Conventional pesticides such as DDT and organophosphates have not only become less effective as target insect populations develop resistance, but have killed nontarget predators and parasites that otherwise keep pest insects in balance. Thus, in some conditions, pest populations have exploded to uncontrolled levels, decimating whatever crops or gardens they happen to feed upon.

Furthermore, these persistent pesticides have accumulated throughout aquatic and terrestrial food webs or chains, creating ecological imbalances and impairing human health. Global concerns regarding pesticide resistance, environmental degradation, and human health problems have led to the development of biologically based, narrow-spectrum pesticides with fewer long-term hazards.

Over the last several decades, more farmers, forest and landscape managers, and gardeners have turned to these more environmentally friendly methods of pest control, including Bt.

An introduction to Bacillus thuringiensis

Bt is an acronym for Bacillus thuringiensis, a naturally occurring species of bacteria found worldwide in the soil and on plants. Nearly 100 years ago, this bacterium was discovered to have pesticidal properties if consumed by the larvae of specific insects.

Many subspecies, varieties, and strains of Bt have been characterized so far affect members of three insect orders: Lepidoptera (butterflies and moths), Diptera (mosquitoes and biting flies), and Coleoptera (beetles). Commercially-available, Environmental Protection Agency-registered Bt products include:

- B. t. aizawai (Lepidoptera)—used for wax moth larvae in honeycombs
- B. t. israelensis (Diptera)—frequently used for mosquitoes (see sidebar)
- B. t. kurstaki (Lepidoptera)—frequently used for gypsy moth, spruce budworm, and many vegetable pests
- B. t. san diego and tenebrionis (Coleoptera)—frequently used for elm leaf beetle, Colorado potato beetle

B. t. kurstaki is the most commonly used Bt formulation, as it will kill many leaf-feeding larvae on vegetables, shrubs, fruit trees, and conifers. There is abundant scientific literature on this biopesticidal organism.

Other Bt isolates have been characterized but not yet registered by the EPA. These include:

- B. t. galleriae (Coleoptera)—used on Japanese beetles
- B. t. japonensis and kumamotoensis (Coleoptera)—used on several turf beetle species

Local isolates of Bt could represent an underutilized, yet powerful, biological control resource. In China, 30 new strains of Bt were isolated from drylands, gardens, and rice fields; from these, one highly toxic strain was able to kill 100 percent of treated diamondback moth larvae (Plutella xylostella). Similarly high toxicities were found in ten new Bt strains isolated from leaf and soil samples in
Poland and in four new strains discovered in Mexico. Local bacterial populations have the advantage of being adapted to local insect hosts; thus, it is logical to expect to find powerful biocontrol agents in the pest’s backyard.

Mode of action

Bacillus thuringiensis strains produce crystalline proteins (called δ-endotoxins) that, when consumed by particular insect larvae, have a poisonous effect upon the gut lining. While some of the toxicological details are still a topic of scientific debate, we do know that the crystalline proteins manufactured by the bacteria are toxic, causing the cell membranes in the gut to split open and thus kill the larvae. The specificity of these toxins for insect physiology means that other animals are not affected by the bacteria.

Bt found naturally on or applied to leaf surfaces must be ingested by the feeding form or an insect (the larvae) to have an effect; in other words, Bt has no effect on adult insects. Susceptible larvae that ingest the toxin are not killed immediately, but die over the next few days. They do stop feeding, however, and thus plant damage is halted. Larvae that survive the toxin may be more susceptible to other environmental stresses, such as cold temperatures or low levels of botanical insecticides. This type of synergistic effect underscores the importance of utilizing Bt as part of an integrated pest management plan.

Some insects have already developed resistance to Bt, most importantly the diamondback moth (*Plutella xylostella*), regarded as one of the most destructive crop pests worldwide. It is a particularly resilient species, reported to be the first insect to develop resistance to DDT and almost every other synthetic insecticide. Bt-resistant insects apparently are able to detoxify the bacterial proteins quickly and thus survive. Interestingly, Bt resistance appears to harm the insect’s fitness when Bt is not present; in other words, resistant individuals do not reproduce well so that resistance is quickly lost in the larger population when Bt is not applied. This “resistance instability” may explain why Bt resistance is uncommon in pest insect populations.
Human health and safety

All strains, subspecies, and varieties of Bt used as pesticides must be extensively tested for both human and environmental safety. Regulatory agencies, such as the U.S. Environmental Protection Agency, require thorough evaluations of the active microbial ingredient before they can be registered as pesticides. *Bacillus thuringiensis* has been used extensively for four decades in biopesticidal formulations due to its environmental and human health records.

