REDISCOVERING GRANITE POINT:
BRINGING PAST EXCAVATIONS INTO THE DIGITAL AGE

Final Project Report

Kendall A. McGill
Rediscovering Granite Point: Bringing Past Excavations into the Digital Age
Kendall A. McGill

Abstract
Excavation of Granite Point (45WT41), situated along the Lower Snake River, was directed and funded by Washington State University, in cooperation with the National Park Service, during the 1967 and 1968 field seasons. This fieldwork uncovered the site’s long history of occupation and revealed a record of 10,000 years of cultural change which made Granite Point an important component to building a cultural chronology of the Lower Snake River region. Fifty years later, limited awareness and access to its collection are affecting Granite Point’s continued contribution to archaeological research. Regional and national programs have been implemented to increase electronic visibility and sharing of archaeological collections, but the physicality of Granite Point’s records impedes its dissemination into the digital world. This project has focused on bringing Granite Point up to the technological present, with digitized field records and internet accessibility, identifying the potential for future student led projects.

Excavation is a destructive process. With every shovel that enters the earth we are cutting into the archaeological record, an action that we cannot undo. As its destroyers, we are also charged with its protection. As archaeologists we are both legally and ethically responsible for the preservation of the archaeological records, and excavated archaeological collections to ensure this destruction does not come at a cost to future researchers (Society of American Archaeology 2012). Collections curation fulfills our obligation to archaeological collections by ensuring they are both protected and accessible. Unfortunately this collective responsibility has not always been in place and though efforts are being made to curate collections from past excavations, there remains a backlog of old collections with boxes of artifacts and records that had been housed in storage rooms and offices for decades (Childs 2004). Though curation can make archaeological collections accessible, often their records remain in physical format that make that access difficult. The archaeological site of Granite Point was one such site that. During my senior year, I have spent about 10 hours a week scanning the documents, reading and synthesizing reports about the site, and building a website that is intended to increase awareness and access to Granite Point among both the professional community and the general public.

Grande Point Locality 1 is a prehistoric site that was situated along the Lower Snake River. The excavation of Granite Point was one of several salvage excavations of threatened regions along the Snake River’s edge. With the damming of the Snake River it was believed that these regions would be flooded and an Army Core of Engineers project was contracted for their excavation. Excavation of Granite Point was conducted during the 1967 and 1968 field school with the help of field school students. 1967 excavations were conducted under the direction of Roderick Sprague, but were taken over by Washington State University Ph.D. candidate Frank C. Leonhardy during the 1968 season (Leonhardy 1970).

The excavation region was contained to a small area between the north shore of the Snake River and a railroad that ran adjacent to the river. Three Areas, designated Areas A, B and C were excavated at the locality. Areas A and B were located where sufficient cultural material were
found eroding from the bank. Area C, on the other hand, was a culture-bearing area that was
discovered during a previous geological study conducted at the locality. The excavations
revealed a long and nearly continual occupational history spanning from 10,000 BC to the
historic with the oldest deposits dating to what Leonhardy and David G. Rice (1970) would later
propose as the Windust Phase of regional occupation. The lengthy and nearly continuous record
of cultural change at Granite Point was rare in the region, making Granite Point an influential
and valuable archaeological site.

The preliminary excavation report from the 1967 field season written by Leonhardy was
submitted to the National Parks Service in June of 1968. The final excavation report, however,
came in the form of Leonardy’s Ph.D. dissertation “Artifact Assemblages and Archaeological
Units at Granite Point Locality 1, Southeastern Washington”, which was completed in 1970. In
his dissertation, Leonhardy describes the preliminary purpose of the study as “[documenting] the
existence of separate and discrete archaeological units in a site typical of the Lower Snake River
Region…” (1970:1) and as such, Granite Point research centered on building and understanding
its cultural sequence through concentrated study of sediment stratigraphy and artifact
assemblages. Leonhardy’s 1970 dissertation serves as the information source for Granite Point,
and though detailed and thorough in his analysis, his narrowed chronological focus has left many
aspects of the site either unreported or unstudied.

Many of Granite Point’s documents had limited dissemination that made them hard to access and
their presence relatively unknown. Referred to as the “grey literature” of archaeology,
knowledge of these documents is often stored as oral records that are spread through word of
mouth (Sebastian and Lipe 2009). With thousands of excavations occurring every year, word of
mouth is not keeping up with the vast accumulation of new archaeological data that is piling up.
As a result, potential researchers are being limited access to prior research. The rise of the Digital
Age has created new avenues to retain and disseminate this archaeological knowledge (Sebastian
and Lipe 2009).

My Granite Point Project began with the gathering of archaeological records associated with its
excavation and study. References to works completed after Leonhardy’s dissertation were not
integrated into the primary Granite Point record. Some of this knowledge was passed down to
my project advisor, Dr. Mary Collins, who was able to provide some insight into additional
relevant works. An obscure page from an administrative record housed along with the
archaeological collection provided a list of some additional works as well. Unfortunately, I am
still unsure of the completeness of the list and could potentially be missing a key piece of
information.

Over the past decade the archaeological community has begun to embrace the potentials of
digital archives and piloted digital repository programs (Sebastian and Lipe 2009). These
programs have the benefit of quick and widespread dissemination of archaeological data that can
reach both the professional community as well as the interested general public. While some
programs have crashed and burned others have survived and are proving the benefits of going
digital. The Washington Information System for Architectural and Archaeological Records Data,
or WISAARD, program implemented by the Department of Archaeology and Historic
Preservation (2012) has become an archaeological repository that provides not only a searchable
A database of archaeological site in the state of Washington, but also general site information and access to aggregated records, reports and publications in digital format. Yet, despite the implementation of programs like WISAARD there remains a tendency among archaeologists to state inaccessibility of archaeological collections and grey literature and the seemingly rarer synthesis of archaeological information (Sebastian and Lipe 2009).

Awareness of an archaeological site can have a direct impact on its continued study. Study of Granite Point continued through the 1970s, contributing to the research of Washington State University graduate students. Information regarding Granite Point research was shared primarily through grey literature, with the exception of one regional publication that received more widespread attention. As the 1970s came to an end the study of Granite Point dwindled to a near close and has remained in a relatively untouched state until it was rehabilitated by The Museum of Anthropology at Washington State University in 2005.

