
Uncertainty and Graphical Analysis

Uncertainties of measured values

All experimental results are uncertain to some degree due to the sensitivity of the measuring instru-
ments and the reproducibility of the experimental conditions. Before using an experimental result,
it is necessary to estimate its uncertainty.

Mean and standard deviation of the mean

The goal of most quantitative experiments is to determine the value of a physical quantity. In many
experiments, the best estimate of a physical quantity is given by an average. The mean (or average)
value of a set of N measurements of x, (x1, x2, x3, ...xN), is given by

xavg =
x1 + x2 + x3 + ...+ xN

N
=

1

N

N∑
i=1

xi (14.1)

The individual measurements seldom agree exactly. The standard deviation of x, denoted σ(x),
indicates how far a typical measurement deviates from the mean:

σ(x) =

√
(x1 − xavg)2 + (x2 − xavg)2 + (x2 − xavg)2 + (x3 − xavg)2 + ...(xN − xavg)2

N − 1

=
1

(N − 1)

[
N∑
i=1

(x1 − xavg)2
]1/2

(14.2)

A small standard deviation indicates that the measurements (x-values) are clustered closely around
the mean value, while a large standard deviation indicates that the measurements scatter widely
relative to the mean value. Thus a small standard deviation of a repeated measurement indicates
that this particular quantity is very reproducible and has a small uncertainty.

The best estimate of the uncertainty of the average (our estimate of the physical quantity) is called
the standard deviation (or standard error) of the mean, or σ(xavg). Given a set of N measurements
of x, the best estimate of σ(xavg) is generally given by:
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σ(xavg) =
1

N(N − 1)

[
N∑
i=1

(x1 − xavg)2
]1/2

=
σ(x)

N
(14.3)

The standard deviation function of most spreadsheet programs (Excel, OpenOffice), DataStudio,
and calculators gives σ(x), from Equation 14.2. To calculate the standard deviation of the mean
from this number, you must divide by the square root of N , the number of data points.

On the other hand, the standard error provided by spreadsheet Regression functions and Data-
Studio’s curve fit function corresponds to the standard deviation of the mean, σ(xavg) from Equa-
tion 14.3. Do not divide these numbers by

√
N . These functions have already accounted for the

extra factor of
√
N .

Other methods for estimating uncertainty

When several measured quantities are used in a calculation, a relatively crude measurement of one
quantity may contribute little to the overall uncertainty. If so, there is little point in improving the
measurement. To demonstrate that the uncertainty is small, we must provide an upper bound on
the uncertainty and show that it is indeed relatively small.

Smallest division

Most measuring devises have a a smallest division that can be read. In this case, one can use the
size of the smallest division as an upper bound on the uncertainty. In some cases, it is appropriate
to to use one-half of this smallest division. For instance the smallest division displayed on a meter
stick is usually 1 mm. The distance d is read to the nearest mark. Suppose, for example, you look
at the meter stick a few times and read d = 85 mm each time. Because you never measured 84 or
86 mm, you are confident that 84.5 ≤ d ≤ 85.5. That is, the magnitude of the uncertainty in d is
less than 0.5 mm. This is a useful upper bound.

Interpolation

If the uncertainty in such a measurement is not small relative to the other uncertainties in an exper-
iment, a better estimate of the uncertainty is needed. In this case, taking the standard deviation of
the mean of multiple measurements is necessary. For instance, you can estimate d to one-tenth of a
mm using a meter stick. (Estimating values between the marks is called interpolation.) In this case,
repeated estimates, made with care, will disagree, and you can calculate the standard deviation of
their mean.

Manufacturer’s specification

The user manuals for many instruments (electronic ones particularly) often include the manufac-
turer’s specifications as to the “guaranteed” reliability of the readings. For example, the last digit
on the right of digital voltmeters and ammeters is notoriously inaccurate. In this case, it makes
sense to use the manufacturer’s specifications as a simple upper bound.
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Notation for uncertainties

Because we have several methods of estimating uncertainties, it helps to have a separate symbol
for uncertainty. We will represent the uncertainty of a quantity x by u(x). If the average and
standard deviation of x are available, the best estimate of x is generally xavg, and the best estimate
of the uncertainty of xavg is the standard deviation of its mean, σ(xavg). Then u(xavg) = σ(xavg).
However you estimate an uncertainty, it is important to specify how the estimate was made.

Using error bars to indicate uncertainties on a graph

When plotting points (x, y) with known uncertainties on a graph, we plot the average, or mean,
value of each point and indicate its uncertainty by means of “error bars.” If for example the
uncertainty is primarily in the y quantity, we indicate the upper limit of expected values by drawing
a bar at a position ymax above yavg, that is, at position ymax = yavg + u(yavg). Similarly, we we
indicate the lower limit of expected values by drawing a bar at position ymin = yavg − u(yavg).
Figure 14.1 shows how the upper error bar at ymax and the lower error bar at ymin are plotted.
If the quantity x also has significant uncertainty, one adds horizontal error bars (a vertical error
bar rotated 90°) with rightmost error bar at position xmax and the leftmost error bar at position
xmin.