Bt is considered to be “practically nontoxic” to humans and other vertebrates. It can cause a “very slight irritation” if inhaled, and can cause eye irritation. These acute effects are considered to be minor; there are no chronic toxicities. Bt is not carcinogenic, mutagenic, or teratogenic: in other words, it does not cause cancer, induce chromosomal mutations, or lead to birth defects in exposed animals.

Bt does not persist in the brains, lungs, or digestive systems of animals, including humans. While Bt has been found in fecal samples of exposed greenhouse workers, no gastrointestinal symptoms were associated with its presence. In fact, Bt appears to be a normal component in the feces of vegetable-consuming animals, where it apparently causes no problem.

Impacts

In addition to their excellent record on human health, Bt products are globally recognized by researchers in many disciplines as an environmentally safe means of controlling pest insects. An extensive and reliable body of science demonstrates the environmental safety of Bts, allowing governmental and health organizations to recommend its use on a variety of landscapes worldwide.

Specifically, no danger has been found to aquatic communities accidentally exposed to Bt (but see sidebar) or to nontarget organisms including beneficial insects, amphibians, fish, and mammals. A number of researchers have demonstrated the general safety of Bt formulations to natural predators of pest insects. By and large, these predators belong to different orders than those affected by most Bt formulations, including spiders (*Araneae*), ladybugs (*Coleoptera*), true bugs (*Hemiptera*), and ants (*Hymenoptera*).

There are few reports of Bt lethality upon nontarget organisms, such as leaf-feeding caterpillars. Another researcher has suggested that clay soils may bind the bacterial toxin, increasing its environmental persistence and possible toxicity to nontarget species. Though the preponderance of the evidence does not agree with these reports, all researchers concur that Bt monitoring must continue to explore these exceptions and to modify Bt usage as needed.

Increasingly, land managers are recognizing the environmental advantages of reduced chemical treatments in urban areas. Given their extraordinary record in human and environmental health and safety, Bt products are increasingly applied to urban parks and landscapes to control gypsy moth (*Lymantria dispar*) and other nuisance insects. These insects are of particular concern because of their abilities to denude trees; invade woodpiles, houses, and vehicles in search of pupation sites.
New hope for mosquito control

Perhaps nowhere has Bt usage had such dramatic effects as in fighting mosquitoes and the illnesses they carry. Historically, mosquitoes have been implicated as transmitters for malaria, encephalitis, and dengue fever. More recently they have been recognized as the carriers of West Nile and many other viruses, pathogens, and parasites. Mosquitoes of the genera Aedes, Anopheles, Culex, Psorophora, and Stegomyia cause much human misery and have high societal costs associated with them.

Conventional mosquito treatment has usually consisted of DDT, a highly toxic, broad-spectrum pesticide whose residues persist throughout food chains decades after their application. Though banned in the U.S. since 1973, DDT is still legally applied in many regions of the world where malaria is a problem. Less devastating are the synthetic pyrethroids, which still kill about 150 to 200 non-target organisms for each adult mosquito killed. In comparison, Bt products represent a much gentler approach to mosquito management.

Bacillus thuringiensis israelensis, or Bti, has been used effectively to kill many species of mosquitoes within these genera, as well as other biting flies in the order Diptera worldwide. This has been demonstrated repeatedly through field studies in Africa, Asia, Australia, Eastern and Western Europe, India, and North America. Though not registered by the U.S. Environmental Protection Agency, *Bacillus sphaericus* (Bs) also has activity against mosquito larvae, as does *B.t. jegathesan*. Field tests have shown significant reductions in both mosquito numbers and associated malarial cases.

Formulations are important with Bt products applied to aquatic systems. Dry preparations tend to be less successful, as the spores settle to the bottom and are not eaten by larvae, which tend to be near the surface of the water. Biofilms, fizzy tablets, and slow-release floating rings are more effective in this regard. The latter two formulations are readily available, inexpensive, and can be easily handled and applied by volunteers. They should be used anywhere that standing water—and mosquito larvae—accumulate. Applications often need to be repeated to treat subsequent hatchings.

Though some mosquitoes have developed resistance to some *Bacillus* species, applying these biopesticides in rotation has overcome resistance. Use of other IPM choices, such as predatory fish, can help reduce larval numbers. Finally, new strains of Bti and Bs are constantly being discovered in rice fields, of other IPM choices, such as predatory fish, can help reduce larval numbers. Applications often need to be repeated to treat subsequent hatchings.

