
BINARY ANALYSIS 101

JIM ALVES-FOSS

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

RELATED TOPIC
You have discussed forensics. With respect to host-based (not network or
media-based):
Why do we do forensics? I am looking for three very broad descriptions of
how the computer played a part in the incident being investigated:

1. The computer was the victim of an attack
2. The computer was used as a “weapon” to launch the attack.
3. The computer was used as a tool to store/access digital information

related to the attack.

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY ANALYSIS
Binary analysis is the act of evaluating an executable program (or set of
related programs and libraries) to determine characteristics of that program,
usually cybersecurity related.
What are three broad categories of sources of binaries we may want to
evaluate?

1. The binary is untrusted and may contain malware.
2. The binary is developed in-house and needs to be evaluated for

security vulnerabilities.
3. The binary is obtained from third-party and does not contain

malware, but will be incororpated into one of our systems and needs
to be evaluated for security vulnerabilities.

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

WHERE DO WE USE BINARY ANALYSIS
- Capture the Flag (CTF) competitions
- Bug bounties
- Whitehat (ethical) hacking
- Certification of software
- DoD Hard Problem List:

- Automate response to attacks (auto scan and patch when attack
detected)

- Automate proactive security (auto scan and patch before attacked)
- Bonus points if you can automate the attack
- See: DARPA Cyber Grand Challenge (Google it)

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

MAJOR STEPS IN A BINARY ANALYSIS METHODOLOGY

• Perform binary discovery
• Information gathering
• Static analysis
• Dynamic Analysis
• Iterating each step
• Automatinc methodology tasks
• Adopting the methodology steps.

• Credit to: M. Born. “Binary Analysis Cookbook” Packt Publishing, 2019
• https://github.com/packtpublishing/Binary-Analysis-Cookbook

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://github.com/packtpublishing/Binary-Analysis-Cookbook

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

LETS GET STARTED (BINARY DISCOVERY)
Type the following, without the $ or #. (Enter your password when asked)

Wait for command to finish, then type. Study the output.

Type the following and review the output. Notice the sort order of the
information displayed

$ sudo su
find / -executable -type f

file -i /bin/cat
file /bin/cat

ls -alt /bin/

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (2)
When ready, type the following:

(may need to install: (yum install mlocate)
Go over the output and, when ready, type the following:

The ‘|’ is the pipe command and says to show one page at a time. Hit
<Spacebar> to go to next page / <Enter> for one line at a time / ‘q’ to quit,
and ‘?’ for help. Can use the “less” command instead, use ‘h’ for help.

updatedb
locate 'cat'

ps –ef | more

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (3)
Once you're done reviewing the output, type the following (all on one line):

Now type the following (notice the output)?

Type the following and look at the first line

$ exit
$ file /bin/yumdownloader

$ more /bin/yumdownloader

for i in $(find / -executable -type f);do file -i $i | grep -i 'x-
executable; charset=binary';done

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (4)
Which program runs?

Where is it? (If locate gives too much information)

If you want to see which commands and aliases are available to us, you
can run the following in a Terminal session:

Manual pages

$ compgen -ac

$ which bash

$ whereis bash

$ man <tool-name> such as man find or man file

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (5)
So now that we have an idea of how to search our systems for a potentially
malicious binary, let's focus on what we can do to gather as much
information about the binary as possible.
Like penetration testing, this is probably the most important phase of the
methodology and will determine whether we set ourselves up for success
or not.
Assuming you know the name of the file in question, the types of
information we want to gather and the questions we need to answer include
the following:

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (6)
• Is the file executable?
• Is the file a binary?
• For which architecture (x86, or x86_64) is the binary compiled?
• Which format is the binary? (Hopefully ELF, otherwise the rest of this

book is going to be pointless.)
• Is the binary stripped of its symbol table?
• Can we identify any useful strings within the binary?
• Is there a running process associated with this binary?

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (7)
• What's the SHA hash of the binary?
• Does the hash come back as a known malicious file hash?
• What was the original programming language used?
• Can we identify any useful function names?
• Can we identify any libraries used?
• When was the binary written to disk?

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BINARY DISCOVERY (8)
For a non-malicious binary, such as an application developed within your
organization meant to run on Linux, we can ask similar questions but in a
more targeted approach for vulnerability analysis, as opposed to analysis
designed to identify malicious functionality:

• Does the application take any input (user or otherwise)?
• Does the application validate all input?
• Does the application safely manage memory?
• Does the application use up-to-date libraries or third-party

frameworks?
• How is the application compiled?
• Are there any noticeable strings containing sensitive data such as

hardcoded passwords?

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

GET READY
Type the following (if still in a root shell). Why?

The type the following (all one line)

exit

$ wget https://github.com/PacktPublishing/Binary-Analysis-Cookbook/
archive/refs/heads/master.zip

$ unzip master.zip
$ cd Binary-Analysis-Cookbook-master/Chapter-04/64bit

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINING BINARIES
Type the following:

And for comparison:

$ file ch04-example

$ file ../32bit/ch04-example

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINING BINARIES (2)
Type the following (remember you can always add ‘ | more ‘ to the end of
the line):

When you have finished reviewing strings, type each of the following and
review the output

$ strings ch04-example

$ readelf –h ch04-example

$ readelf –l -W ch04-example

$ readelf –S -W ch04-example

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

BONUS QUESTION
Run the program.
Guess the password.
What is the secret messages.