Occasionally one encounters systems where the upper and lower error bars have different lengths.
In this case, the upper uncertainty, u+(yavg) does not equal the lower uncertainty, u−(yavg). This
often happens when the Minimum-Maximum method is used to estimate uncertainties.
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Figure 14.1. Diagram of error bars showing uncertainties in the value of the x- and y-coordinates
and point (xavg, yavg).

Uncertainties in calculated quantities

Uncertain measured values are often used to calculate other quantities. These calculated quantities
will be uncertain as well, and the degree of uncertainty will depend on the uncertainty of our
measurements. We will the Minimum-Maximum method to estimate uncertainties in calculated
quantities.

Let us start with a simple example. Assume that we have measured the quantity, x, and we need
to calculate a value for the function f(x) = 1/x. Say that several measurements of x have yielded
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xavg = 2.0, with an uncertainty u(xavg) = σ(xavg) = 0.1. As long as there is no confusion, this
can be reported as x = 2.0± 0.1.

The value of f(x) when evaluated at x = 2.0 is 0.50, but how does the uncertainty in x (the ± 0.1)
affect our value for f(x) (the 0.50)? For simple functions, the change in f(x) due to a change in
x, ∆x can be evaluated directly by calculating f(x + ∆x) and f(x − ∆x). Here ∆x = u(xavg)
and we have f(x + ∆x) = 1/(2.0 + 0.1) = 0.476. Similarly f(x −∆x) = 1/(2.00.1) = 0.526.
[Note that for f(x) = 1/x, f(x) increases as x decreases and vise versa.] To plot error bars for
f(x = 2.0), we would put the upper error bar at 0.526 and the lower error bar at 0.476.

The uncertainty in f(x), u(f(x)), is just the length of the error bars. The Minimum-Maximum
method gives two uncertainties, u+(f(x)) =|0.526 − 0.500| = 0.026 for the upper error bar and
u−(f(x)) = |0.476 − 0.500| = 0.24 for the lower error bar. This can be summarized by saying
that f(x) = 0.50 + 0.026,−0.024. Since the uncertainty is in the second place to the right of the
decimal it would be legitimate to round f(x) to 0.50 + 0.03, – 0.02. Notice that the plus and minus
uncertainties are not equal even after rounding.

In many cases, our goal is to use our uncertainty to compare our measured f(x) with another mea-
surement or prediction. In this case, it is not necessary to calculate both u−(f(x)) and u+(f(x)). If
the prediction is greater than f(x), then u+(f(x)) (the length of the upper error bar) is the impor-
tant quantity. Similar, if the prediction is smaller than f(x), u−(f(x)), the length of the lower error
bar, is the important quantity. Your knowledge of how f(x) varies with x will usually allow you to
guess whether (x+ ∆x) or (x−∆x) is needed. If you guess wrong, you just use the other.

For more complicated functions, say f(x, y), one calculates u+(f(x, y)) by choosing the signs of
±∆x and±∆y that together maximize the value of the function f(x, y). For instance, if f(x, y) =
x2/y, then f(x, y) is maximized by choosing a high value of x and a low value of y. Similarly, the
function is minimized by choosing a low value of x and a high value of y. Therefore,

u+(f(x, y)) =
(xavg + ∆x)2

(y −∆y)
and u−(f(x, y)) =

(xavg −∆x)2

(y + ∆y)
(14.4)

Again, you do not need to compute both u+(f(x)) and u−(f(x)) if your only goal is to compare
your measurement with a prediction or another measured value.

The Minimum-Maximum method is relatively easy to use, but it has some drawbacks that are
beyond the scope of this introduction. The problems are usually minor as long as the uncertainties
are small and u+(f(x)) ≈ u−(f(x)).

Using uncertainties to compare to measurements or calculations

Uncertainties are used to determine whether two measurements or calculations of the same quantity
are consistent. For instance, you may have estimated an objects mass, mF/a, from force and accel-
eration measurements and the relation F = ma. You must decide whether this mass is consistent
with the value mbal you measure using an electronic balance.
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Under some rather general conditions, you can use the uncertainties u(mF/a) and u(mbal) to cal-
culate the probability that two sets of measurements disagree. For the purposes of this course,
we will assume that the measurements disagree if their difference is greater than three standard
deviations, or three times the calculated uncertainty. If the two mass values are exactly the same,
then mdif = (mF/a −mbal) = 0. The uncertainty in this difference, u(mdif ), can be expressed in
terms of u(mF/a) and u(mbal) using Equation ??.

u(mdif ) =
√
u(mF/a)2 + u(mbal)2 (14.5)

If the two values of mass are consistent, we expect that, most of the time,
∣∣mF/a −mbal

∣∣ <
u(mdif ). Random variations being what they are, there will be exceptions. Assuming that you
have made a large number of measurements (typically N ≥ 20), it is fair to say that there is a 95%
probability that that the measurements disagree if

∣∣mF/ambal

∣∣ > 2u(mdif ). If
∣∣mF/a −mbal

∣∣ >
3u(mdif ), the probability that the two measurement disagree is over 99%. While the conclusion is
not so strong if you make fewer measurements, the probability of disagreement is usually greater
than 95% if N > 4. (Taking more data generally increases the confidence that can be placed in
the result, although the effect is small for N > 30). In this laboratory, you should conclude that
two measurements do not agree when they differ by more than three times the uncertainty of their
difference.

