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Mobile market trends



Android as the target

4

Background – System/Apps – Attacks – Defenses - Summary

Android dominates mobile computing platforms …

Android dominates even more in malware market…
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Android Platform

• Linux kernel, browser, SQL-lite database
• Software for secure network communication
• Open SSL, Bouncy Castle crypto API and Java library 

• C language infrastructure
• Java platform for running applications
• Dalvik bytecode, virtual machine
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Android Apps

• Activity
• Portions of the application’s user interface
• Login window, registration interface, etc.

• Service
• Performs background processing
• Download a file, play music, etc.

• Broadcast Receiver
• Handlers for global messages
• Boot completed, power disconnected, etc.

• Content Provider
• Manages access to structured data
• User calendar, contacts, etc.
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Each Android app contains one or more components of the following types:

Each component runs as a separate thread in the OS



Application Structure

• Apps need to communicate with each other and the 
system
• A restaurant recommender app may need to launch a map app to 

show a restaurant’s location on map
• An email app may need to launch a PDF viewer to open an 

attachment
• A messenger app may need to receive text messages sent to 

the phone 
• Component interaction
• Intent - is the primary mechanism for component interaction, 

which is simply a message object containing a destination 
component address and data
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Inter-Component Communication (ICC)



• Explicit Intents 
specify a 
component to start.

• Implicit Intents give  
a general action to 
perform.

Intents – Explicit vs. Implicit
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How Android app works

Component 
A

Component 
B

Component 
C

App B App A

Cellular network, Internet, GPS, etc.

Intent i

Android SystemFind the 
targetIntent i Intent i
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Security mechanisms

• Two main Android security mechanisms
• Sandbox  
• Permission
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Application sandbox

• Every app runs as a separate user
• Underlying Unix OS provides system-level isolation

• Each application runs with its UID in its own Dalvik 
virtual machine
• Provides CPU protection, memory protection
• Authenticated communication protection using Unix domain 

sockets
• Only ping, zygote (spawn another process) run as root
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Android permissions

• Applications announce permission requirement
• Create a whitelist model – user grants access
• Don’t interrupt user  – all questions asked as install time

• Inter-component communication reference monitor checks 
permissions

• Example of permissions provided by Android

• “android.permission.INTERNET”
• “android.permission.READ_EXTERNAL_STORAGE
• “android.permission.SEND_SMS”
• “android.permission.BLUETOOTH” 

• Also possible to define custom permissions
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Security mechanisms
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Security mechanisms

� Specifying protection domain via permission labels
� Mandatory (permission-based) policy enforcement
� No information flow guarantees
� Private versus public components
� No access permission specified = all access!
� Intent access control against broadcasting privacy 

leaks
� (Sensitive) API protection
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General Security Vulnerabilities / Attacks

• Flaws in Android OS itself
• Flaws in phone software/firmware
• Conventional browser based virus
• Vulnerabilities within downloaded apps
• Unconventional attacks (injecting code into 

accelerometers i.e.)
• New classes of vulnerabilities
• E.g.: Web advertiser gets to inject arbitrary code into mobile 

apps running on your phone!%#$!
• Evolving defenses
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Data leakage

Collect 
sensitive 
data d

Send 
Intent 
with d

Data 
leak

source
sink

sink
ICC

ICC

App X

Comp X.1
Comp 
X.2

Comp X.3 Another 
App

ICC
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onCreate(Bundle …){
…
String s1 = 

getSensitiveData();
Intent i1 = new Intent();
i1.setClass(…, 

Leaker.class);
i1.putExtra(“key”, s1);
startActivity(i1);

}

onCreate(Bundle …){
…
Intent i2 = getIntent();
String s2 = 

i2.getStringExtra(“key”);
SmsManager sms =   

SmsManager.getDefault();
sms.sendTextMessage(…, s2, 

…);
}

DataGrabber Activity Leaker Activity

Environment of 
DataGrabber

Intent p1

Environment of 
Leaker

Intent p2

App

Android  
System 
Model

1

2

3

4 5
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Data injection

Receive Intent

Send Intent

Network I/O

source

sink

App Y

Comp Y.1

Comp Y.2

Injecting ill-
crafted 
intent
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Malware Types
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Trojan

Monitor
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General Security Defenses

• Open source: public review, no obscurity
• Secure drivers, media codecs, new security features
• Strict access (e.g., permission) control
• Securing information flow (e.g., taint analysis)
• Memory protection (against overflow, ASLR)
• Malware countermeasures

21

Background – System/Apps – Attacks – Defenses - Summary



Securing information flow (taint analysis)

• DTA is a technique that tracks information 
dependencies from an origin

• High-level:
• Taint source
• Taint propagation
• Taint sink

CS660 - Advanced Information Assurance -
UMassAmherst 

22

Background – System/Apps – Attacks – Defenses - Summary



Malware detection (ML-based)
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Sustainability – a new quality metric

• Sustainability
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• Reusability • Stability

the accuracy of a  classifier trained on apps of year x and tested against apps of year 
y, y>=x

the accuracy of a  classifier trained on apps of 
year x and tested against apps of year y, y == x

Accounting for how the classifier 
sustains with retraining

• the accuracy of a  classifier trained on apps of 
year x and tested against apps of year y, y > x

• y - x
Accounting for how the classifier 
sustains without retraining or other 
model updates
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Android evolution causing malware detection deterioration



DroidSpan – a detector based on SAD profiles
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App evolution characterization

Evolution-resilient feature discovery

Sustainable classification

Sensitive Access Distribution (SAD)
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DroidSpan – a detector based on SAD profiles

• Extent of sensitive access
• E.g., percentage of total 

source/sink callsites and call 
instances

• Categorization sensitive data 
and operations accessed
• E.g., percentage of source/sink 

callsites retrieving network info
• Vulnerable method-level control 

flows
• E.g., percentage of call instances to 

sources accessing Account data 
that reach at least a sink
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App evolution characterization

Evolution-resilient feature discovery

Sustainable classification

Sensitive Access Distribution (SAD)
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DroidSpan – a detector based on SAD profiles
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Constructing the SAD profile of a given Android app
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Results – reusability

• Each dataset: 1/3 hold-out (& 10-fold CV)
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DroidSpan achieved reusability of 94% with small variations across 
years, outperforming all the five baselines considered (by 6–32%).
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DroidSpan – a detector based on SAD profiles
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Summary

• Android: dominating mobile app and malware market
• Android security mechanisms: sandoxing and 

permission-base access control
• Inter-app communication offers flexibility/reuse, also 

increasing attack surface
• Vulnerabilities facilitates/enables attacks, leading to 

broad security consequences
• Defense strategies: analyzing code behaviors, learning 

malicious patterns 
• Sustainable solutions: tackling app/malware evolution 

(moving target)
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