/2, 0, or 1). The separatrix or the stable and the
stable manifolds of this point are aligned along the lo
ridges seen in the correlation. Also the period-2 resona
region is visible. Higher resolution not shown here, cor
sponding to higher values ofN reveal weakly the period-3
resonance as well. Case~b! corresponds tok50.33(2p)
while ~c! and~d! to k50.93(2p) andk52.33(2p) respec-
tively. We note the gradual destruction of the KAM tori an
the emergence of structures that are dominated by hyperb
orbits. A more detailed classical-quantum correspondenc
however, not attempted here.

These contour plots do not reveal the difference in
magnitude between the correlations in the stable and
stable regions. In Fig. 11, we have plotted the correlation
the origin (0,0), which is also a fixed point, as a function
the parameter. The valuek/(2p);1 corresponds to a tran
sition to complete classical chaos and is reflected in this
as erratic and small oscillations. The large correlation in
mixed phase space regime arises from the nonergodic na
of the classical dynamics. The classical fixed point loses
bility at k* /(2p)54/(2p)'0.63 and this is roughly the re
gion at which the correlation starts to dip away from un
toward lower values.

The gross features and principal\ behavior in this regime
is easy to derive in terms of purely classical correlations
follows:

CA~a!5^Tr~ ua&^auÂ~n!!&n

5 K E dq dp@ ua&^au#W@Â~n!#WL
n

, ~26!

where@•••#W is the Weyl-Wigner transform of the operato
in the brackets andÂ(n) is the operator after a timen. With-
out worrying about the toral nature of the phase space
the Weyl-Wigner transforms, we treat the problem as in
plane. This is justified by the use of localized, Gauss
wave packets. Otherwise, we could imagine that the Wig
transform of the projector would follow from an infinite se
ries of Gaussian states that is equivalent to discretizing
Gaussian. We use a normalized, ‘‘circular’’ Gaussian
width A\. The approximation comes in when we repla
@Â(n)#W by A@ f n(q,p)# where the latter is the classica
function evaluated at the classically iterated pointqn
5 f n(q,p). We expect this approximation to be valid in th
case of regular dynamics over a much longer time scale t
found with chaotic dynamics. To a good approximation,

CA~a!; K E dq dpS 1

p\ DexpF2
1

\
@~q2qa!2

1~p2pa!2#GA@ f n~q,p!#L
n

. ~27!

As intuitively expected, there is no principal\ dependence
in the correlation since there is a nonzero classical limit.
\50, we could replace the Gaussian forms byd functions
and would get simplyCA(a)5^A@ f n(qa ,pa)#&n .

This, however, vanishes as the classical system beco
more ergodic and is no more capable of predicting the c
9-9
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FIG. 10. The quantum correlation for the standard map (N5100), ~a! k/(2p)50.1, ~b! k/(2p)50.3, ~c! k/(2p)50.9, ~d! k/(2p)
52.3.
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FIG. 11. The quantum correlation for the standard map aa
5(0,0) as a function of the parameterk (N5100 is the solid line
andN5200 is the dashed one!. The dotted line is a classical est
mate based on Eq.~27! and averaged over twenty time steps w
N5100.
01620
relation. Higher-order corrections are needed. It is in t
regime that we studied the bakers map and found that
correlation has a principal part that scales~almost! as\ and
classical correlations based on periodic orbits predict the
calization features that arise out of quantum interference

We return to Fig. 11 to remark on some of these prop
ties. Notice that the simple estimate of Eq.~27! performs
very well, even as the phase space is becoming increasi
chaotic. It is quite unexpected that the oscillations after
onset of full mixing@aroundk/(2p)51# should follow this
estimate. However, after the transition to chaos the class
estimate will depend on the times over which the averag
is done and as this increases the estimate would vanish

B. Chaotic regime

We attempt in some measure a semiclassical theory
the correlation in the chaotic regime along the lines adop
for the quantum bakers map. Of the two ingredients in E
~4! one of them remains the same, namely Eq.~7!. However
the diagonal elements of the propagator in Eq.~6! have to be
generalized.

In Ref. @32# a semiclassical expression for the matrix e
ements of the propagator as a homoclinic orbit sum is giv
Although this was derived with the example of the billiard
mind, it can be interpreted as a generalization of Eq.~6! for
9-10
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PHASE SPACE LOCALIZATION OF CHAOTIC . . . PHYSICAL REVIEW E 63 016209
area-preserving, two-dimensional maps. We, however, in
pret the sum not as a homoclinic orbit sum, but as a perio
orbit sum. To each homoclinic orbit there is a neighbori
periodic orbit that we will use instead. This will form th
points around which the expansions are carried out and
result is identical to that in Ref.@32#. Thus we write

^auUnua&;(
g

exp~ iSg /\2 ipn/2!(
j

Bj , ~28!

where

Bj5A 2

A0
expH 21

2\A0
$~ tr22!~dq21dp2!

12i @m21dp22m12dq21dqdp~m222m11!#%J . ~29!