When the difference between two quantities (that should agree) differ by more than three times
the uncertainty in their difference, systematic errors are usually to blame. Uncertainties cannot
(and should not) account for systematic errors. You should carefully review your calculations and
measurements procedures for errors. If systematic errors appear to be significant, and you know
what they might be, you should describe them in your lab notes. If time permits, repeating a portion
of the experiment may be in order. Whatever your conclusion, your lab notes need to indicate how
you estimated your uncertainties.

In the United States, the best general authority on the reporting of uncertainties is the National
Institute of Standards and Technology.1 Their standards have been developed in consultation with
international standards bodies. That said, when the potential consequences of a decision are critical
or when the data are unusual in some way, it is wise to consult a qualified statistician.2

Determining functional relationships from graphs

Linear relations are simple to identify visually after graphing and are easy to analyze because
straight lines are described by simple mathematical functions. It is often instructive to plot quanti-
ties with unknown relationships on a graph to determine how they relate to one another. Since data
points have not only measurement uncertainties but also plotting uncertainties (especially when
drawn by hand), slopes and such should not be determined by using individual data points but by
using a “best-fit line” that appears to fit the data most closely as determined visually. If graphing

1Barry N. Taylor and Chris E. Kuyatt, “Guidelines for Evaluating and Expressing the Uncertainty of NIST Mea-
surement Results,” NIST Technical Note 1297, 1996 edition (National Institute of Standards and Technology, Gaithers-
burg, Maryland, 1994).

2W. Edwards Deming, Out of the Crisis (MIT Press, Cambridge, Massachusetts, 1982).
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software is used, then the slope of the line can usually be determined by a computer using a “least
squares” technique. We won’t go into detail about these methods here.

Linear functions (y = mx+ b)

If x and y are related by a simple linear function such as y = mx+b (wherem and b are constants),
then a graph of y (on the vertical axis) and x (on the horizontal axis) will be a straight line whose
slope (“rise” over Ò“un”) is equal to m and whose y-axis intercept is b. Both m and b can be
determined once the graph is made and the “best-fit” line through the data is drawn. if x = 0 does
not appear on your graph, b can be found by determining m and finding a point (x, y) lying on the
“best-fit” line; then equation y = mx+ b can be solved for b.

Simple power functions (y = axn)

In nature we often find that quantities are related by simple power functions with n = ±0.5,±1,±1.5,±2,
etc., where a is a constant. Except for n = +1, making a simple graph of y (vertical axis) and
x (horizontal axis) for simple power functions will yield a curved line rather than a straight line.
From the curve it is very difficult to determine what the actual functional dependence is. Fortu-
nately it is possible to plot simple power functions in such a way that they become linear.

Starting with the equation y = axn, we take the natural logarithm of each side to show

ln(y) = ln(axn) = ln(a) + ln(xn) = ln(a) + n ln(x) (14.6)

If ln(y) is plotted on the vertical axis of a graph with ln(x) plotted on the horizontal axis (This is
often called a doubly logarithmic, or log-log graph.), then Equation 14.6 leads us to expect that the
result is a straight line with a slope equal to n and a vertical axis intercept equal to ln(a). If the
relationship between y and x is a simple power law function, then a graph of ln(y) as a function
of ln(x) will be linear, where the slope is n, the power of x, and the intercept being the natural
logarithm of the coefficient a. This is quite useful, because it is easy to determine whether a graph
is linear. If we suspect a simple power function relationship between two quantities, we can make
a log-log graph. If the graph turns out to be linear, then we are correct in thinking that it should be
a simple power function and can characterize the relationship by finding values for n and a.

Exponential functions (y = aebx)

Radioactive decay, the temperature of a hot object as it cools, and chemical reaction rates are often
exponential in character. However, plotting a simple graph of y (on the vertical axis) and x (on
the horizontal axis) does not generate a straight line and therefore will not be readily recognizable.
A simple graphical method remedies this problem. Starting with an equation for the exponential
function, (y = aebx). We can take the natural logarithm of each side to show

ln(y) = ln(aebx) = ln(a) + ln(ebx) = ln(a) + bx (14.7)
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If ln(y) is plotted on the vertical axis and x is plotted on the horizontal axis (This is called a semi-
log graph.), Equation 14.7 takes the form of a straight line with a slope equal to b and a vertical axis
intercept equal to ln(a). Thus any relationship between two variables of this simple exponential
form will appear as a straight line on a semi-log graph. We can test functions to check whether they
are exponential by making a semi-log graph and seeing whether it is a straight line when plotted
this way. If so, the values of a and b that characterize the relationship can be found.