Unlike Granite Point, the nearby Marmes Rockshelter received national attention. The discovery of “Marmes Man”, dated to be the oldest human remains uncovered at the time, brought the site into the public spotlight and forever associated it with a long occupational history (Mary Collins, personal communication). Although efforts were made to protect from the site from impending flood water, they proved unsuccessful and the site was inundated. Like Granite Point, only the archaeological collection is available for study, but contrary to Granite Point a widespread interest in Marmes research continues. Many of the questions explored at Marmes could also be investigated using the Granite Point archaeological collection data. For instance the faunal and sediment remains from Granite Point have not been thoroughly studied or reported.

Digitization offers a way to renew interest and knowledge of an archaeological site. The archaeological site of Granite Point is an example of one such site that has remained stagnant in collection boxes over the years. My project aimed to bring Granite Point out of the dark and into the light of the Digital Age by digitizing excavation records and reports, as well as the 300 some excavation photographs. In addition to creating Granite Point’s digital archive, my Granite Point Project aimed to raise public and professional awareness of this archaeological site through creation of a website. This first step in website creation was the synthesis of archaeological data to create a general overview of Granite Point that could be understood by the novice public, yet be meaningful to a potential researcher; a delicate balance between just enough and too much technical details. Digitized photos were compiled into a photo log which completed the information gathering stage and led into website construction. In order to keep viewer interest, attention was paid to website layout and photos, maps and figures were used to visually display some archaeological site details.

The Granite Point Project is meant to supplement, not replace current digital repository initiatives. WISAARD provides valuable archaeological information, but those that do not have their Master’s or Doctorate and are not professional archaeologists are restricted from accessing much of it (Mary Collins, personal communication). This restriction is in place to protect the archaeological site from possible looting that may result making the site location information widely available (Washington State Department of Archaeology and Historic Preservation 2012). Not limited to either-or, a project like this that can customize to exclude specific site details can bring information to the public forum while maintaining site secrecy. Ongoing work by the
Burke Museum sponsored by Washington State Department of Transportation is creating additional information for WISAARD that will include collection location and the general collection content (Mary Collins, personal communication). These programs are great for the professional community, but do not really bring the archaeological information from these sites to the public.

The curated archaeological record remains and under-valued and underutilized resource. Student projects, such as mine, will help to increase awareness and use of these resources. In addition, the process of synthesizing this information has taught me the importance of adequate field recording, collection care and reporting, as well as making this information appropriately available to different audiences. I believe that an opportunity to work with curated collection as an undergraduate has instilled some of the core values of our discipline will make me a better field and research archaeologists as I continue my career in the discipline.
Childs, S. Terry (editor)

Leonhardy, Frank C.
1970 Artifact Assemblages and Archaeological Units at Granite Point Locality (45WT41), Southeastern Washington. Ph.D. dissertation, Department of Anthropology, Washington State University, Pullman.

Leonhardy, Frank C., and David G. Rice

Sebastian, Lynne, and William D. Lipe (editors)

Society of American Archaeology

Washington State Department of Archaeology and Historic Preservation
The Granite Point site is an archaeologically important prehistoric local that was situated along the Lower Snake River. Excavation of Granite Point, led by Washington State University during the summers of 1967 and 1968 uncovered the site’s 10,000 year record of cultural change making it an influential component in building the Lower Snake River region’s culture history. At the conclusion of field work, the site was interpreted and reported in a dissertation by Frank C. Leonhardy, former Washington State University graduate student and faculty member, in 1968. In his dissertation Leonhardy notes that the purpose of the study is to identify and record separate distinct cultural states at a site typical of the Lower Snake River region. With this research focus, emphasis was placed on recording and analysis of sediment stratigraphy and artifact assemblages. After Leonhardy’s initial analysis of the site Granite Point made small contributions to the studies of a few Washington State University graduate students during the 1970s. Since that time, Granite Point has faded into the shadows remaining unstudied for decades.

In 2005 the Washington State University Museum of Anthropology curated Granite Point’s archaeological collection, enabling the site to be fully studied by any interested archaeological profession. Though curation efforts ensure preservation and access of archaeological collections, they do not necessarily increase awareness of a site or encourage its continued study. My Granite Point Project aimed to fill in where prior efforts had left off and bring the archaeological site to the archaeological professional community and interested general public.

The initial steps of the project began with the collection and digitization of Granite Point’s excavation reports, records and photographs. This task proved daunting as the limited dissemination of some of the literature made reports difficult to access and kept their existence hidden. Without a centralized repository for these types of what is called “grey literature”, I cannot be sure that the collection of literature I was able to collect is exhaustive and it is possible that a key piece of literature is missing. With the literature that was collected the data was synthesized to create a comprehensive and cohesive summation of Granite Point’s research, findings, and interpretations. Working with the records from old archaeological collections as an undergraduate was an invaluable opportunity as that provided experience interpreting archaeological data and raised my awareness of how important taking accurate and detailed excavation records is to facilitating future research. Through this work I discovered that researchers have barely tapped into Granite Point’s true potential and that there are many questions about the site’s occupational history and use left remain unanswered. The forty years since the site’s excavation have also brought about technological changes that could provide new ways to study this site, potentially furthering the contributions it had previously made to the regional culture history typology, proposed by Leonhardy and David G. Rice in 1970, that remains in use today.

In order to spread the word and increase awareness about Granite Point, I built a website (www.wsugranitepoint.com) to present the synthesized data, highlight potential areas of study, and provide digital access to the Museum’s archaeological collections database which allows researchers to view and search Granite Point’s collection inventory. Ensuring preservation of archaeological collections for future researchers is our ethical duty as archaeologists, but we also have a responsibility to share our cultural findings to the general public. A website balanced to provide enough technical details to be relevant for researchers, yet that is still able to be understood by the novice public helps to fulfill our ethical obligation to both audiences. The confirm that the
information presented on the website was relevant to both types of viewers, three archaeological professionals were asked to review the website in terms of its value to a potential researcher and anthropology students were asked to review the website as representatives of the interested public. Overall the feedback that was received was positive. Archaeological professionals voiced their support of the project and digitization efforts and provided some suggestions on additional areas where data could be briefly expanded upon, removed, or condensed. The anthropology students gave positive note to the website layout and figures, tables, and photographs that were used to visually supplement some technical details. The novice viewers also noted a preference for the excavation photographs which were able to bring archaeological excavation to life for those who have not been involved in an archaeological excavation.

Thanks to support from the Undergraduate Scholar Grant, my project culminated with a paper presentation at the Northwest Anthropological Conference that was held in Portland March 28th-March 30th. My project has an opportunity to tie into both state and national initiatives to create digital repositories for archaeological data, with the added benefit of presenting the data in a format that can be understood by the general public. Presenting my paper at this regional conference provided an opportunity for me to share an overview of my project with professors at other institutions that may inspire similar undergraduate projects at their own institution, and to impressed the importance of increasing accessibility and awareness of old collections and our ethical responsibility as their stewards to the anthropological community. Unfortunately, the dates of this conference conflicted with the undergraduate research showcase event so I was unable to share my project work with my Washington State University peers.

