
Lab 3. Gauss’s Law Tutorial

Goals

• To understand and explain in words the physical meaning of Gauss’s law.

• To employ symmetry arguments to determine the direction of the electric field for simple
charge distributions.

• To use Gauss’s law to calculate the the electric field produced by an appropriate charge
distribution.

Introduction

In mathematical form, Gauss’s Law can be written as:

∮
S

E ·dA =
qEnclosed

ε0
(3.1)

Problem 1

Describe a procedure for applying Gauss’s Law of electromagnetism in your own wordsÑ without
using equations. Define the following terms carefully:

Surface element dA
Closed surface S
Enclosed charge qEnclosed

Describe the dot product in Equation 3.1 in terms of vector components. Describe the process of
integration in terms of a sum over many small surface elements. It is a good idea to sketch out your
solutions on scratch paper before entering them in your lab notebook.

Using symmetry to determine the direction of the electric field

Gauss’s Law can be used to determine the magnitude of the electric field in several important
geometries. Gauss’s Law is always true, but it doesn’t help you determine the magnitude of the
electric field unless you know the direction of the field first. In the special cases where Gauss’s
Law can be used to calculate the electric field, the direction of the field can be determined from the
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symmetry of the charge distribution. Figure 3.1 shows a uniformly charged, square plate in the x-y
plane with its center at the origin. Rotating the charge distribution by 180° around the z-axis does
not change the distribution of charge. Every charge element that is moved by rotation is replaced
by another, identical charge element after rotation. Therefore, we say that the charge distribution
is symmetric with respect to a 180° rotation about the z-axis.

P

x

z

y

Ey

Ez

Ex
P

x

z

y

Ey

Ez Ex

(a) Original Charge Distribution (b) Rotated Charge Distribution

(a) Original charge distribution.
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(a) Original Charge Distribution (b) Rotated Charge Distribution

(b) Charge distribution after 90° rotation.

Figure 3.1. A thin, uniformly charged square plate in the x-y plane, with its center at the origin of
an x-y-z coordinate system before and after rotation by 90°. The gray vectors at Point P show the
three components of E at Point P. The charge distributions before and after rotation are identical.
Therefore we expect identical electric fields. Although the z-component of E is the same before
and after rotation, the x- and y-components change sign. The only way these observations can be
reconciled is if Ex = Ey = 0.

Symmetry arguments rely on two principles. First, changing the orientation of the source of an
electric field (the charge) changes the orientation of its electric field in the same way. Second,
identical charge distributions produce identical fields. Figure 3.1 shows that Ex and Ey at Point
P change sign after a 180° rotation about the z-axis. They rotate along with the plate. But this
rotation does not change the charge distribution, so it cannot change the electric field. The only
way these two facts can both be true is if the x- and y-components of the electric field at Point P are
zero. In contrast, Ez is not changed by this rotation. Therefore the z-component of the electric field
does not have to be zero. The electric field at Point P must point in the +z or −z directions.

This procedure yields the same result for all points on the z-axis. The procedure fails for points
with nonzero x- and y-components, unless the square is infinite in extent. We cannot use this
procedure to find the direction of the electric field for points that are not on the z-axis, except for
the special case of a plate that extends to infinity in the x- and y-directions.

Three useful groups of symmetry operations are described below.



13

Translations (straight-line displacements)

Charge distributions with translational symmetry in the x-direction are not changed when the object
is moved in the x-direction. A infinite, charged plate perpendicular to the z-axis has translational
symmetry in the x- and y-directions. Movements in the x- and y-directions do not change the charge
distribution, because every patch of moved charged is replaced by an identical patch of charge from
elsewhere on the plate. Since the charge distribution is not changed if you move the plane in the
x- or y-directions, the electric field must not be changed by this motion. That is, the electric field
vector at any Point P above a charged, infinite plane cannot depend on the x- or y-components of
that point.

