
Smart Phone Technology Security
The Case of Android: Systems, Attacks, Defenses

Haipeng Cai
School of Electrical Engineering and Computer science

Washington State University

Email: haipeng.cai@wsu.edu
Webpage: http://eecs.wsu.edu/~hcai

NORTHWEST VIRTUAL INSTITUTE FOR

CYBERSECURITY EDUCATION AND RESEARCH

CySER Workshop 2022

mailto:haipeng.cai@wsu.edu
http://eecs.wsu.edu/~hcai

Outline

• Background
• Mobile software and Android

• System/apps
• Android system
• Android apps
• Android security mechanisms

• Attacks
• Security attacks on systems/apps

• Defenses
• Current defenses against the attacks

• Summary
• Takeaways

2

CySER Workshop 2022

3

Background – System/Apps – Attacks – Defenses - Summary

Mobile market trends

Android as the target

4

Background – System/Apps – Attacks – Defenses - Summary

Android dominates mobile computing platforms …

Android dominates even more in malware market…

Background – System/Apps – Attacks – Defenses - Summary

Android Platform

• Linux kernel, browser, SQL-lite database
• Software for secure network communication
• Open SSL, Bouncy Castle crypto API and Java library

• C language infrastructure
• Java platform for running applications
• Dalvik bytecode, virtual machine

6

Background – System/Apps – Attacks – Defenses - Summary

Android Apps

• Activity
• Portions of the application’s user interface
• Login window, registration interface, etc.

• Service
• Performs background processing
• Download a file, play music, etc.

• Broadcast Receiver
• Handlers for global messages
• Boot completed, power disconnected, etc.

• Content Provider
• Manages access to structured data
• User calendar, contacts, etc.

7

Background – System/Apps – Attacks – Defenses - Summary

Each Android app contains one or more components of the following types:

Each component runs as a separate thread in the OS

Application Structure

• Apps need to communicate with each other and the
system
• A restaurant recommender app may need to launch a map app to

show a restaurant’s location on map
• An email app may need to launch a PDF viewer to open an

attachment
• A messenger app may need to receive text messages sent to

the phone
• Component interaction
• Intent - is the primary mechanism for component interaction,

which is simply a message object containing a destination
component address and data

8

Background – System/Apps – Attacks – Defenses - Summary

Inter-Component Communication (ICC)

• Explicit Intents
specify a
component to start.

• Implicit Intents give
a general action to
perform.

Intents – Explicit vs. Implicit

9

Background – System/Apps – Attacks – Defenses - Summary

How Android app works

Component
A

Component
B

Component
C

App B App A

Cellular network, Internet, GPS, etc.

Intent i

Android SystemFind the
targetIntent i Intent i

Background – System/Apps – Attacks – Defenses - Summary

Security mechanisms

• Two main Android security mechanisms
• Sandbox
• Permission

11

Background – System/Apps – Attacks – Defenses - Summary

Application sandbox

• Every app runs as a separate user
• Underlying Unix OS provides system-level isolation

• Each application runs with its UID in its own Dalvik
virtual machine
• Provides CPU protection, memory protection
• Authenticated communication protection using Unix domain

sockets
• Only ping, zygote (spawn another process) run as root

12

Background – System/Apps – Attacks – Defenses - Summary

Android permissions

• Applications announce permission requirement
• Create a whitelist model – user grants access
• Don’t interrupt user – all questions asked as install time

• Inter-component communication reference monitor checks
permissions

• Example of permissions provided by Android

• “android.permission.INTERNET”
• “android.permission.READ_EXTERNAL_STORAGE
• “android.permission.SEND_SMS”
• “android.permission.BLUETOOTH”

• Also possible to define custom permissions

Background – System/Apps – Attacks – Defenses - Summary

13

Security mechanisms

14

Background – System/Apps – Attacks – Defenses - Summary

Security mechanisms

� Specifying protection domain via permission labels
� Mandatory (permission-based) policy enforcement
� No information flow guarantees
� Private versus public components
� No access permission specified = all access!
� Intent access control against broadcasting privacy

leaks
� (Sensitive) API protection

15

Background – System/Apps – Attacks – Defenses - Summary

General Security Vulnerabilities / Attacks

• Flaws in Android OS itself
• Flaws in phone software/firmware
• Conventional browser based virus
• Vulnerabilities within downloaded apps
• Unconventional attacks (injecting code into

accelerometers i.e.)
• New classes of vulnerabilities
• E.g.: Web advertiser gets to inject arbitrary code into mobile

apps running on your phone!%#$!
• Evolving defenses

16

Background – System/Apps – Attacks – Defenses - Summary

Data leakage

Collect
sensitive
data d

Send
Intent
with d

Data
leak

source
sink

sink
ICC

ICC

App X

Comp X.1
Comp
X.2

Comp X.3 Another
App

ICC

Background – System/Apps – Attacks – Defenses - Summary

17

onCreate(Bundle …){
…
String s1 =

getSensitiveData();
Intent i1 = new Intent();
i1.setClass(…,

Leaker.class);
i1.putExtra(“key”, s1);
startActivity(i1);