The archaeological record is a non-renewable resource and archaeologists are charged with its protection, yet decades of archaeological collections remain in a stagnant state either inaccessible or forgotten. Projects, such as mine, will not only help raise awareness and access to curated collections, but also instill the importance of collections care and the research value of old collections into the future generations of archaeologists.
Granite Point Locality 1 (4S1W47) is a prehistoric site that was situated along the Lower Snake River. The planned erosion of the (Snake River terraces) archaeological sites located along the river’s edge led the Army Corps of Engineers to contract salvage excavations at Granite Point and several other endangered archaeological sites. The excavation of Granite Point was conducted by Washington State University and the University of Idaho under the direction of Dr. Frank C. Leonhardt. The excavation uncovered the site’s long history of occupation and revealed a record of 10,000 years of cultural change that marked Granite Point as an important component in building a cultural chronology of the Lower Snake River Region. The excavation of Granite Point has the potential to further its contributions to understandings of prehistoric life in the Lower Snake River Region.

The current archaeological collection is held by Washington State University and is available to interested researchers.

Frank C. Leonhardt’s Analysis

The following archaeological data presented was derived from Frank C. Leonhardt’s 1979 M.S. dissertation entitled “Artifact Assemblages and Archaeological Units at Granite Point Locality 1 (4S1W47) Southeastern Washington.” In his dissertation, Leonhardt states that his primary purpose of study at Granite Point was to “document the existence of separate and discrete archaeological units at a site typical of the Lower Snake River Region of the Southern Plateau Archaeological Area (in Washington State),” with his thesis lying on the long-developmental cultural sequence at Granite Point. He identified a cultural sequence composed of several stationary sites and that each site is represented by a distinct configuration of artifacts. While others of the time focused solely on specific artifact types or diagnostic artifacts, Leonhardt approached his thesis through the study of artifact assemblages. He believed that studying the assemblage as a single entity provided a more accurate representation of the cultural and that the unique combinations of artifact types within an assemblage has more diagnostic abilities than a single artifact type. Through the analysis and classification Leonhardt believed it would be possible to identify the presence of stationary sites, as described as individual “components,” that were reflections of the cultural state at a specific point in time along the occupational chronology of Granite Point. Through distinguishing these components and analyzing their relationship to each other, Leonhardt constructed and proposed a cultural sequence for Granite Point.

Note: The information presented on this website, with the exception of the ongoing Research & Research Contribution, is limited to data presented in Leonhardt’s 1979 dissertation. The website should be considered a reflection of Leonhardt’s study of Granite Point and not as a substitute for complete understanding of the culture that inhabited Granite Point through its occupational history.
Excavation 1967–1968

Excavation of Granite Point Locality 1 took place during the summer of 1967 under the direction of Richard Doughtery and field direction of Frederick Sarupke, and continued the summer of 1968 under the field direction of Frank C. Laughery. The site was excavated in three areas: Area A and B were designated in locations where sufficient cultural deposits were found exiting from the bank, while the third location, Area C, was a culture-bearing area discovered during a geologic study that had previously taken place at Granite Point. Tool pits on the Island side of the river that were adjacent to the site contained no cultural deposits, so all excavation activities were done on the small area between the north shore of the Snake River and the railroad. At each Area separate horizontal grids were laid out, but all vertical measurements were taken from a common datum point.

Area A

Area A was described as a "small, generally triangular projection formed between the river bank and the bank of a short stream" (Laughery 1973:3). A horizontal grid of 11 two-meter-square units was laid over the site. All 11 units were excavated. Nine units were excavated down to what was designated Stratum 5, approximately 2 1/2 meters below surface, while two units (527–547/10–20) were excavated down an additional two meters.

Features identified in Area A primarily consist of living surfaces identified by concentrations of fire-cracked rock and the configurations of shell, rock, and other occasional debris. Most features were located in Stratum 5 and Stratum 6 and many of the artifacts uncovered in Area A were found in association with occupational features. Large, flat leporine rocks associated with shell lenses were uncovered, and in some cases, shells were positioned directly on the rocks. Two stones found in association with mussel shells were identified as having minimal abrasions on them, leading to the inference that these stones may have been used in shellfish preparation. Additional elongated cobbles with battered ends were found that may have also been used during mussel preparation.

Occupational Features, Area A (Laughery 1970:22)

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Stratum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1a</td>
<td>5-6</td>
<td>Living surface marked by fire-cracked rock and bone fragments</td>
</tr>
<tr>
<td>1.2 6-7</td>
<td>5</td>
<td>Living surface marked by fire-cracked rock, shell, bone fragments, and artifacts</td>
</tr>
<tr>
<td>7.2 5-6</td>
<td>5</td>
<td>Rock-pit fire-pit</td>
</tr>
<tr>
<td>9.1 6-7</td>
<td>5</td>
<td>Rectangular, incomplete clay pitlet</td>
</tr>
<tr>
<td>11.8</td>
<td>5-6</td>
<td>Living surface marked by fire-cracked rock and bone fragments</td>
</tr>
<tr>
<td>12.4</td>
<td>5</td>
<td>Two over standpipes and bone fragments</td>
</tr>
</tbody>
</table>
Feature A, located in Stratum 2, contained the disarticulated, incomplete skeleton of a dog which wore the only canine remains recovered at the site.

Some of the river mussel shells at Area A were noted to have a small, ragged hole through the ventral joint just posterior to the hinge. The number of shells that had these holes, as well as the ragged and irregular appearance of the holes lead Leonardy to suggest that they were made by humans, but no further analysis was conducted.

Area B

Area B was smaller than Area A and cut into the bank at a steeper angle, requiring excavations to work from the face of the cut bank. Like Area A, Area B was excavated in two-meter squares. Squares 52–5 52–12 (W12–18) comprised the primary excavations in the bank, revealing Stratum 1 through Stratum 4. At the base of the bank units 52–14 (W12–18) were excavated, with excavation activity occurring primarily in Stratum 4.

Excavation of Area B

Materials recovered from living surfaces in Area B were mainly composed of stone, shell and fossil bone fragments. These features tended to be problematic in obedience with some layers directly on top of one another making their vertical distinctions difficult.