Rotations

Charge distributions with rotational symmetry are not changed by a rotation about some axis. The
axis and the angle of rotation must be specified, although some shapes are symmetric about a
special axis for all angles. The square in Figure 3.1 is symmetric under rotations of 90°, 180°, and
270° about the z-axis.

Reflections

The difference between a vector and its reflection is similar to the difference between a vector and
its reflection in a mirror. Reflection through the x-y plane changes the sign of vector z-components
without changing their magnitude. The x- and y-components are not changed. You will not need
to use reflections in this exercise, but they can be useful.
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Figure 3.2. Sketch representing an infinitely long cylindrical shell (like a pipe) of radius R and
thickness ∆R, centered on the z-axis.

Problem 2

Figure 3.2 represents an infinitely long cylindrical shell of radius R and thickness ∆R, centered on
the z-axis. Assume that it is made of a material with a uniform, positive volume charge density ρ .
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Sketch “before” and “after” pictures of this charge distribution and the electric field components at
the point of interest for each symmetry operation, as in the example above.

(a) Use symmetry arguments to show that the electric field outside the cylinder at Point P on the
x-axis is directed in the +x-direction. (Rotate the cylinder 180° about the x-axis.)

(b) Use symmetry arguments to show that the electric field outside the cylinder at Point Q on
the y-axis is directed in the +y-direction.

(c) Use symmetry arguments to show that the electric field is directed along a cylinder radiusÑ
that is, pointing directly toward or away from the z-axis. Further, show that the magnitude
of the electric field is constant on circles of radius r =

√
x2 + y2, the distance from the z-axis

to Point P.

(d) Use additional symmetry arguments to show that the electric field outside the cylinder does
not depend on the z-component of position.

Constructing a Gaussian surface

To perform the integral in Gauss’s Law, one must be able to compute the dot product inside the
integral:

∮
S

E ·dA =
qEnclosed

ε0
where E ·dA = EdAcosθ (3.2)

and θ is the angle between E and dA. The circle on the integral sign indicates that the surface must
be closed. Like cubes or spheres, closed surfaces are composed of pieces whose orientations vary.
Since the direction of dA is along the surface normal direction, it changes depending where you
are on the closed surface. From Problem 2, we know the direction of E due to an infinitely long
cylindrical shell. We get to choose the surface, and so have some control over the direction of dA.
The best we can hope for is to make E ·dA constant for each part of the surface. This requires that
θ be constant for each part of the surface. For closed surfaces, the only workable angles are 0°,
90°, 180° and 270°. Then cosθ = 0 or ±1.

Problem 3

Sketch a Gaussian surface for the infinitely long cylindrical shell in Figure 3.2, making sure that
the angle between E and dA is one of the approved angles for each side of the closed surface. Since
the surface must be closed, your Gaussian surface cannot be infinitely long. Show the dimensions
of the Gaussian surface on your sketch. Write the Gauss’s Law integral as the sum of the integrals
over each part of your surface, using the fact that cosθ = 0 or ±1.

Calculating the flux through the Gaussian surface

Even though we have determined θ for each of the required flux integral(s), we still must be careful
of the functional dependence of the remaining scalars E and dA. You can’t calculate an integral
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unless you know the function. This is not a problem where cosθ = 0, as the integral for those parts
must equal zero. But for surfaces where cosθ = ±1, the integral can be a problem. Practically,
the only hope for a solution is if the magnitude E is constant. Fortunately, you showed in Problem
2 that for a fixed r, the magnitude of the electric field E is indeed constant. If (and only if) r is
constant for the parts of your Gaussian surface where cosθ = ±1, you can perform the integral.
After factoring out the constant factor of E, the remaining integral should have the form:

∫
dA = A (3.3)

where A is the area of a part of your Gaussian surface where cosθ =+1 or −1.

Problem 4

Calculate the total flux through your Gaussian surface S.

