CySER Workshop 2022

Smart Phone Technology Security

The Case of Android: Systems, Attacks, Defenses

Haipeng Cai
School of Electrical Engineering and Computer science
Washington State University

Email: haipeng.cai@wsu.edu
Webpage: http://eecs.wsu.edu/~hcai

NORTHWEST VIRTUAL INSTITUTE FOR
\/ CYBERSECURITY EDUCATION AND RESEARCH

mailto:haipeng.cai@wsu.edu
http://eecs.wsu.edu/~hcai

CySER Workshop 2022

Outline

- Background

- Mobile software and Android
- System/apps

- Android system

- Android apps

- Android security mechanisms

- Attacks
- Security attacks on systems/apps
- Defenses
- Current defenses against the attacks

- Summary
- Takeaways

Background

Mobile market trends

Worldwide Smartphone OS Market Share
(Share in Unit Shipments)

90%

80% ‘vmw/

— i /\/

60%

50%

40%

30%

o \/A_/__/

i

10%

0% T T T T T f f T T T f]
F o F & & T T & W & P
> P P P P P D P P D P P >

Source: IDC, Aug 2015 e Android —i0S Windows Phone ——BlackBerry 0OS —Qthers

3

Android as the target

Mobile malware

Android

Android dominates mobile computing platforms ...

Android dominates even more in malware market...

APPLICATIONS

Contacts Phone

APPLICATION FRAMEWORK

Window Content

Activity Manager Manager Providers

Telephony Resource Location Notification

Package Manager Manager Manager Manager Manager

LIBRARIES ANDROID RUNTIME

‘Surface Manager Media SQLite Core Libraries

Framework

O|:->enG'l'. | ES FreeType WebKit

..
SGL SSL libc

LINUX KERNEL

Display

Driver

Flash Memory Binder (IPC)

Camera Driver Driver Driter

WiFi Driver Audio Power

Keypad Driver Drivers Management

Background — System/Apps — Attacks — Defenses - Summary

Android Platform

- Linux kernel, browser, SQL-lite database

- Software for secure network communication
- Open SSL, Bouncy Castle crypto APT and Java library

- C language infrastructure

- Java platform for running applications
- Dalvik bytecode, virtual machine

Background — System/Apps — Attacks — Defenses - Summary

Android Apps
Each Android app contains one or more components of the following types:
. Activity
- Portions of the application’s user interface
- Login window, registration interface, etc.
- Service
- Performs background processing
- Download a file, play music, etc.
- Broadcast Receiver
- Handlers for global messages
- Boot completed, power disconnected, etc.
- Content Provider

- Manages access to structured data
- User calendar, contacts, etc.

Each component runs as a separate thread in the OS

Background — System/Apps — Attacks — Defenses - Summary

Application Structure

Inter-Component Communication (ICC)

- Apps need to communicate with each other and the
system

- A restaurant recommender app may need to launch a map app to
show a restaurant’s location on map

- An email app may need to launch a PDF viewer to open an
attachment

- A messenger app may heed to receive text messages sent to
the phone
- Component interaction

- Intent - is the primary mechanism for component interaction,
which is simply a message object containing a destination
component address and data

System/Apps

Intents - Explicit vs. Implicit

» Explicit Intents * |Implicit Intents give
specify a a general action to
component to start. perform.

/[Intent]\ J Intent J\

startActivity() onCreate()

|

\J

Activity B

System/Apps

How Android app works

Cellular network, Internet, GPS, etc.

Component Component Component
C A B

App B

Security mechanisms

Two main Android security mechanisms
Sandbox

Permission

3BT 2140w

Android application/process space

Do you want to install this application?