}

onCreate(Bundle …){
…
Intent i2 = getIntent();
String s2 =

i2.getStringExtra(“key”);
SmsManager sms =

SmsManager.getDefault();
sms.sendTextMessage(…, s2,

…);
}

DataGrabber Activity Leaker Activity

Environment of
DataGrabber

Intent p1

Environment of
Leaker

Intent p2

App

Android
System
Model

1

2

3

4 5

Background – System/Apps – Attacks – Defenses - Summary

18

Data injection

Receive Intent

Send Intent

Network I/O

source

sink

App Y

Comp Y.1

Comp Y.2

Injecting ill-
crafted
intent

Background – System/Apps – Attacks – Defenses - Summary

19

Malware Types

20

57.08%

21.52%

7.37%

3.44%
2.72%

2.54% 1.98%
1.62% 0.59% 0.50% 0.64%

Trojan (SMS)

RiskTool

Adware

Trojan

Monitor

Backdoor

Trojan (Financial)

Exploit

HackTool

Background – System/Apps – Attacks – Defenses - Summary

General Security Defenses

• Open source: public review, no obscurity
• Secure drivers, media codecs, new security features
• Strict access (e.g., permission) control
• Securing information flow (e.g., taint analysis)
• Memory protection (against overflow, ASLR)
• Malware countermeasures

21

Background – System/Apps – Attacks – Defenses - Summary

Securing information flow (taint analysis)

• DTA is a technique that tracks information
dependencies from an origin

• High-level:
• Taint source
• Taint propagation
• Taint sink

CS660 - Advanced Information Assurance -
UMassAmherst

22

Background – System/Apps – Attacks – Defenses - Summary

Malware detection (ML-based)

23

Background – System/Apps – Attacks – Defenses - Summary

Sustainability – a new quality metric

• Sustainability

24

• Reusability • Stability

the accuracy of a classifier trained on apps of year x and tested against apps of year
y, y>=x

the accuracy of a classifier trained on apps of
year x and tested against apps of year y, y == x

Accounting for how the classifier
sustains with retraining

• the accuracy of a classifier trained on apps of
year x and tested against apps of year y, y > x

• y - x
Accounting for how the classifier
sustains without retraining or other
model updates

Background – System/Apps – Attacks – Defenses - Summary

Android evolution causing malware detection deterioration

DroidSpan – a detector based on SAD profiles

25

App evolution characterization

Evolution-resilient feature discovery

Sustainable classification

Sensitive Access Distribution (SAD)

Background – System/Apps – Attacks – Defenses - Summary

DroidSpan – a detector based on SAD profiles

• Extent of sensitive access
• E.g., percentage of total

source/sink callsites and call
instances

• Categorization sensitive data
and operations accessed
• E.g., percentage of source/sink

callsites retrieving network info
• Vulnerable method-level control

flows
• E.g., percentage of call instances to

sources accessing Account data
that reach at least a sink

26

App evolution characterization

Evolution-resilient feature discovery

Sustainable classification

Sensitive Access Distribution (SAD)

Background – System/Apps – Attacks – Defenses - Summary

DroidSpan – a detector based on SAD profiles

27

Constructing the SAD profile of a given Android app

Background – System/Apps – Attacks – Defenses - Summary

Results – reusability

• Each dataset: 1/3 hold-out (& 10-fold CV)

28

DroidSpan achieved reusability of 94% with small variations across
years, outperforming all the five baselines considered (by 6–32%).

Background – System/Apps – Attacks – Defenses - Summary

DroidSpan – a detector based on SAD profiles

29

Background – System/Apps – Attacks – Defenses - Summary

References

• Amir Houmansadr, CS660: Advanced Information Assurance, Spring 2015
• John Mitchell, CS155, Spring 2017
• Dominic Chen, Introduction to Mobile Security
• Jiaojiao Fu, Detecting and Preventing Privilege Escalation, 2013
• Xinming Ou, Android System Security
• Collin Donaldson, Android
• Vitaly Shmatikov, CS6431, Security of Mobile Applications
• Yinshu Wu, Understanding Android security
• Cai, Haipeng, Na Meng, Barbara Ryder, and Daphne Yao. "Droidcat:

Effective android malware detection and categorization via app-level
profiling." IEEE Transactions on Information Forensics and Security 14,
no. 6 (2018): 1455-1470.

• Cai, Haipeng. "Assessing and improving malware detection sustainability
through app evolution studies." ACM Transactions on Software
Engineering and Methodology (TOSEM) 29, no. 2 (2020): 1-28.

30

Background – System/Apps – Attacks – Defenses - Summary

Summary

• Android: dominating mobile app and malware market
• Android security mechanisms: sandoxing and

permission-base access control
• Inter-app communication offers flexibility/reuse, also

increasing attack surface
• Vulnerabilities facilitates/enables attacks, leading to

broad security consequences
• Defense strategies: analyzing code behaviors, learning

malicious patterns
• Sustainable solutions: tackling app/malware evolution

(moving target)

31

Background – System/Apps – Attacks – Defenses - Summary

