Cryptography in the Presence of Quantum Computing --

New Opportunities and Research Directions

Feng-Hao Liu
Associate Professor
Washington State University
Internet Technology

• Build a connected world
 – Online/mobile banking
 – Email
 – Social media
 – Online conference
Security of Cyberspace

- **Privacy** and **Authentication** are important!
 - Sensitive data in cyberspace
 - Serious consequences if wrong

![Diagram showing user and server with private data exchange]
Important Technology

• Public-key cryptography (PKC)
 – Foundation of https
 – Email, secure payment, social media logins, etc.
Foundation of PKC

• Need math problems **not** solvable by even super computers
 – Only **a few** candidates

Factoring:
 - Secret key: (p, q), Public key: N=pq
 - RSA crypto systems

Discrete Log:
 - Secret key x, Public key: (g, g^x)
 - Diffie-Hellman Key Exchange
Foundation is Challenged!

- [Shor94] **poly-time quantum** algorithm to **solve** factoring and DLog
 - Quantum is **more powerful**

- Technology was **not** there.
 - E.g., “15 = 3 * 5” (2001)
 - Not practical yet
Technology Advances!

• Towards building larger quantum computers

of qubits

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>14</td>
<td>49</td>
<td>53</td>
<td>433</td>
<td>1M</td>
</tr>
</tbody>
</table>

First Quantum Supremacy for specific task (Google)
Facing New Reality

• NIST: Post Quantum (PQ) PKC standardization call [2016 - ongoing]
• Industry: Evaluate performances of PQ candidates
Traditional PKC Crisis

• **Obsolete** eventually at some point...
 – New security infrastructure

• **Critical time to develop new sciences**
 – New **foundation** for PQ Crypto
 – New advanced Crypto **capabilities**
My Research

• Basic Mission: **Rebuild** basic crypto tools **against** quantum computing
 – Post-quantum (PQ) cryptography [NIST current efforts]
 – Future security of internet applications

• Vision: Enable **efficient richer** crypto capabilities
 – Computing on encrypted data, **Fully homomorphic encryption (FHE)**
 – Applications to **private ML and data analytics**
 – Numerous **advanced** crypto designs
Roadmap

- **Background**
 - Crypto Basics

- **My Work**
 - High Level Overview
 - Applications

- **Vision**
 - Future Opportunities
Cryptography in General

- **What** is “security”?
 - No attacker can “break” the system
 - What does that mean?

- **How** to achieve “security”?
 - How to defend against infinitely many possible attacks?
Modern Cryptography

• Define a Clear Security Goal
 – E.g., Secure Channel

Send private messages

?????

Secure

?????

Send private messages
Modern Cryptography

• Define Security
 – Formulate a notion that captures “secure” channel
 • Not able to recover the whole plaintext?
 • We need: “attacker cannot learn anything” [Goldwasser-Micali82]
Modern Cryptography

• Define Security
 – Formulate a notion that captures “secure” channel
 • Not able to recover the whole plaintext?
 • We need: “attacker cannot learn anything” [Goldwasser-Micali82]
 – Explicitly requested in the NIST PQC call

Empire is the best!

Help me, Obi-Wan Kenobi. You’re my only hope!

Orange or blue ????

Imaginary dummy message
Modern Cryptography

• How to realize the secure goal?
 – No real physical secure channel
 – Construct a “droid” using math – “encryption”.

Help me, Obi-Wan Kenobi. You’re my only hope!

Empire is the best!

Orange or blue ????

SK
Modern Cryptography

• How do we prove security against infinitely many attacks?
 – The reduction framework
 • Hard math problem, design, and reduction (proof of security)

 If an adversary can break the crypto system, then there exists a reduction (that uses the adversary) that can solve the math problem.