Occupational Features, Area B (Leonardi 1979:29)

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Stratum</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Living surface marked by fine-cracked rock, bone fragments, grinding stone, chopper scraper, and other associated artifacts</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Living surface marked by fine-cracked rock and bone fragments</td>
</tr>
<tr>
<td>11, 15</td>
<td>1b/2</td>
<td>Living surface at Stratum 1b (Stratum 2 boundary) marked by fine-cracked rock</td>
</tr>
</tbody>
</table>
Feature 26 contained the only human remains recovered at the site. A partially articulated skeleton of an adult (sex unknown) that was believed not to have been buried.

Area C

Area C was positioned on a large sand dune at the upstream end of the site where cultural deposits were discovered during geologic investigations of exposed volcanic ash. A small test pit provided findings considered significant enough to warrant a large-scale excavation along the bank. Unfortunately, it was found that there were three meters of sterile sediments above the culture-bearing layers and time limitations did not permit full excavation of Area C.

In 1957 a main trench, containing four two-meter squares, was excavated below the layer of volcanic ash to a layer of gravel at approximately 46.00 meters above the confluence (currently unknown).

In 1958, the excavation of Area C was conducted in two parts: the removal of the three meter overburden with a backhoe for Trench 1 and use of the backhoe to clear the area for the excavation of Trench 2. A control block was left for hand excavation to provide more complete stratigraphic sequence.

Trench 1, excavation of the sand dune, uncovered cultural deposits between the top of the volcanic ash down to fluvial deposits. Squares N22-PA W16-18 were selected for bulk sampling and their sediments were wet-screened to recover micro-vertebrate remains. Trench 2 partly overlapped with the main trench from 1957 and encountered complications in its excavation, with the documentation of cultural materials associated with the gravel layer proving problematic. It was both difficult to determine if these were primary or secondary deposits and to firmly establish the gravel’s stratigraphic relationship to the higher culture-bearing strata. As a result of these obstacles it was decided to approach the excavation of Trench 2 differently and excavate two two-meter trenches that were one meter apart. Excavation within these two smaller trenches was then completed by working the vertical face of the gravel mining horizontally from one end of the trench to the other.
There were very few identified living areas, and those identified were not well defined with limited findings of diagnostic fine-cracked rock. In the absence of fine-cracked rock, interpretation of living spaces was based on concentrations of flaked bone fragments and chipped stone debris. Hearth areas were identified by small areas of burned earth and associated flecks of charcoal. Excavations of Area B uncovered Feature 67-2, which was initially thought to be prized grass. However, later analysis determined this was discarded, rather than processed, grass. In an attempt to recover the plant remains for later study, they were stabilized and removed with a sterile resin. Unfortunately, this method proved to be an ineffective recovery technique as laboratory attempts to separate the plant remains from the resin were only partially successful.

<table>
<thead>
<tr>
<th>Feature No.</th>
<th>Feature Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67-1</td>
<td>100</td>
<td>Large cobbles, rock fragments, and bone fragments</td>
</tr>
<tr>
<td>67-2</td>
<td>100</td>
<td>Burnt and carbonized, rock fragments</td>
</tr>
<tr>
<td>67-3</td>
<td>100</td>
<td>Burnt earth, flecks of charred, ash, and bone fragments</td>
</tr>
<tr>
<td>67-4</td>
<td>100</td>
<td>Burnt earth, flecks of charred, ash, and bone fragments</td>
</tr>
<tr>
<td>67-5</td>
<td>100</td>
<td>Concentration of chipped debris and cobbles</td>
</tr>
<tr>
<td>67-6</td>
<td>100</td>
<td>Concentration of bone fragments</td>
</tr>
<tr>
<td>67-7</td>
<td>100</td>
<td>Concentration of cobbles, rock fragments, and bone fragments</td>
</tr>
<tr>
<td>67-8</td>
<td>100</td>
<td>Concentration of bone fragments</td>
</tr>
</tbody>
</table>

Geologic History and Stratigraphic Sequence

Geologic History and Natural Environment

The region surrounding Granite Point was formed through deep basaltic lava flows which were later overlain with loess. The Granite Point locality is described as receiving a "prominent granitic lumpy type of pre-Miocene age...and...atop the Snake River below the Wallowa Canyon" (Hedrick 1973). It is located approximately two miles downstream from the historic town of Wallowa. Native vegetation was a semi-arid sagebrush habitat with various grasses. The rain shadow effect of the Cascade mountain range has created a modern climate with comparatively mild winters and cool summers. The region receives an average of 20 inches precipitation annually, primarily in the form of snow during the winter months, with less annual temperature variation that may be expected for the region.

Geologic Sequence

Sediment stratigraphy provides a chronology of natural and human activity at the site. On its own, sediment stratigraphy is only able to relatively date the chronology of events in terms of itself. However, radiocarbon dating of remains collected from sediment layers and the identification of specific events, like volcanic eruptions, that occurred at a known time can further the stratigraphic chronology into a temporal sequence. Lee (1973) noted that the purpose of the salvage excavation at Granite Point was to "document the existence of separate and discrete archaeological units in a site typical of the Lower Snake River Region of the Southern Plateau." In the case of Granite Point's excavation, this emphasis on establishing a temporal and cultural sequence at individual sites that could then be fed into the creation of regional sequences was a common research trend among American archaeologists.

In order to create a comprehensive timeline, the 1967 excavation supplemented the sediment stratigraphy recorded from the excavation units with the stratigraphic records of 25 additional test pits that were excavated specifically for their stratigraphy. At conclusion of the field season, the field data collected at these separate exposures were used to construct a tentative geological sequence. Unfortunately, this tentative sequence was unable to fully account for some stratigraphic unconformities and correlations, requiring additional work during the 1968 excavation to complete Granite Point's geological chronology. The 1968 excavation worked to rectify the geological sequence proposed in 1967 through the compilation of 7 key stratigraphic units: Area A, Area B, Area C, Stratigraphic Section 1, Stratigraphic Section 2, Stratigraphic Section 3, Stratigraphic Section 7. These stratigraphic correlations were made based on the sediment's physical characteristics, relative topography and stratigraphic position and elevation, relationship to the volcanic ash horizon marker, and relationship to the soil stratigraphy horizon markers. Efforts in the test were followed by additional laboratory sediment analysis that enabled the formation of a generalized reconstruction of the geological sequence at Granite Point.

