ME 472: Finite Element Methods in Design

Course description: Design of selected mechanical systems components using finite element analysis.

Number of credits: 3

Course Coordinator: H.M. Zbib

Prerequisites by course: ME 414

Prerequisites by topic: 1. Basic strength of materials
2. Failure theories applied to the prevention of machine element failures

Postrequisites: None


Course objectives: 1. Understand basic finite-element theory, computer implementation of this theory, and its practical applications
2. Understand finite-element analysis modeling and model verification techniques
3. Be able to develop and use appropriate assumptions and boundary conditions for the modeling of industrially realistic problems encountered in design and manufacturing
4. Be able to compose well-written and organized reports detailing the modeling effort including all assumptions, results, and verification efforts
5. Be able to critically analyze engineering problems and develop reasonable models to simulate them

Topics covered: 1. Vector-matrix algebra
2. Truss analysis
3. Variational and weighted residual formulations
4. Stress and structural analyses
5. Isoperimetric elements and quadrature
6. Transient and dynamic analysis

Expected student outcomes: 1. Construct accurate finite-element models of various components loading scenarios, and processes
2. Develop appropriate engineering assumptions and their finite element implementation to allow components and/or processes to be modeled
3. Refine and adapt the finite-element mesh, boundary conditions, and all relevant loads for a given thermal/mechanical system
4. Demonstrate an ability to extend finite-element modeling to include non-traditional problems encountered in design and manufacturing such as time-dependent and non-linear problems
5. Demonstrate the ability to use existing analytical and approximate methods to verify their finite-element models and results
6. Clearly and effectively communicate their modeling efforts and results in written form
7. Critically analyze their assumptions, methods, and results

Class schedule: Three 50-minute lectures sessions per week, for one semester

Laboratory schedule: None. (A computer laboratory with Unix workstations is available for the students where they can use the finite elements software ANSYS for their assignments and class projects.)
Contribution to meeting the professional component: Engineering Topics

Relationship of course to program objectives:
Meets:
1. School of MME ME educational objectives: 1, 2
2. School of MME ME program outcomes: 1, 2, 6, 7
3. ABET EC2019, Criterion 3 program outcomes: 1, 2, 6, 7

Prepared by: Andrea Butcherite and H.M. Zbib
Date: May 30, 2018

POLICIES
A. Reasonable Accommodation (the nature of the particular course determines which one applies):
• Pullman Campus. Reasonable accommodations are available for students with a documented disability. If you have a disability and need accommodations to fully participate in this class, please either visit or call the Access Center (Washington Building 217; 509-335-3417) to schedule an appointment with an Access Advisor. All accommodations MUST be approved through the Access Center.
• WSU Online Course. Reasonable accommodations are available in online classes for students with a documented disability. All accommodations must be approved through your WSU Disability Services office. If you have a disability and need accommodations, we recommend you begin the process as soon as possible. For more information contact a Disability Specialist on your home campus: Pullman or WSU Online (http://accesscenter.wsu.edu), Spokane (http://spokane.wsu.edu/students/current/studentaffairs/disability/), Tri-Cities (http://www.tricity.wsu.edu/disability), Vancouver (http://studentaffairs.vancouver.wsu.edu/student-resource-center/disability-services).

B. Academic Integrity
WSU expects all students to behave in a manner consistent with its high standards of scholarship and conduct. Students are expected to uphold these standards both on and off campus and acknowledge the university's authority to take disciplinary action. The Standards of Conduct for Students can be found at http://conduct.wsu.edu.

C. WSU Safety
WSU is committed to maintaining a safe environment for its faculty, staff, and students. Safety is the responsibility of every member of the campus community and individuals should know the appropriate actions to take when an emergency arises. In support of our commitment to the safety of the campus community the University has developed a Campus Safety Plan, http://safetyplan.wsu.edu. It is highly recommended that you visit this web site as well as the University emergency management web site at http://oeo.wsu.edu/ to become familiar with the information provided.