 If the math problem is not solvable, then no adversary can break the crypto system. => Crypto system is secure
Modern Cryptography

- We have some candidates
 - e.g., RSA, Discrete Log \(\Rightarrow\) Secure Crypto

\[\text{Hard Math Problem} \leq \text{Reduction} \]

\(\text{RSA, DL}\)
In the Quantum Era

Quantum Computing

Hard Math Problem

\[\leq \]

Reduction

Crypto System

RSA, DL
In the Quantum Era

What we need:
- New hard math problem against quantum
- New design and proof of security

Hard Math Problem
- RSA, DL

Reduction

Crypto System
NIST’s PQC Call

• Aim to standardize future PQC [2016 - now]
 – Take more than 20 years for migration

• Challenges
 – Hard to find plausible math problems
 – Setting specific parameters for efficiency + security
 – Implementation-level details
 – Real-world deployment
NIST’s PQC Call

• New math hard problems and crypto designs
 – Code-based
 – Lattice-based
 – Hash-based
 – Isogeny-based
 – Multivariate-based
 – More...
NIST Current Progress

• 3rd Round:
 – Public-key encryption: Kyber
 – Signature: Dilithium, FALCON, SPHINCS+
 – Selected for standardization

• 4th Round:
 – Ongoing
 – A lot of exciting (heartbreaking) news
The Nature of Science

- Many candidates were broken
 - Rainbow (multivariate) [Crypto 2022]
 - SIKE (isogeny) [Eurocrypt 2023]
 - More ...

- Still plausible
 - Lattice
 - Hash
 - Code
 - Perhaps isogeny ???
Roadmap

- Background
 - Crypto Basics

- My Work
 - High Level Overview
 - Applications

- Vision
 - Future Opportunities
New Hope: Lattice-based Cryptography

- Advantages of Lattices:
 - Efficient operations
 - Resistance to quantum attacks (plausible)
 - Foundation of advanced crypto systems for richer crypto capabilities and applications
New Hard Problem

• Learning with errors (LWE) [Regev 2005]
 – Theory [Peikert’s survey 16]
 – Practice [NIST ongoing PQC comp]

• New PQ candidates in theory!
 – Public-key encryption
 – Signatures
 – Key exchange
 – Three variants are going to be standardized by NIST
Advanced Capabilities

• Computation on encrypted data
 – Fully Homomorphic Encryption (FHE) [Gentry, BV, GSW]
 – Outsource computation
 – Holy grail to keep data secure while in use [DARPA DPRIVE]

This ability is known as Homomorphic Computation
Application to MPC

• An **elegant** solution to classic *Yao’s Millionaire Problem* [1980’s]
 – Two parties hold private inputs X and Y. Determine which is larger **without** revealing what they are
 – E-finance, e.g., compare numbers that are confidential

\[F(X) = 1 \text{ iff } X > Y \]
New Applications – Private MLaaS

- New solutions to **private ML as a Service** [2020’s]
 - Cloud holds a private ML Model Y
 - User has private data X
 - User wants to outsource analysis of private X **without** revealing X
 - Cloud does **not** want to reveal Y

\[
\text{Input: } X \rightarrow \text{Enc}(X) \rightarrow \text{F}(X) = \text{analysis using param } Y
\]

\[
\text{Input: } Y \rightarrow \text{Enc}(Y)
\]
Triumph of Crypto Theory

• Theorem 1 [Regev]
 – Under hardness LWE, there exists a **PQ Public-key Encryption** (PKE)

• Theorem 2 [Gentry, BV, BGV, GSW, AP...]
 – Under hardness of LWE, there exists a **PQ fully homomorphic encryption** (FHE) for any arbitrary function of homomorphic computation

• Theorems 3, 4, 5....
 – Under hardness of LWE, there exists a **wide array** of advanced PQ cryptosystems, e.g., identity-based encryption, attributed-based encryption, functional encryption, and more...
In Praise of LWE

• Gödel Prize 2018 to Regev

• Citation
 – Served as the foundation for countless subsequent works
 – Revolution in cryptography in both theory and practice
 – A simple and yet amazingly versatile foundation for nearly every kind of cryptographic object
 • along with many that were unimaginable until recently, and which still have no known constructions without LWE
Problem Solved?