<table>
<thead>
<tr>
<th>Stratigraphic Unit</th>
<th>Basic Texture</th>
<th>Max. Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picture Collection</td>
<td>loose, compact, dry, brown to dark brown</td>
<td>8.5 cm</td>
</tr>
<tr>
<td>Post-Ash Ablaze Sand</td>
<td>loose to medium, sandy to clay, dark brown to grey</td>
<td>3.5 cm</td>
</tr>
<tr>
<td>Water Course</td>
<td>loose to sandy, light brown to grey</td>
<td>10 cm</td>
</tr>
<tr>
<td>Post-Ash Ablaze Sand</td>
<td>loose to medium, sandy to clay, dark brown</td>
<td>3.5 cm</td>
</tr>
<tr>
<td>Charcoal Bed</td>
<td>loose to medium, sandy to clay, dark brown</td>
<td>10 cm</td>
</tr>
<tr>
<td>Carved Bone and Mortar Fans</td>
<td>loose to medium, sandy to clay, brown to grey</td>
<td>10 cm</td>
</tr>
<tr>
<td>Doubled Gravel</td>
<td>loose to medium, sandy to clay, brown to grey</td>
<td>10 cm</td>
</tr>
</tbody>
</table>

![Correlation of Stratigraphic Units in Seven Key Stratigraphic Sections](Leebrunner 1973, Fig. 27)

Radiocarbon Dating

Six samples were submitted for radiocarbon dating. Adequate samples of charcoal were not available in the earlier deposits and shell was used in its absence. Unfortunately, all of the shell dates are ambiguous or contradictory.
<table>
<thead>
<tr>
<th>Area</th>
<th>Station</th>
<th>Feature</th>
<th>C-14 Dates</th>
<th>Sample Type</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Station 1</td>
<td>Feature 12</td>
<td>105 ± 115 B.P.</td>
<td>Charcoal</td>
<td>NOS-608</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,630 ± 170 B.P.</td>
<td>Charcoal</td>
<td>NOS-609</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,875 ± 140 B.P.</td>
<td>Charcoal</td>
<td>NOS-610</td>
</tr>
<tr>
<td>B</td>
<td>Station 2</td>
<td>Feature 22</td>
<td>1,745 ± 220 B.P.</td>
<td>Charcoal</td>
<td>NOS-611</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,300 ± 190 B.P.</td>
<td>Charcoal</td>
<td>NOS-612</td>
</tr>
<tr>
<td>C</td>
<td>Station 3</td>
<td>Feature 32</td>
<td>4,000 ± 100 B.P.</td>
<td>Charcoal</td>
<td>NOS-613</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6,000 ± 200 B.P.</td>
<td>Charcoal</td>
<td>NOS-614</td>
</tr>
</tbody>
</table>

Radiocarbon Dates from 4581741

1. NOS-608 was submitted as a check on NOS-609, with which it conflicts. NOS-608 is considered the more reasonable date.
2. **Data considered to be for two cards and conflicts with the geophysical sequence of the age of the gravel. This data was discarded.**

Appendix Continued

© 2011 Washington State University | Accessibility | Policies | Copyright
Granite Point (4SW141)

Stratigraphic Units

Area A (Leekhardt 1979, Table 6)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Description</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Marshfill/Alluvial sands</td>
<td>Association A1</td>
</tr>
<tr>
<td>2</td>
<td>Fan-alluvial sediments</td>
<td>Association A1</td>
</tr>
<tr>
<td>3</td>
<td>Fan-alluvial sediments</td>
<td>Association A1</td>
</tr>
</tbody>
</table>
| 4 | Paludal deposition, flood or slough bottom | Pseudogle reunion
| 5 | Fan-alluvial sediments | Association A2 |
| 6 | Subaqueous deposition, possibly mud fan from channel base | Association A2 |
| 7 | Late Pleistocene | Association A2 |
| 8 | Late Pleistocene | Association A2 |
| 9 | Late Pleistocene | Association A2 |
| 10 | Late Pleistocene | Association A2 |

Unconformity

Area B (Leekhardt 1979, Table 7)

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Description</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fan-alluvial sediments</td>
<td>Association B1</td>
</tr>
<tr>
<td>2</td>
<td>Fan-alluvial sediments</td>
<td>Association B1</td>
</tr>
<tr>
<td>3</td>
<td>Fan-alluvial sediments</td>
<td>Association B1</td>
</tr>
</tbody>
</table>
| 4 | Paludal deposition, flood or slough bottom | Pseudogle reunion
| 5 | Late Pleistocene | Association B2 |
| 6 | Late Pleistocene | Association B2 |
| 7 | Late Pleistocene | Association B2 |

Unconformity
Area C (Leonhardt 1970, Table 4)

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-12</td>
<td>Collo-ritudaceous clay and diatomaceous shales</td>
<td>UNCONFORMITY</td>
</tr>
<tr>
<td>14</td>
<td>Post-Ash Aurelian Sands</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Post-Ash Aurelian Sands</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Post-Ash Aurelian Sands</td>
<td>Aureliense C7b</td>
</tr>
</tbody>
</table>

1-11 Post-Less Flakes Bone
1-9 Volcanic Ash: Aurelian sand and volcanic ash sequence
1-8 Volcanic Ash: Layer of pumiceous ash
1-5a Post-Ash Aurelian Sands | Aureliense C5 |
1-5b Fossil Debris
1 Early Feeder: flood plain ch
8 Post-Ash Aurelian Sands | Aureliense C6b |
9 Early Feeder: sterile floodplain deposits
2 Early Residues: sterile floodplain deposits
5 Late Kame
3 Carbonaceous: Culture-bearing sterile gravel
Aureliense C4

Stratigraphy of the Control Block, Area C, 1968 Excavation (Leonhardt 1970, Fig. 10)

Stratigraphic Section 1 (Leonhardt 1970, Table 5)

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>2</td>
<td>Cultural Deposit</td>
</tr>
<tr>
<td>4</td>
<td>Late Flakesbone</td>
</tr>
<tr>
<td>6</td>
<td>Early Feederbone</td>
</tr>
</tbody>
</table>

Stratigraphic Section 2 (Leonhardt 1970, Table 5b)

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>2</td>
<td>Cultural Deposit</td>
</tr>
<tr>
<td>3</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>4</td>
<td>Pumice Lenses</td>
</tr>
<tr>
<td>5</td>
<td>Isotopic Ash</td>
</tr>
<tr>
<td>6</td>
<td>Cultural Deposit</td>
</tr>
<tr>
<td>7</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>8</td>
<td>UNCONFORMITY</td>
</tr>
<tr>
<td>9</td>
<td>Early Feederbone</td>
</tr>
</tbody>
</table>

Stratigraphic Section 3 (Leonhardt 1970, Table 5c)

