MSE 321: Materials Characterization

Course description: Properties of X-rays, scattering and diffraction; crystal structures; X-ray

diffraction methods, transmission electron microscopy and scanning

electron microscopy.

Number of credits: 3. This course is required.

Course Coordinator: Min Kyu Song

Prerequisites by course: MSE 201

Prerequisites by topic: 1. Atomic structure

2. Bonding

3. Introduction to crystal structures

4. Optics

5. Interference

6. Diffraction

Postrequisites: MSE 323 (or concurrently)

Textbooks/other required materials:

1. P.J. Goodhew, F.J. Humphreys, and R. Beanland, *Electron Microscopy and Analysis*: Taylor and Francis, NY

Course objectives:

- 1. To provide an introduction to materials characterization and its importance.
- 2. To discuss different types of characterization techniques and their
- 3. To review the topic of crystal structure and how structures can be determined using diffraction methods.
- 4. To describe the properties and behavior of x-rays and their use in materials characterization.
- 5. To describe the operation and use of a TEM and a SEM.

Topics covered:

- 1. Introduction to materials characterization methods
- 2. Crystal structures
- 3. Crystallography
- 4. Diffraction
- 5. Properties and production of X-rays
- 6. The application of X-ray diffraction in materials science
- 7. Properties and production of electrons
- 8. Scanning electron microscopy
- 9. Transmission electron microscopy

Expected learning

outcomes:

1. To be able to explain the production of characteristic x-rays.

2. To be able to explain the principles of diffraction (Bragg's Law) and

its use in crystal structure determination.

- 3. To explain the properties of electrons and the affect of accelerating potential.
- 4. To know the basic operational modes of a SEM.
- 5. To know the basic operational modes of a TEM.
- 6. To be able to explain the formation of diffraction patterns in the EMs.
- 7. To understand stereographic projections and their use in characterization of crystalline materials.

Class schedule: Three 50-minute lecture sessions per week, for one semester

Laboratory schedule: None

Contribution to meeting the professional component:

Engineering Topics

Relationship of course to student outcomes:

3 strongly supported; 2 supported; 1 minimally supported

Student Outcomes Pre-Fall 2018 (ABET EC2000)

Student Outcomes Fall 2018 forward (ABET EC2019)

a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	1	2	3	4	5	6	7	8	9	10	11
3				3						2	3			2	3						3		3	3	2

Prepared by: Andrea Butcherite and Dr. Min Kyu Song Date: May 30, 2018