- LWE offers solutions in **theory**
- **Gap** between theory and practice
 - Beyond only engineering efforts
- Need to **expand** and **refine** the theory

![Diagram showing the relationship between Theory, New theory, Refine theory, and Practice. My work highlighted in red.](image)
Determine the Drawbacks

- Fact: Plain-LWE is not efficient
 - Why and How?

- Why: large concrete parameters/computation
 - Large keys in general
 - Cumbersome noise sampling procedure

- Consequence: Plain-LWE based Frodo not selected as finalist by NIST 😞
To Improve Efficiency

• Other variants of LWE
 – Algebraic Rings
 – Other form of errors

• Research questions
 – Are these variants hard?
 – Can we do more for the advanced capabilities?
My Work

• New algebraic techniques
 – Proving some useful variants of LWE is plausibly hard
 – More efficient FHE methods
More Efficient FHE

• Fact: ”F”-HE relies on a core technique called bootstrapping
 – Important but slow

• Algebraic techniques => More efficient bootstrapping
 [LiuWang23a, LiuWang23b]
FHE Computation

• Basic facts:
 – All known FHE ciphertexts contain “noise”
 – Basic operations (e.g., add, mult, NAND) are rather fast
 – Computation increases noise
 – Noise becomes too large => cannot proceed computation

\[X_1 \Rightarrow X_2 = f(X_1) \Rightarrow \ldots \Rightarrow X_k = g(X_{k-1}) \Rightarrow \text{Decryption fails} \]
Bottleneck of FHE Computation

- To further compute on ciphertext, need to "clean" noise
 - This is called **Bootstrapping**

- Bootstrapping is *significantly slower* than other basic operations
 - The bottleneck
Bootstrapping Framework [Gentry]

- Need Bootstrapping Key, i.e., BK = FHE.Enc(sk)

- Input CT = FHE.Enc(X), which might be somewhat noisy
 - Define $f_{CT}(\cdot) = \text{Dec}(\cdot, CT)$

- Eval also incurs noise e'
 - Need small e'

Homomorphic computation

$f_{CT}(sk) = \text{Dec}(sk, CT) = X$
Bootstrapping is Bottleneck

• Was slow: 30 mins to bootstrap one CT
• Significant improvements:
 – **Large** params/space (10 GB) + **SIMD** (Single Instruction Multiple Data)
 • 20 seconds to bootstrap 10000 CTs
 – **Small** params/space (10 MB) + fast bootstrapping
 • 1 sec [FHEW15]
 • 0.1 sec [TFHE16]
 • 30 ms [further optimizations]
 • **No SIMD**
My Work [LiuWang23a, LiuWang23b]

- A *new* mathematical framework
 - Small space
 - SIMD

- Open question:
 - Optimize the framework, more refined math techniques?
 - Determine the concrete parameters
 - Implementation and Deployment
Roadmap

Background
Crypto Basics

My Work
High Level Overview
Applications

Vision
Future Opportunities
Future Direction 1 – Core FHE

• New Foundation of FHE
 – Confirm and **optimize** the theoretic framework
 – Determine the **concrete** improvements over existing solutions
 – **Expand** the existing FHE libraries
Future Directions 2 – Applications to ML

• Applications in private ML and data analytics
 – New ML-friendly FHE computation architecture
 – New FHE-friendly ML models

• New collaborative opportunities!
Future Direction 3 – For Future Applications

• Efficient Advanced Crypto Capabilities
 – PQ zero-knowledge proofs
 – PQ anonymous credentials
 – Efficient and scalable MPC over large datasets
 – More ...

• Efficient PQ privacy enhancing technologies for the future
Vision

• **2005 – 2023**: LWE implies nearly *every* kind of cryptographic object imaginable
 – Extremely successful theory

• **2023 and after**: New techniques to *make theory a reality*
 – Develop new theory
 – Refine existing theory
 – Continue bridging the gap between theory and practice
Thank You!