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>2</td>
<td>Pumice Lenses</td>
</tr>
<tr>
<td>4</td>
<td>Isotopic Ash</td>
</tr>
<tr>
<td>5</td>
<td>Cultural Deposit</td>
</tr>
<tr>
<td>6</td>
<td>Early Feederbone</td>
</tr>
</tbody>
</table>

Stratigraphic Section 7 (Leonhardt 1970, Table 5d)

<table>
<thead>
<tr>
<th>Station</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Post-Ash Aurelian Sands</td>
</tr>
<tr>
<td>2</td>
<td>Pumice Lenses</td>
</tr>
<tr>
<td>3</td>
<td>Isotopic Ash</td>
</tr>
<tr>
<td>4</td>
<td>Cultural Deposit</td>
</tr>
</tbody>
</table>

For more detailed sediment descriptions please refer to Leonhardt (1970).
Determining Cultural Chronology

Assemblages, Archaeological Units, Stationary States & Components

Leonardy (1977) proposed the presence of distinct stationary states within Granite Point's cultural sequence that were comprised of unique configurations of artifacts. To test this thesis, Leonardy approached his study of Granite Point through analysis of artifacts and artifact assemblage configurations, and the construction of components.

Methodology

Artifacts found residing within the same stratigraphic unit, with the absence of sedentary disturbance, are inferred to have been contemporaneous deposited. Collectively, the stratigraphically bound artifacts can be used to define a range of material culture at a specific time. Over the course of the 1967 and 1968 excavations, 15 of these stratigraphically defined artifact assemblages were collected. The artifacts within the assemblages were later analyzed as a collective set and the artifacts were assigned to descriptive categories (typologies). Through the creation of a single artifact typology for Granite Point was ideal. Leonardy noted that the 10,000-year span of time made it difficult to create a single, complete artifact typology. Leonardy also described the 1968 classification method as “crude”, but asserted that the “created categories were considered indicative of differences and similarities between assemblages and supported impressions of discontinuity based on projectile point types.” Once categories were assigned, assemblages that were stratigraphically correlated were combined and the combined set of artifacts were reanalyzed. This method was conducted as this set of artifacts encompassed an entire range of cultural material and was not concerned with ensuring typological continuity between assemblages. These subsequent assemblages and artifact typologies became the basic units for the formation of site-wide cultural components.

![Diagram of assemblages]

The similar stratigraphic sequences of Area A and B led to the correlation of their cultural material assemblages. For additional information on the stratigraphic location of assemblages, please refer to [source].

To construct cultural components Leonardy examined the distribution of artifact category commonnesses between assemblages. This analysis involved computing the size of the commonality between assemblages to the size of the proportion of uniqueness. If either assemblages had a larger proportion of commonality with another assemblage than the proportion of their uniqueness the two assemblages were combined into a single component. The sample size of four of the assemblages was considered to be too small for this analysis and they were designated “unsuitable assemblages.” The commonality between the resulting components was then tested to further assure their representation of distinct stationary states.[8] Through this analysis five separate stationary states in the cultural chronology at Granite Point were identified and numbered in chronological order (listed below). In two situations, Components 3 and Component 5, it was observed that the components’ collection of artifacts did not adequately represent the complete range of material culture of the cultural state and they were classified as “provisional” components.

For this analytic process, artifact categories were not weighted by comparative value and it was assumed that the classification of artifacts did not bias the comparison. Some artifact categories, such as artifacts designated “undetermined” and “cut bone,” were excluded from the comparative analysis.

Component Categories

Leonardy’s designated artifact categories for each component have been collapsed into the below:

For additional information on the stratigraphic location of assemblages, please refer to [source].
None of the text is readable due to the image being distorted or obscured. Therefore, I am unable to provide a natural text representation of the document.
Component 4

<table>
<thead>
<tr>
<th>Group</th>
<th>Artifact Count</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Points</td>
<td>5, 6, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26</td>
<td>Eretrurinae (site 35), Smaltus (site 11), Alces (site 16)</td>
</tr>
<tr>
<td>Core Shells</td>
<td>2</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Implements</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Ground Stone</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Palas</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Unidentifiable Chipped Stone</td>
<td>1 4 5 6 7 8 9</td>
<td>Eretrurinae (site 35), Smaltus (site 11), Alces (site 16)</td>
</tr>
</tbody>
</table>

Associated Faunal Remains: deer, elk, antelope, coyote, rabbit, and numerous remains of fish, shellfish, and rodents. Whether the fish remains include the large salmonids was not established.

Component 5 (Provisional)

<table>
<thead>
<tr>
<th>Group</th>
<th>Artifact Count</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Points</td>
<td>5, 6, 9, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26</td>
<td>Eretrurinae (site 35), Smaltus (site 11), Alces (site 16)</td>
</tr>
<tr>
<td>Core Shells</td>
<td>2</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Implements</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Ground Stone</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Palas</td>
<td>1</td>
<td>Eretrurinae (site 35)</td>
</tr>
<tr>
<td>Unidentifiable Chipped Stone</td>
<td>1 4 5 6 7 8 9</td>
<td>Eretrurinae (site 35), Smaltus (site 11), Alces (site 16)</td>
</tr>
</tbody>
</table>

Associated Faunal Remains: deer, elk, lions (Alces found in addition to smaller mammals, river mammals, and unidentifiable fish.

Unassigned Assemblages

<table>
<thead>
<tr>
<th>Group</th>
<th>Artifact Count</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projectile Points</td>
<td>3 4 5 6 12</td>
<td></td>
</tr>
<tr>
<td>Core Shells</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Implements</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ground Stone</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Palas</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Unidentifiable Chipped Stone</td>
<td>1 4 5 6 7 8 9</td>
<td></td>
</tr>
</tbody>
</table>

More about Assemblages: See the Assemblages section for more details on the artifacts and their proveniences.
Interpretations and Conclusions

Component Comparisons

In order to confirm their status as distinct stationary sites, the three Components were subjected to comparative analysis. As the two Provisional Components were not believed to represent the entire technological range of their respective sites they were not included in this comparison. Chi-square analysis was also conducted to assure that the distribution of artifact categories was nonrandom and not a result of chance.

