

Planned research projects

- Phytophthora species on lavender in WA
- Screen lavender cultivars for susceptibility/resistance to PRCR
- Best Management Practices for lavender growers

Lavender root rot

- Fusarium
- Phytophthora
- Pythium
- Rhizoctonia

Occurs in wet soils. Overwatering aggravates the problem.

The disease triangle

Phytophthora – the plant destroyer

More than 100 species identified

P. infestans – responsible for the Irish potato famine in 1845

P. sojae - soybean stem and root rot

Several *Phytophthora* spp. cause disease on cacao

P. cinnamomi – causes damage to forest ecosystems worldwide

P. ramorum – causes Sudden OakDeath (SOD)

Phytophthora

Chlamydospores (*P. ramorum*)

Phytophthora is microscopic and species can be identified by spore stages and/or DNA sequencing

What time of year is *Phytophthora* active? Not all species are active at the same time

- Germination and infection wet season
- Symptom expression in dry season

Seasonal activity for *Phytophthora* species

Phytophthoras on lavender

Germination, infection

Symptoms of Phytophthora root disease will become obvious in the dry season when plants are under water stress.

Cool Season – cool, wet soil

• P. megasperma

Warm Season – greenhouse, warm soil

- P. cactorum
- P. capsici/palmivora
- P. cinnamomi
- P. citrophthora
- P. drechlseri
- P. nicotianae/parasitica
- P. tentaculata

"Root nibblers"

- Attack fine roots
- Opportunistic in flooded habitats
- Very common in water and soil

P. gonapodyides

P. chlamydospora

P. lacustris

Damage caused by *Phytophthora* spp.

Root disease Bleeding cankers

Shoot blight Foliar lesions

Where PRCR comes from

- New plants
- Existing infestation in field soil

Phytophthora	Major Host Families
P. nicotianae	Solanaceae
P. cactorum	Rosaceae, Liliaceae
P. megasperma	Rosaceae, Fabaceae
P. capsici	Solanaceae
P. drechsleri	Rosaceae, Myrtaceae, Pinaceae

Above ground symptoms often do not appear until most of the root system is destroyed.

Winter damage or *Phytophthora*?

Winter damage – top of plant

New shoots grow at base = healthy root system

You might have contaminated soil if

- In-ground plants are symptomatic in an area
- Batches of potted plants from a media pile are symptomatic
- There is standing water indicating a drainage problem
- The soil tests positive for *Phytophthora*

Testing plants for Phytophthora using Agdia test strips

- Direct testing of roots and stem tissue does not work for lavender
- Use baiting method

Testing for PRCR on lavender roots or soil

Pythium symptoms: water soaked lesions

Phytophthora symptoms: dry, brown lesions

Critical Control Points

Concept originally developed for food safety to prevent hazards rather than destroy contaminated foods at the end of the production cycle.

It has been adapted for ornamental nurseries in response to *P. ramorum* but will prevent outbreaks of any pathogen or pest.

Maintaining a clean operation prevents unwanted pests and diseases from entering the nursery or farm.

It is much easier to prevent than to eradicate.

Recommended cultural control for PRCR

- Prevention keep it out
- Sanitation
- Plant in well drained soil and avoid areas prone to standing water
- Do not incorporate large amounts of compost or mulch that will retain water around plants
- Excess N fertilizer will produce succulent growth that is susceptible to *Phytophthora* and other diseases

Sources of inoculum

- People and their vehicles
- Plants
- Dirty pots, tools, and equipment
- Soil
- Water
- Plant debris and cull piles
- Weeds, algae, and associated insects (shoreflies and fungus gnats)

People and their footwear

The Sequim Lavender Festival attracts many visitors that move from farm to farm.

Potted plants in nursery or retail area

Gravel layer of 4-6" will provide drainage and separate plants from soil surface

Potting mix

Re-using media is risky

Composting may not kill everything

Loads of media can be treated with aerated steam at the rate of ~1 cu yd/hr using a cart or conveyor belt system.

Plants

Incoming plants should be examined on arrival

Plants can be quarantined for at least 30 days and monitored for symptoms, insect pests

Reject plants that are symptomatic or test positive for *Phytophthora*

Managing *Phytophthora* in a field

Dig up and remove infested plants and also at least 1 adjacent plant on each side

Remove soil around root zone of infested plants

Prevent spread of disease –

- Restrict water movement through the area
- Cover soil in mulch, gravel, or cover crop
- Prevent movement on machinery, footwear, equipment

Improve drainage

Do not plant new lavender into infested soil – Make it a feature or plant a non-host species

Treatments for contaminated soil

Soil amendments/ Biocontrol

Solarization

Steam

Fumigation

Some soil organisms are beneficial

Cellulase producing fungi

Bacteria and actinomycetes produce antibiotics

Streptomyces spp. are common in soil and produce antibiotics

Several species of *Trichoderma* are antagonistic to *Phytophthora* spp.

Chemical fumigation

- For large areas of soil
- Kills beneficial organisms
- Dazomet granular formulation
- Chloropicrin
- Metam sodium can be worked into soil or applied through irrigation

Check label for approved crops and application methods before use

Temperatures necessary to kill various groups of soil organisms

Solarization

Heats top layer of soil to kill pests and pathogens.

Need 4-6 weeks of clear skies, long days, high temperatures.

Pest Notes: Soil Solarization for Gardens & Landscapes

Management. UC ANR Publication 74145

Pots and media can also be solarized

Pest Notes: Soil Solarization for Gardens & Landscapes Management. UC ANR Publication 74145

Soil steaming

Contaminated hoophouse at a nursery

Any questions?

Website

http://ppo.puyallup.wsu.edu/

melliott2@wsu.edu