Calculating the charge enclosed by the Gaussian surface

Since S is a closed surface, with a definite inside and outside, it encloses a well defined volume. If
all the charges in the system are simple point charges, one can simply identify which point charges
are inside the volume and sum their values. Another simple case is when the charge density in the
volume is uniform, or constant. Then the enclosed charge is given by the product of the volume V
inside S and the charge density ρ; that is, qEnclosed = ρV . Care must be taken to include only the
charge inside S. If part of a charge distribution is not inside S (that is, some parts poke through the
surface), only the part inside S contributes to qEnclosed .

If the charge density is a function of R only, it can still have rotational symmetry. (In this case, the
shape is not changed by any rotation about the axis of symmetry.) Then the enclosed charge may
be found by integration. To minimize confusion, we will use the variable R to refer to the radial
coordinate of a position in the charge distribution (the cylinder). We will use the variable r to refer
to the radius of our Gaussian surface.

In your calculus class, you used the method of cylindrical shells to determine the volume of shapes
with rotational symmetry. You can use the same method to determine the total charge in such an
object by introducing a factor of ρ , the volume charge density. In the shell method, the volume of
a thin cylindrical shell is given by1

∆V = 2πhRdr (3.4)

where h is the (constant) length of the shell. To see that this must be true, consider a solid cylinder
with radius RCyl whose charge density might be a function of R. In this case one can approximate

1See, for example, the current calculus text: William Briggs, Lyle Cochran, and Bernard Gillet, CalculusÑEarly
Transcendentals (Pearson, Boston, 2015), Section 6.4, on the shell method. Note that Briggs treats much more com-
plicated shapes than we do. We have a simple cylinder with a fixed height. We will eventually treat the case of variable
charge density. The charge density, however, will be constant inside every thin shell of radius R. That is all we need.
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the volume of the cylinder as the sum of the volumes of a series of N thin cylindrical shells of
radii R1,R2,R3...RN . If we take the thickness of each shell to be ∆R = RCyl/N, we can construct a
series of shells with radii RJ = J∆R, where (J = 1,2,3...N). As N goes to infinity the sum of the
shell volumes VJ becomes an integral, and the integral yields the exact value of VCyl . (This is the
definition of an integral according to Riemann.) The progression from thin shells to integrals can
be written:

VCyl = lim
x→∞

N

∑
J=0

∆VJ = lim
x→∞

N

∑
J=0

2πhRJ∆R =
∫ RCyl

0
2πhRdR (3.5)

To find the charge enclosed in the entire cylinder, qCyl , one need only add a factor of ρ to the
integral.

qCyl =
∫ RCyl

0
2πρhRdR (3.6)

You can find qCyl for almost any charge distribution ρ(R) that depends only on R. If the radius of
your Gaussian surface is greater than the radius of the cylinder, qEnclosed = qCyl; the upper limit of
integration is then RCyl , as in 3.6. If the radius of your Gaussian surface is less than the radius of
the cylinder, you must include only the charge inside the Gaussian surface. To get qEnclosed , you
reduce the upper limit of the integral from RCyl to r, the radius of you Gaussian surface.

Problem 5

Compute the total charge inside in a cylinder of length h and radius RCyl when ρ(R) = αR. Use
the result to compute the electric field produced by the cylinder at points outside the cylinder
(r > RCyl). Note that since r > RCyl , the Gaussian surface (with radius r) encloses all the charge
in the cylinder. State the direction of the electric field inside and outside the cylinder when α > 0,
that is, when the cylinder carries positive charge.

Problem 6

Find the charge enclosed by a Gaussian surface as a function of its radius, r, when ρ(R) = αR,
for the case of r < RCyl . Since r < RCyll, a Gaussian surface with radius r encloses only part of
the cylinder’s charge. Use the result with the rest of Gauss’s Law to compute the magnitude of the
electric field inside the cylinder as a function r for r < RCyl .

Before you leave the lab please:
Turn your work in to your teaching assistant.
Work done at home will receive no more than 50% credit.