Component 1 & Component 2: Analysis of Component 1 and Component 2 revealed 15 artifact category comparisons. Comparisons between the two components yielded technologically simple artifacts as well as some “diagnostic” artifacts such as large lanceolate knives, two forms of lanceolate projectile points and domesticated scrapers. From Component 1 to Component 2, 32 artifact categories were lost and 26 categories were added. Of these, the most common changes were: only two functional classes from Component 1, butts and fluted spars, were absent in Component 2, Leonardy notes that these categories have been found in assemblages at other archeological sites in the region, contemporaneous to Component 2, suggesting that the disappearance of these functional types may be a result of the sample size rather than an actual loss. Notable changes between the components are the stylistic loss of Component 3’s crescentic projectile points and the addition of the edge-ground cobbles and grinding stones categories.

Component 2 & Component 4: During the transition from Component 2 to Component 4, 28 artifact categories were lost, 11 categories were retained and 29 categories were added. However, the identification of a stationary site, Provisional Component 1, evoking between the two components makes it hard to say at what time those categories were lost or added. There is a common stylistic change from the uniformity and highly skilled flake and projectile points of Component 2 to the fibers and projectile points of Component 4 that are less uniform in design and required a lower degree of craftsmanship to create. These significant stylistic differences suggest that these populations varied in their understanding of what tools should look like and how they should be produced.

Component 1 & Component 4: Component 1 and Component 4 had only 8 artifact categories in common confirming that they represented distinct populations.

Both Component 1 and Component 2 share technologically simple functional categories of artifacts with Component 4 such as cobble spalls, utilized flakes, pounding stones and scraper-like cobble implements. This analysis indicates that Component 1 and Component 2, with 15 categories in common, are more closely related to each other than either component is with Component 4. The creation of Component 1’s functional classes and their shared “diagnostic” artifacts suggest that Component 2 may have a direct evolutionary relationship with Component 1.

Geologic and Cultural Chronology

In his 1979 dissertation, Leonardy states that understanding the ways in which components relates to one another can tell of cultural relationships over time and space and that “the artifacts and assemblages of artifacts are culturally neutral. Join the component is a model which implies cultural meaning.” (50)

Through the construction of distinct components and an understanding of the geological sequence, Leonardy was able to generate the below cultural sequence at Granite Point.

<table>
<thead>
<tr>
<th>Component</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component 1</td>
<td>8000 BC - 6000 BC</td>
</tr>
<tr>
<td>Component 2</td>
<td>6000 BC - 4000 BC</td>
</tr>
<tr>
<td>Component 3</td>
<td>4000 BC - 2000 BC</td>
</tr>
<tr>
<td>Component 4</td>
<td>2000 BC - 0 BC</td>
</tr>
</tbody>
</table>

Review of Methodology

Leonardy concludes that the method used for this analysis was not only successful, but by considering both the comparability and differences between assemblages at a constant level of abstraction, it is a relatively simple way to evaluate both typpe and degree of technological changes over time. He asserts that the method works well with small sample sizes, has the potential to establish chronological events larger than components, and should be employed for the study of other archeological sites.
Ongoing Research & Research Contributions

Lower Snake River Region Culture History

In 1959, Richard Daugherty proposed the first chronological model for the cultural prehistory of the Lower Snake River Region. Over the following 50 years, accumulations of archaeological data allowed for a better understanding of the region's cultural history and led Frank C. Leonhardt and David G. Rice to publish the revised cultural chronology, titled "Preceded Culture Typology for the Lower Snake River Region, Southeastern Washington," that remains in use today. Examining architectural configurations and site-specific components, Leonhardt and Rice assembled cultural phases spanning the entire Lower Snake River Region. These cultural phases delineated the region's cultural continuum into six distinct segments of culture time: Windust Phase (10,000-7,000 B.C.), Cascade Phase (6,000-3,000 B.C.), Tucannon Phase (<1,500-500 B.C.), Harrier Phase (<1,500-1,300 A.D.), Papagoa Phase (<1,300-170 A.D.), and Namuca Phase dated to c. 5000-1200 A.D., and Namuca Phase dated to early historic times. Generalized information regarding salient sites, technologies, and economic associations associated with each cultural phase is summarized below:

Six Proposed Cultural Phases of the Lower Snake River Region

<table>
<thead>
<tr>
<th>Age</th>
<th>Culture Phase</th>
<th>Sites</th>
<th>Technology</th>
<th>Economics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200 A.D.</td>
<td>Papagoa Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1500 B.C.</td>
<td>Tucannon Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2000 B.C.</td>
<td>Windust Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6000 B.C.</td>
<td>Kanabo Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7000 B.C.</td>
<td>Tucannon Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8000 B.C.</td>
<td>Kanabo Phase</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key Terms

- **Lower Snake River Region Culture History**
- **Preceded Culture Typology**
- **Archaeological Sites**
- **Technology**
- **Economics**

References

Archaeological Collection

Archaeological Sites

Obsidian Sourcing

In 1998 nine obsidian artifacts from Granite Point were submitted to the Northwest Research Obsidian Studies Laboratory for energy dispersion x-ray fluorescence trace element procurement analysis, commonly referred to as obsidian sourcing. While volcanic glasses, such as obsidian, are "homogeneous" in their trace element composition, the quantities of these trace elements vary enough from source to source that it is often possible to match the chemical makeup of an obsidian artifact to that of a specific source. The Northwest Research Obsidian Studies Laboratory, is able to conduct nondestructive analysis through the use of a SpectrAA 5000 energy dispersive x-ray fluorescence spectrometer, and linear regressions. Concentration values of zinc, lead, thallium, rubidium, strontium, yttrium, zirconium, niobium, titanium, vanadium, and iron are calculated. The trace element values of the samples are then compared to values of known obsidian sources. Obsidian is correlated to a source if the diagnostic elements fall within two standard deviations of the known chemical variables recorded at the source. The nine obsidian samples from Granite Point were correlated with two obsidian sources: Timber Butte, Malheur and Indian Creek, Oregon. Five samples were correlated with Timber Butte, an obsidian source located approximately 30 miles north of Boise that is well-documented in archaeological sites located in western Idaho and northeastern Oregon. Three samples were correlated with Indian Creek, one of three chemical source types associated with the Crater Lake-Klamath complex located in northeast Oregon that is well-documented in archaeological sites throughout northeast and northwest Oregon. One sample was identified as techrite, a basaltic volcanic glass, of unknown origin.

Areas for Future Study

Granite Point research has primarily centered on building and understanding the local and regional cultural sequence, with concentrated study on settlement stratigraphy and artifact assemblages. This narrow scope has left many aspects of Granite Point’s history unexplored.

Some potential areas of study include:
- Population demographics
- Environmental reconstructions (through faunal, pollen and shrub analysis)
- Resource utilisation, diet and procurement strategies
- Defining site type and site changes over time
- Technological processing techniques

If you are interested in researching Granite Point, please review the Archaeological Collections Database for a comprehensive catalog of all content available for study.