Bti is generally considered safe for nontarget aquatic organisms, such as dragonflies, damsel flies, notonectid bugs, fish, frogs, and birds, according to the majority of studies that have been performed. Conflicting information comes from two studies in Minnesota: one over three years and the second over six years. The shorter of the studies reported severe declines in Diptera species, causing the authors to question the environmental safety of Bti. However, the longer study found no negative effects on zooplankton or bird populations resulting from insect decreases. These authors noted that the ecological complexity of wetland food webs and/or other environmental factors could nullify the impact of reduced insect numbers. Indeed, the first authors acknowledged that drought years would cause a similar decline in insect populations, a natural situation from which one would expect the system to recover.

Bt as part of an IPM program

Like any other pest control method, Bt works best as part of an integrated management plan. The philosophy of such a plan is to reduce pests to acceptable levels, not to eliminate them completely. As we’ve discovered—much to our detriment—attempts to exterminate pests result in resistant pest populations and environmental degradation.

Bt has become a cornerstone of IPM systems, accounting for more than 90 percent of the biological insecticides currently used. Though Bt has been used successfully by itself, the practice of IPM generally incorporates Bt with other biological, cultural, mechanical, and chemical controls. A great deal of research...
worldwide has explored the use of Bt in concert with these associated methods:

Cultural—Crop rotation; minimum tillage; shelter strips

Mechanical—Removal of pest (eggs and larvae); removal of infested materials

Biological—Parasitoids; pathogens, including Bt, fungi, granulosis virus, and nucleopolyhedrosis virus; predators

Chemical—Botanical insecticides such as neem; pheromone baiting/mating disruption; pyrethrum and pyrethroids.

Practical considerations

As with other living organism, Bt activity is affected by environmental factors including temperature, rainfall, pH, and sunlight. Bt applied to leaf surfaces, for example, can be degraded by solar ultraviolet or washed off by irrigation or rainfall. Many of these limitations have been addressed through the development of new Bt formulations that protect the organism from deactivation. Still, there are other factors that influence effectiveness of this biocontrol agent.

Because only the feeding larval stage is susceptible to Bt, **timing of application** is paramount. While this may be during the spring for many lepidopteran pest species, for coleopteran pests in turf, application is effective only in the fall. Cold weather decreases effectiveness, perhaps because larval feeding activity is reduced.

Location of the target insect also influences Bt effectiveness. Boring insects, though susceptible to Bt in laboratory trials, can escape Bt exposure if feeding in protected sites. Likewise, it is difficult to spray the crowns of tall trees from the ground. In such cases, a cherry-picker could be used for spraying individual trees, but larger areas are more effectively managed through aerial spraying.

As with any pesticide, Bt must be considered as an option, not a magic bullet, for pest management. **Consumer education** is critical to avoid improper or overapplication of Bt. Misapplication of Bt at the wrong time or on the wrong species can lead to pest resistance.

In its infancy, use of Bt was costly to produce and to apply; while it is still expensive, new production techniques...
have been developed that promise to lower the cost in developing countries. Bt is more cost effective to use now, since application costs have decreased. Proponents hoped that the environmental and human health benefits would more than offset the economic costs.

Indeed, the economic comparisons between conventionally managed and IPM (including Bt) fields have demonstrated that not only was insect damage reduction approximately the same, but that IPM net profits were greater because of reduced insecticide costs. Though not included in these studies, the more intangible benefits associated with Bt-treated fields—such as reduction in pesticide resistance, less environmental damage, fewer human health risks—cannot be ignored and must be emphasized.

The big picture

There is no question that broad-spectrum, conventional pesticides can cause more problems than they solve. Not only is the pest killed, but so too are the beneficial predators and parasites, leading to future outbreaks of resistant pest populations. The negative, long-lasting effects of these pesticides on human and environmental health should not be ignored or considered collateral damage.

Once insects become resistant to chemical pesticides, the usefulness of that compound is finished, at least temporarily. The elegance of biocontrol systems, like Bt, is that the pesticide is a living organism—one that can evolve as its host becomes resistant. New strains of Bt and related species are discovered routinely. These specifically targeted control agents are considered by the scientific community to be environmentally friendly, with little or no effect on humans, wildlife, pollinators, and most other beneficial insects. We continue to discover what we’ve always known—that it’s easier to work with nature than against it.

For references, see the Web site: www.puyallup.wsu.edu/~Linda%20Chalker-Scott/Bt%20references.htm