MSE 320: Materials Structure-Properties Laboratory

Course description: Principles and techniques of optical metallography and other laboratory

methods used in modern materials science and engineering.

Number of credits: 3 (1-6). This is required.

Course Coordinator: Yuehe Lin and Collin Merriman

Prerequisites by course: MSE 201 or concurrent enrollment

Prerequisites by topic: 1. Crystal structures.

2. Polycrystalline nature of engineering alloys.

3. Phase diagrams.

4. Links between structure, processing, and properties

Postrequisites: MSE 323: Materials Characterization Laboratory (recommended)

Textbooks/other required materials:

Callister. Materials Science & Engineering an Introduction. Wiley

Course objectives:

- 1. Develop techniques that will allow students to operate in a modern metallographic laboratory and analyze structures of a wide range of materials.
- 2. Explore structure processing properties relationships in a wide variety of materials.
- 3. Produce professional quality lab reports.

Topics covered:

- 1. Optical microscopy and stereology.
- 2. Heat treating.
- 3. Phase identification.
- 4. Sample preparation for optical microscopy.
- 5. Basic mechanical testing.

Expected learning outcomes:

- 1. Ability to prepare standard metallographic samples on a wide range of materials.
- 2. Ability to interpret microstructures in engineering materials (metals, ceramics, and polymers, and polymer matrix composites) using an optical microscope.
- 3. Ability to perform quantitative metallography, including grain size and volume fraction calculations.
- 4. Perform hardness and microhardness testing.
- 5. Relate phase diagram to resulting microstructures.
- 6. Interpret TTT curves.
- 7. Ability to incorporate diffusivity data into structure properties relationships.
- 8. Prepare semiconductor and circuit board samples for structural analysis.

Class schedule: 1 hour lecture per week, for one semester

Laboratory schedule: Two 3-hour laboratory sessions per week, for one semester.

Contribution to meeting

Engineering Topics

the professional

Other (development of technical writing skills)

component:

Relationship of course to student outcomes:

3 strongly supported; 2 supported; 1 minimally supported

Student Outcomes Pre-Fall 2018 (ABET EC2000) Student Outcomes Fall 2018 forward (ABET EC2019)

í	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0	1	2	3	4	5	6	7	8	9	10	11
		2			2		2				2		2		1	2		3		3	2	2	2	2	3	3

Prepared by: Andrea Butcherite and Dr. Yuehe Lin Date: May 30, 2018