Additional Sources Involving Granite Point Research

Besse, Judith Ann

Hill, David G.

Schroeder, Gerald F.

Guth, Jerry R.

Hammett, H. W., and H. W., and J. W.
1976. Late Quaternary Stratigraphy and Archaeological Chronology in the Lower Granite Richmond, Lower Snake River, Washington, M.D. Dissertation, Department of Anthropology, Washington State University, Pullman.

Hammer, David A.
Granite Point Photo Archive

Area A
Area B
Area C

Excavation Photos
Artifact Photos

Excavation Maps and Figures

RESEARCH
- Lower Cascade River
- Prehistoric Cultures
- Functional Analysis
- Ancient for Future Study

PHOTOGRAPHS
- Area A Photos
- Area B Photos
- Area C Photos
- Excavation Photos
- Artifact Photos
- Excavation Maps & Figures

REFERENCES
- [Reference List]

Archaeological Collections Database

Museum of Anthropology, P.O. Box 649890, Washington State University, Pullman, WA 99164-9890, (509) 335-4461. Contact Dr.
Area A Photo Archive

1967 Excavation
Area B Photo Archive

1967 Excavation
Area C Photo Archive

1967 Excavation

[Images of excavation sites]
Excavation Photo Archive

1967 Excavation

References
- Other C. Cannaday Ex.
Artifact Photo Archive: Component 1

Excavation Photo Archive | Artifact Photo Home | Next

Projectile Points | Community (1978), Fig. 30

Artifacts:

- A: (1-3) unifacial lanceolate projectile points
- B: (1-5) bifacial lanceolate projectile points
- C: (1-3) lanceolate projectile points with indented bases
- D: (1-4) contracting stem projectile points
- E: (1-5) unifacial lanceolate projectile points
- F: (1-7) expanding stem projectile points
- G: (1-8) contracting stem projectile point
- H: (1-9) straight stemmed projectile point
- I: (1-9) weakly Shouldered projectile point
- J: (1-10) asymmetrical contracting stem projectile point
- K: (1-10) projectile point fragment
- L: (1-12) projectile point fragment
Excavations Maps and Figures

Locality Map (Lawrence 1975, Fig. 1)

Vertical Aerial of the Granite Point Locality Showing Major Geomorphic Features and the Position of Excavation Areas and Key Stratigraphic Sections (Lawrence 1975, Fig. 25)

Area A
Excavation Plan, Area A (LaMarche 1979, Fig. 2)

Stratigraphy of North Walls, Area A (LaMarche 1979, Fig. 5)

Stratigraphy of West Wall, Area A (LaMarche 1979, Fig. 6)

Area B

Excavation Plan, Area B (LaMarche 1979, Fig. 7)
Correlation of Area A & Area B

Area C

Excavation Plot, Area C 1968 Excavation (afterly 1979, Fig. 16)
References

Leonhardy, Frank C.

Leonhardy, Frank C.

Leonhardy, Frank C., and David G. Risse

Reid, Kenneth C.

Skinner, Craig E., and M. Kathleen Davis
Archaeological Collection Database

Granite Point (4SWT41) Database (MS Excel format)

Who Can Access the Collection?

Collections are available to qualified individuals for study. Qualified individuals are:

- individuals with specific written objectives that are appropriate to the character of the collection;
- members of any tribe of American Indian communities from whose traditional territory the collections were removed;
- professional archaeologists affiliated with a university, federal, state, or local agency, or a private CDM firm;
- graduate students under the supervision of a professional archaeologist.

How are the Collections accessed?

Use the coding information available to search the database and prepare a list of the items you want to examine.

Contact the Museum of Anthropology with your request list and the museum staff will retrieve the items you have selected.

The museum staff can grant each request without change if it is feasible. The museum staff encourages you to contact them with questions or on how to search the database before you compile your list, so that the list accurately reflects the criteria that best identifies the materials you need for your research. Repeatable requests that result from incomplete or erroneous database searches may require the Museum to change for staff time.

Collections can only be studied on the campus unless permission has been obtained from the Museum. This means that you should make arrangements with the Museum in advance to study materials here at Washington State University. The Museum can make space available to you. Bring your own camera, laptop computer, magnifying lens, etc. Many artifacts in curated collections have been photographed in digital format. Photographs and slides that have been digitized and can be made available to you at no charge.

Permit for destructive scientific analysis must be obtained from the responsible agency. Museum staff will give samples to scientific laboratories upon receipt of that permission.

What Information is Included in Archaeological Collection Databases?

In general, each database will contain the following fields, reading from left to right:

- artifact type
- catalog number
- accession number
- unit
- R or S
- oriented bearings
- A or E
- N or W
- oriented bearings
- beginning level
- ending level
- depth
- length
- width
- height
- note
- condition
- box number
- comments

Please refer to the downloadable coding document for descriptions of object group (OG), object type (OT), and raw materials (RM) codes.
Archaological Collection Database

Granite Point (45WT41) Database (MS Excel format)

Who Can Access the Collection?
Collections are available to qualified individuals for study. Qualified individuals are:

- Individuals with specific written objectives that are appropriate to the character of the collection.
- Members of any tribes of American Indian communities from whose traditional territory the collections were removed.
- Professional archaeologists affiliated with a university, federal, state, or local agency, or a private CRM firm.
- Graduate students under the supervision of a professional archaeologist.

How are the Collections accessed?
Use the online information available to search the database and prepare a list of the items you want to examine.

Contact the Museum of Anthropology with your query. The museum staff can spend six to eight hours helping you to contact with your request, so that the list accurately reflects the research. Requests that result in the museum donating material to you are at the discretion of the museum director.

Collections can only be studied on the Museum’s premises. This means that you should no longer store your equipment or materials in the collection. Permission for descriptive scientific analysis with samples to scientific laboratories.

What Information is Included in Archaeological Collection Databases?
In general, each database will contain the following fields, reading from left to right:

- Site number/entry number
- Object or catalog number
- Fossil or catalog number
- Unit W or S
- Unit E or W
- Area or bearing
- Beginning level
- Ending level
- Space
- Shape
- Space
- Weight
- Quantity
- Comments

Please refer to the downloadable coding document for descriptions of object group (OG), object type (OT), and raw materials (RM) codes.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Subsystem</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Code</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>4</td>
<td>Unit</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>6</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>7</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>8</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>9</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>10</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>11</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>12</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>13</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>14</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
<tr>
<td>15</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
<td>N5</td>
</tr>
</tbody>
</table>