Bj generalizes the Gaussian form~including the prefactor! in
Eq. ~6!. Again j labels points along the periodic orbit an
dq5qj2qa , dp5pj2pa are as before deviations from th
centroid of the wave packet. The two-dimensional mat
elements,mi j , are the elements of the stability matrix at th
periodic pointj along the periodic orbitg. The deviationsdq
anddp after n iterations of the map are given by

S dpn

dqn
D 5S m11 m12

m21 m22
D S dp

dqD . ~30!

The invariant is the trace of this matrix that is denoted
While A05m111m221 i (m212m12), n is a phase that will
not play a crucial role below. In the case of the bakers m
m125m2150 and m11522n, m2252n uniformly at all
points in phase space, as well asn50. On substitution of this
in Eq. ~28! we get Eq.~6!.

The dependence on individual matrix elements of the
bility matrix complicates the use of this formula in gener
However we note that the Gaussian is effectively cutting
periodic points that are not close toa and therefore we may
take themi j elements to be the stability matrix at this poin
In the chaotic regime each of the matrix elements grow
ponentially with timen. Thus we have that exp(2ln)mij→
const, wherel is the Lyapunov exponent. We call this sat
rated constantmi j as well. Below we will assume that th
exponential growth has been factored out of these eleme
Also we use exp(2ln)A0→a0. The terms inside the exponen
tial function in Eq.~29! saturate in timen while the prefactor
goes as exp(2ln/2). It follows then that

Bj→A 2

a0
exp~2ln/2!F~qj ,pj !, ~31!

whereF(qj ,pj ) is

F~qj ,pj !5expH 21

2\a0
$~dq21dp2!

12i @m21dp22m12dq21dqdp~m222m11!#%J .

~32!
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Here themi j elements already have the exponential behav
factored out. For example, in the case of the bakers m
m2251 while all the other elements are zero and this giv
consistently the approximated Gaussian form in Eq.~9!. Fur-
ther steps are identical to the case of the bakers map
leads to the generalization of Eq.~10!

CA~a!5A 2

a0
(
T

(
l 52M

M

C̃T~ l !, ~33!

where the classical correlations are calculated as in Eq.~11!
with the functionF being that in Eq.~32!. We may then
expect all the principal conclusions from the study of t
bakers map to be carried over, principally the decrease in
correlation as\, the correlations being cut off after half th
log-time scale, and the effects of classical orbits.

More detailed analysis in the lines of the special ca
discussed in case of the bakers map will run into the follo
ing difficulties. First, themi j elements will depend ona in
general. Exceptions are uniformly hyperbolic systems s
as the cat or sawtooth maps~and, of course, the bakers map!.
A second difficulty is that the correlations have to be eva
ated to half the log time while classically iterating the m
~analytically! over such times is often not possible. The cla
sical correlations that arise in the study of rms values of le
velocities @25# involved correlations that exponentially de
creased in time while here we are likely to get generali
tions of forms such as in Eq.~15! that will require us to go
up to log times. We have calculated the correlations for tim
1, 21, and 2 but will not display them as they are by the
selves not very useful. A third problem with this form of th
generalization is that it is not explicitly real.

We have used Eq.~33! and for themi j used either those
calculated at one point in phase space~such as the origin! or
in fact assumed those that are relevant for the bakers m
While fine structures are not reproduced, the general feat
are captured equally well in both these approaches. To il
trate the quality of the approximation we again look at t
correlation at the posint (0,0) as a function ofk in Fig. 12~as
in the previous figure!. The solid line is the semiclassica
prediction based upon using thesame mi j values at all values
of k. It is seen that even with these~over! simplifications the
semiclassical expressions capture much of the oscillat
with the parameter and the magnitude.

IV. SUMMARY AND CONCLUSIONS

We have studied the details of phase space localiza
present in the quantum time evolution of operators. This w
related to a measure of localization involving the correlat
between the level velocities and wave function intensiti
While individual quantum states show well known intere
ing scars of classical orbits, groups of states weighted ap
priately provide both a convenient and important quantity
study semiclassically. We were interested principally
9-11
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LAKSHMINARAYAN, CERRUTI, AND TOMSOVIC PHYSICAL REVIEW E 63 016209
those features whose origins were quantum mechanical.
quantities studied had both a vanishing classical limit as w
as vanishing RMT averages.

We studied simple maps as a way to understand the
eral features that will appear. We found that the opera
dictated to a large extent which parts of phase space

FIG. 12. The quantum correlation for the standard mapN
5100) ata5(0,0) as a function of the parameterk ~dashed line!.
The solid line is the semiclassical estimate.
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display prominent localization features and further that th
localization features are often related to classical perio
orbits and their homoclinic structures. The time average
the operator for wave packets was explicitly related se
classically to classical correlations. These were shown to
cut off superexponentially after half the log-time in the qua
tum bakers map. Thus the localization features in quan
systems associated with scars were reproduced using
~periodic! orbits but short time correlations. The localizatio
would disappear in the classical limit as the magnitude of
quantum correlations or time averages are proportiona
~scaled! \.

General systems were approached using the quan
standard map and complications that would arise were
cussed. Also the case of mixed phase space was seen
well reproduced by a simple classical argument. The gen
alization to Hamiltonian systems@22# contains many of the
features and structures are also~not surprisingly! present in
this case.
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