

Invasive plant diseases

- Chestnut blight (Cryphonectria parasitica) on American chestnut
- White pine blister rust (Cronartium ribicola) on Western white pine
- Dutch elm disease (Ophiostoma ulmi) on American elm
- Sudden oak death (Phytophthora ramorum) on tanoak, oak, larch, many more.

These are capable of eliminating certain host species from an ecosystem

Chestnut blight caused by the fungus *Cryphonectria parasitica*

Phytophthora – the plant destroyer

P. infestans – responsible for the Irish potato famine in 1845

P. sojae - soybean stem and root rot

Several *Phytophthora* spp. cause disease on cacao

P. cinnamomi – causes damage to forest ecosystems worldwide

P. ramorum – causes Sudden OakDeath (SOD)

Phytophthora root rot

Several species including

P. cinnamomi

P. citricola

P. cactorum

P. parasitica

P. ramorum has not generally been observed to cause root rot symptoms

Phytophthora lateralis

A close relative of *P. ramorum* that normally causes root disease but has been found to cause aerial infections in France and coastal Oregon.

Hosts:

Port-Orford cedar (Chamaecyparus lawsoniana)

C. obtusa – Taiwan and US

Pacific yew (*Taxus brevifolia*)

Thuja occidentalis - UK

Phytophthora kernoviae

In UK – more aggressive than Pr on Rhododendron.

May be endemic in New Zealand

Not present in North America

Phytophthora is not a fungus

- Oomycetes were once considered to be fungi
- Fungi and Oomycetes have similar growth forms convergent evolution
- Control agents for fungi may not work for Oomycetes and viceversa

Phytophthora spore stages

Sporangia containing swimming zoospores

Chlamydospores

Oospores (*P. infestans*)

Phytophthora is microscopic and species can be identified by spore stages and/or DNA sequencing

P. ramorum genetics

Two mating types – A1 and A2

• Four clonal lineages – NA1, NA2, EU1, EU2

NA1 and NA2

All A2

EU1

Mostly A1, with a few A2

EU2

All A1

No evidence of breeding between EU and US populations has been observed, although it has been done in the lab.

Possible *P. ramorum* origins

We don't know where it originally came from. High risk areas for Sudden Oak Death with suitable climate and native plants are shown in bright red.

SOD distribution in forests

Western US – 15 quarantined counties in CA and part of Curry County in OR

UK – for more recent info go here: http://www.forestry.gov.uk/forestry/infd-86ajqa

Symptoms on trees

 Bleeding cankers that can girdle the tree and kill it

 Host species in Fagaceae: oaks, beech, tanoak

 Other *Phytophthora* spp can cause the same symptoms

Phytophthora leaf and shoot blight

P. citricola

P. cactorum

P. syringae

P. ramorum

P. kernoviae

All symptoms look the same.

Foliar hosts carry the disease

- California bay laurel (*Umbellularia californica*)
- Rhododendron ponticum
- Larch

Foliar hosts

Epidemiologically important hosts produce large numbers of sporangia

Rhododendron 'Purple Splendour'

SEM Photo by K. McKeever, WSU

Chlamydospores in infected foliage are another source of Pr inoculum

P. ramorum in nurseries

Ornamental nurseries are a means of long-distance spread.

Interstate shipping from west coast nurseries

Figure 6. NA1 migration pathways.

Goss EM, Larsen M, Chastagner GA, Givens DR, et al. (2009) Population Genetic Analysis Infers Migration Pathways of *Phytophthora ramorum* in US Nurseries. PLoS Pathog 5(9): e1000583. doi:10.1371/journal.ppat.1000583 http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1000583

P. ramorum inWA nurseries

WSDA annually inspects nurseries who ship interstate.

As of 3/2014 only growers who have been Pr+ since 3/2011, want to continue shipping, and are in a regulated area will be inspected.

The 'filthy five'

In nurseries, *P. ramorum* is most commonly found on these 5 hosts:

P. ramorum from WA nursery hosts 2004-2013

How does SOD impact WA's economy?

Ornamental nurseries who ship interstate

All these commodities represent a large proportion of WA trade

Forest products: Douglas fir and western hemlock logs (more than 12 bn \$US in 2010)

Non-timber forest products: greenery, transplants, floral products

Christmas trees

Will it infect humans or animals? What about food safety?

No. Although there are oomycetes that cause disease in animals.

P. ramorum does not attack food crops such as corn and soybeans. Its main hosts are woody plants and some herbaceous plants.

How do you get rid of SOD on plants?

 There are no known fungicides that will kill the organism once infection has occurred

 Destroy infested plants bury in a landfill or burning to ash

Prevention is the best means of controlling SOD (or any other plant disease)