App Sandbox: Linux user ID: 12345 ~ edit SMS or MIVIS, read SMS or MIVIS
App Sandbox: Linux user ID: 54321 Network communication

Application full Internet access

Linux user ID: 12345 Application Storage
Linux user ID: 54321 modify/delete SD card contents
N 4\ Phone calls
1 S~ intercept outgoing calls, read phone state and
SA identity

i Y {) Hardware controls

Linux user ID: 12345 Resources A

Linux user ID: 54321

[Fi] g 2 o
[2)y
4 J

Two applications on different processes (with different user-ids)

\ System tools
prevent phone from sleeping

[roe] oy 2]
o] L2)1
L g

Hide

Network communication
view Wi-Fi state

Install l Cancel

Background — System/Apps — Attacks — Defenses - Summary

Application sandbox

- Every app runs as a separate user
- Underlying Unix OS provides system-level isolation

- Each application runs with its UID in its own Dalvik
virtual machine
- Provides CPU protection, memory protection

- Authenticated communication protection using Unix domain
sockets

- Only ping, zygote (spawn another process) run as root

12

Background — System/Apps — Attacks — Defenses - Summary

Android permissions

- Applications announce permission requirement

- Create a whitelist model - user grants access
 Don't interrupt user - all questions asked as install time

- Inter-component communication reference monitor checks
permissions

- Example of permissions provided by Android

- "android.permission. INTERNET"

- "android.permission.READ_EXTERNAL_STORAGE
- "android.permission.SEND_SMS"

- "android.permission.BLUETOOTH"

- Also possible to define custom permissions

13

System/Apps

Security mechanisms

(%
Browser Process CoolApp Process CoolAddon Process system_server

Dalvik | | Native . T Dalvik Native : PackageManager
VM | | Code ok VM Code [IEE

NetworkManager

uUID: app_OJ UID: app_12 UID: app_19

ActivityManager

open() Permission for Binder call to . WifiManager
permissions another app checked WifiManager API

checked by by system_server or app itself call permissions
kernel checked by

system_server

UID: system

Filesystem Wireless network driver

Linux kernel

14

Background — System/Apps — Attacks — Defenses - Summary

Security mechanisms

Specifying protection domain via permission labels
Mandatory (permission-based) policy enforcement
No information flow guarantees

Private versus public components

No access permission specified = all access!

Intent access control against broadcasting privacy
leaks

(Sensitive) API protection

15

Background — System/Apps — Attacks — Defenses - Summary

General Security Vulnerabilities / Attacks

- Flaws in Android OS itself

- Flaws in phone software/firmware

- Conventional browser based virus

- Vulnerabilities within downloaded apps

- Unconventional attacks (injecting code into
accelerometers i.e.)

- New classes of vulnerabilities

- E.g.: Web advertiser gets to inject arbitrary code into mobile
apps running on your phonel %#$!

- Evolving defenses

16

Attacks

Data leakage

source

17

Attacks

DataGrabber Activity Leaker Activity
onCreate(Bundle ... onCreate(Bundle ... {

String s1 = Intent i2 = ();
0); String s2 =
Intent i1 = new Intent(); 12.getStringExtra(“key”),
i1.setClass(..., SmsManager sms =
Leaker.class); 4 SmsManager.getDefault(); s

2 i1.putExtra(“key”, s1); sms. (..., 82,

startActivity(i1), .o); App

/

————ﬂ———

/

Intent p1 Intent p2

Environment of Environment of Android
DataGrabber Leaker System
Model

Attacks

Data injection

njecting ill-
crafted
Intent

Recelve Intent Esjelvjfes

Send Intent sink

19

Malware Types

1. 62% 0. 59% 0.50%
2.54% ~J 98%

2. 72%
3.44%
7.37%

21.52%

0 64%

_57.08%

Attacks

= Trojan (SMS)

= RiskTool

m Adware

m Trojan

= Monitor

m Backdoor

m Trojan (Financial)
m Exploit

m HackTool

20

Background — System/Apps — Attacks — Defenses - Summary

General Security Defenses

- Open source: public review, no obscurity

- Secure drivers, media codecs, new security features
- Strict access (e.g., permission) control

- Securing information flow (e.g., taint analysis)

- Memory protection (against overflow, ASLR)

- Malware countermeasures

21

Background — System/Apps — Attacks — Defenses - Summary

Securing information flow (taint analysis)

- DTA is a technique that tracks information
dependencies from an origin

- High-level:

- Taint source

c = taint_source()

: : L
- Taint propagation .
- Taint sink
a=>b + c
—

network_send(a)

22

Background — System/Apps — Attacks — Defenses - Summary

Malware detection (ML-based)

