MSE 406: Biomaterials

Course description: Overview of the different types of materials used in biomedical

applications such as implants and medical devices.

Number of credits: 3

Course Coordinator: S. Bose

Prerequisites by course: MSE 201

Prerequisites by topic: 1. Introductory material science.

2. Basic knowledge of bonding and properties of metal, ceramic, polymer and composite, organic and inorganic chemical structures.

3. Basic knowledge of biology.

Postrequisites: None.

Textbooks/other required materials:

Reference Books

- 1. Biomaterials Science: An introduction to Materials in Medicine, edited by B.D. Rutner, A.S. Hoffman, F.J. Schoen and J.E. Lemons, Academic Press.
- 2. *An Introduction to Bioceramics*, edited by L. L. Hench and J. Wilson, World Scientific.
- 3. Structural Biomaterials, by J. Vincent, Princeton University Press.
- 4. Recent articles will be cited as reference materials during some of the classes.

Course objectives:

- 1. Provide an introduction and issues related to different types of biomaterials.
- 2. Overview of basic biology: proteins/cells/tissues, tissue material interactions in vivo.
- Overview of different types metallic, ceramic, polymeric and composite bio materials in biomedical, pharmaceutical applications in medicine and in artificial organs, orthopedics and dentistry. A brief overview of FDA regulations.

Topics covered:

- 1. Introduction to Biomaterials
- 2. Properties of Materials
- 3. Backgrounds in Biology: Proteins/Cells/Tissues
- 4. Biomaterials: Metals
- 5. Biomaterials: Ceramics
- 6. Biomaterials: Polymers and Composites
- 7. Tissue material interactions and testing biomaterial
- 8. Applications of Biomaterials in Medicine
- 9. Biomaterials in Artificial Organs

10. Cardiovascular-artificial heart, heart valve, dialysis, etc.

11. Regulatory environment: FDA rules and regulations

Expected learning outcomes:

- 1. Knowledge of types of biomaterials, metals, ceramics, polymers and composites, based on application types and sites.
- 2. Knowledge of material properties required for different applications.
- 3. Knowledge of basic biology.
- 4. Knowledge of different types of tissue material interactions.
- 5. Knowledge of biomaterials in artificial organs, orthopedics and dentistry, and medicine.
- 6. FDA rules and regulations.

Class schedule:

Two 75-minute lecture sessions per week, for one semester

Laboratory schedule:

None

Contribution to meeting the professional component:

Engineering Topics

Relationship of course to student outcomes:

3 strongly supported; 2 supported; 1 minimally supported

Student Outcomes Pre-Fall 2018 (ABET EC2000)

Student Outcomes Fall 2018 forward (ABET EC2019)

a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	1	2	3	4	5	6	7	8	9	10	11
		3					3		თ		3	3	3			3	3	3	3		3				

Prepared by: Andrea Butcherite and Dr. Susmita Bose Date: May 30, 2018