Benign Feature Computation) Iralning
| apps__ . Instrumented | Supervised
T Instrumentation > apps learnin
2pps — "'r_ Behavioral
e Monitoring ordinary method Profiling feattie;s__ e classification
calls and ICC Intents, and fully) 5| Multi-class result
i handling calls via reflection Execution classifier
TP and/or exceptional control flows. traces > Feature extraction
apps L) Testing

- SDK->SDK calls malware benign

60%
UserCode->SDK calls s\\ 45%
HE saooas 0
. e 0,
o 3rdLib->SDK calls S A 28%
)
B Activity lif | Mbhack A Y 92%
= CTIVITYy liITecycle calibac 555 ez 0
P 73%
A : s 9
(%) View event handler \\.‘w 84%
% 5%
LSystem status event handler B rEEEE—— 23%
av @ oy 0,
o External eXplICIt ICC &\\\N\“ 42%
O —
- i RN R 26%
ICC carrying URI data only T N0
. . . . 0,
Py Logging sink invocation TEEE— 21%
—
a RlSky source invocation I EhETTETES 39%
q) REEEREHRRARERT HERRSRIHEEE FRRREE Son 0
(%] T T T T T T T T T T 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

23

Background — System/Apps — Attacks — Defenses - Summary

Sustainability - a hew quality metric

Android evolution causing malware detection deterioration

100% —92.7%
90%
80%
70% -
60%
50%
40% -
30% -
20% -~
10% -

0%

The story of And

@@é@@éOOQ@O&’@

- 33.7%
2008 2009 2009 - 200852009 2016~"2010° 2011 2013 2012 2013 2014 2015

F1 accuracy in malware detection

1 I 2 I 3 I q I 5
Time span (years)

- Sustainability

the accuracy of a classifier trained on apps of year x and tested against apps of year
Y, y>=x

* Reusability Stability
the accuracy of a classifier trained on apps of * the accuracy of a classifier trained on apps of
year x and tested against apps of year y, y == year x and tested against apps of year y, y > x
) y - X
Accounting for how the classifier Accounting for how the classifier
sustains with retraining sustains without retraining or other

model updates 24

Defenses

DroidSpan - a detector based on SAD profiles

App evolution characterization

1

Evolution-resilient feature discovery

Sensitive Access Distribution (SAD)

1

Sustainable classification

25

Defenses

DroidSpan - a detector based on SAD profiles

App evolution characterization - Extent of sensitive access
- Eg., percentage of total
l source/sink callsites and call

/nstances

- Categorization sensitive data
and operations accessed

Evolution-resilient feature discovery

Sensitive Access Distribution (SAD)

- E.g., percentage of source/sink
l callsites retrieving network info
Sustainable classification .]\C/lulner'able method-level control
ows

- E.g., percentage of call instances to
sources accessing Account data
that reach at least a sink

26

Defenses

DroidSpan - a detector based on SAD profiles

CDInstrumentation Instrumented (2) App execution
o0 00000 0O 00 © 000 O O » apps 00 000 0 000 © 000 O 0000 00 O

o0 © © 00 000 © 00 000 O 0 O Android
Android teeeee Device
app ¢
3) : | App
Trace analysis Traces of inputs
Iists of 00 0000 © 00000 000 00 0O 000 method ca”s —
predefined —» cecessesess
sources and Timestamped |5 PerappSAD
sinks dynamic call graph profile

Constructing the SAD profile of a given Android app

27

Background — System/Apps — Attacks — Defenses - Summary

Results - reusability

- Each dataset: 1/3 hold-out (& 10-fold CV)

DroidSpan |

MamaDroid

DroidSieve

Afonso

RevealDroid

Mudflow

Datasetl P R Fi I P R

F1

P

R

F1

P

R

F1

E

R

F1

r

R

F1

B10+M10§0.9376{0.9360{0.9362§0.8424(0.8357

0.8367

0.8353

0.9347

0.8822

0.8788

0.8710

0.8718

0.8600

0.8540

0.8549

0.5246

0.5319

0.5065

B11+M11J0.9432{0.9417{ 0.94130.9893(0.9893

0.9793

0.9583

0.7091

0.8151

0.8978

0.8978

0.8978

0.8700

0.8641

0.8616

0.4598

0.4537

0.4563

B12+M12J0.9424(0.9424(0.9423]0.8378(0.8378

0.8377

0.9203

0.8000

0.8560

0.8954

0.8935

0.8935

0.8283

0.8279

0.8277

0.7344

0.6419

0.6450

B13+M130.9554[0.9529(0.9525[0.9141(0.9076

0.9060

0.9935

0.8102

0.8926

0.9217

0.9182

0.9172

0.8915

0.8823

0.8830

0.6362

0.6433

0.6311

B14+M14J0.9302(0.9272{0.9250§0.8462(0.8467

0.8449

0.8981

0.4528

0.6020

0.8673

0.8693

0.8665

0.8360

0.8389

0.8367

0.7040

0.7048

0.6930

B15+M15|0.9061 0.9042 0.9036'0.8450 0.8440

0.8442

0.8162

0.9193

0.8647

0.7798

0.7610

0.7514

0.8236

0.8014

0.7939

0.7213

0.7218

0.7125

B16+M16§0.9352|0.9342 0.9339]0.9021 0.8969

0.8955

0.8275

0.9787

0.8968

0.8138

0.8068

0.8025

0.8660

0.8444

0.8389

0.7532

0.5936

0.6135

B17+M17J0.9723[0.9720{0.9720§0.9126(0.9093

0.9098

0.8910

0.8892

0.8891

0.9510

0.9493

0.9493

0.8546

0.8360

0.8334

0.8331

0.7105

0.6668

0.8794

0.8929

0.7956

0.8271

0.8780

0.8738

0.8719

0.8523

0.8431

0.8408

0.6761

0.6284

0.6185

Average [0.9408|0.9393]0.9388]0.8835(0.8810
|]

DroidSpan achieved reusability of 94% with small variations across
years, outperforming all the five baselines considered (by 6—-32%).

28

Background — System/Apps — Attacks — Defenses - Summary

DroidSpan - a detector based on SAD profiles

Results — stability

+ Overall stability

RevealDroid Mudflow

0.8
0.6
0.4
0
DroidSpan MamabDroid DroidSieve Afonso
- Significance of improvements
Reusability Stability
Contrast Group p-value | Effect size | p-value | Effect size
DroidSpan vs MamaDroid | 4.23E-02 0.75 | 4.00E-06 1
DroidSpan vs DroidSieve |1.43E-02 1|4.00E-06 1
DroidSpan vs Afonso 1.43E-02 1|4.00E-06 1
DroidSpan vs RevealDroid | 1.43E-02 1|8.51E-06 0.86
DroidSpan vs Mudflow 1.43E-02 1|5.84E-05 0.64

29

References

- Amir Houmansadr, CS660: Advanced Information Assurance, Spring 2015
- John Mitchell, €5155, Spring 2017

- Dominic Chen, Introduction to Mobile Security

- Jiaojiao Fu, Detecting and Preventing Privilege Escalation, 2013

- Xinming Ou, Android System Security

- Collin Donaldson, Android

- Vitaly Shmatikov, CS6431, Security of Mobile Applications

- Yinshu Wu, Understanding Android security

- Cai, Haipeng, Na Meng, Barbara Ryder, and Daphne Yao. "Droidcat:
Effective android malware detection and categorization via app-level

profiling." IEEE Transactions on Information Forensics and Security 14,
no. 6 (2018): 1455-1470.

- Cai, Haipeng. "Assessing and improving malware detection sustainability
through app evolution studies." ACM Transactions on Software
Engineering and Methodology (TOSEM) 29, no. 2 (2020): 1-28.

30

Background — System/Apps — Attacks — Defenses - Summary

Summary

- Android: dominating mobile app and malware market
- Android security mechanisms: sandoxing and

permission-base access control

- Inter-app communication offers flexibility/reuse, also
increasing attack surface

- Vulnerabilities facilitates/enables attacks, leading to
broad security consequences

- Defense strategies: analyzing code behaviors, learning
malicious patterns

- Sustainable solutions: tackling app/malware evolution
(moving target)

31