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINING BINARIES (3)
Type each of the following and review the output

$ readelf –s -W ch04-example

$ readelf –p .text ch04-example

$ readelf –x .text -W ch04-example

$ readelf –R .text -W ch04-example

$ readelf –p .strtab -W ch04-example

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINING BINARIES (4)
Type each of the following and review the output

$ objdump –f ch04-example

$ objdump –j -.text -s ch04-example

$ objdump –x ch04-example

$ ldd –v ch04-example
$ ldd –v /usr/bin/cp

$ hexdump –C ch04-example | more

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

STATIC ANALYSIS
Type each of the following and review the output:

May need to install (yum install nasm)

$ ndisasm –a –p intel ch04-example | more

$ objdump –d ch04-example > obj.out
$ more obj.out

$ objdump –d ch04-example > obj.out
$ more obj.out

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

STATIC ANALYSIS (2)
#include<stdio.h>

int foo(int i) {
int k;
int res =0;
char buf[20];
for (k=1;k<10;k++){

res=res+i;
}
printf("Enter your name :");
fscanf(stdin,"%s",buf);
printf("Hello %s\n",buf);
return res;

}

int main() {
int k;
k=foo(2);
printf("Sum = %d\n",k);
return 0;

}

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

LETS COMPILE
We will compile with each of the following options, and then look at the
code:

$ gcc tmp1.c -o tmp1
$ objdump -dj .text tmp1 > obj.normal

$ gcc -fstack-protector tmp1.c -o tmp1
$ objdump -dj .text tmp1 > obj.stackprotector

$ gcc -O -D_FORTIFY_SOURCE=2 tmp1.c -o tmp1
$ objdump -dj .text tmp1 > obj.fortify

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINE THE OUTPUTS (NORMAL)
0000000000400577 <foo>:

400577: 55 push %rbp
400578: 48 89 e5 mov %rsp,%rbp
40057b: 48 83 ec 30 sub $0x30,%rsp
40057f: 89 7d dc mov %edi,-0x24(%rbp)

...
4005ce: 48 8d 45 e0 lea -0x20(%rbp),%rax
4005d2: 48 89 c6 mov %rax,%rsi
4005d5: bf b5 06 40 00 mov $0x4006b5,%edi
4005da: b8 00 00 00 00 mov $0x0,%eax
4005df: e8 bc fe ff ff callq 4004a0 <printf@plt>
4005e4: 8b 45 f8 mov -0x8(%rbp),%eax
4005e7: c9 leaveq
4005e8: c3 retq

Good additional references on reverse engineering: https://nsa-codebreaker.org/resources

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://nsa-codebreaker.org/resources

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINE THE OUTPUTS (STACK)
00000000004005e7 <foo>:

4005e7: 55 push %rbp
4005e8: 48 89 e5 mov %rsp,%rbp
4005eb: 48 83 ec 40 sub $0x40,%rsp
4005ef: 89 7d cc mov %edi,-0x34(%rbp)
4005f2: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
4005f9: 00 00
4005fb: 48 89 45 f8 mov %rax,-0x8(%rbp)

...
40065e: e8 ad fe ff ff callq 400510 <printf@plt>
400663: 8b 45 dc mov -0x24(%rbp),%eax
400666: 48 8b 4d f8 mov -0x8(%rbp),%rcx
40066a: 64 48 33 0c 25 28 00 xor %fs:0x28,%rcx
400671: 00 00
400673: 74 05 je 40067a <foo+0x93>
400675: e8 86 fe ff ff callq 400500 <__stack_chk_fail@plt>
40067a: c9 leaveq
40067b: c3 retq

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

EXAMINE THE OUTPUTS (FORTIFY)
400597: 53 push %rbx

400598: 48 83 ec 20 sub $0x20,%rsp
40059c: 89 fb mov %edi,%ebx

...
4005cb: 48 89 e2 mov %rsp,%rdx
4005ce: be b5 06 40 00 mov $0x4006b5,%esi
4005d3: bf 01 00 00 00 mov $0x1,%edi
4005d8: b8 00 00 00 00 mov $0x0,%eax
4005dd: e8 de fe ff ff callq 4004c0 <__printf_chk@plt>
4005e2: 8d 04 db lea (%rbx,%rbx,8),%eax
4005e5: 48 83 c4 20 add $0x20,%rsp
4005e9: 5b pop %rbx
4005ea: c3 retq

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

OTHER COMMANDS TO TRY
There are other tools out there for examining/modifying binaries, many in
the binutils package, including, but not limited to
- nm
- objcopy
- strace/ltrace
- dd
- gdb

https://creativecommons.org/licenses/by-nc-sa/4.0/

©2022 by Dr. Jim Alves-Foss. This document is licensed with a
Creative Commons Attribution-Non-Commercial-Share Alike 4.0 International License (CC BY-NC-SA 4.0)

PLEASE ATTRIBUTE DR. JIM ALVES-FOSS AND DR. JIA SONG, UNIVERSITY OF IDAHO

EXCEPT WHERE OTHERWISE NOTED, THIS WORK IS LICENSED UNDER
HTTPS://CREATIVECOMMONS.ORG/LICENSES/BY-NC-SA/4.0/

NOT WITHSTANDING THE NON-COMMERCIAL LICENSE TERMS, NON-PROFIT EDUCATIONAL INSTITUTIONS
ARE GRANTED A NON-EXCLUSIVE LICENSE TO ADAPT AND USE THIS MATERIAL, WITH ATTRIBUTION.

CREATIVE COMMONS AND THE DOUBLE C IN A CIRCLE ARE REGISTERED TRADEMARKS OF CREATIVE
COMMONS IN THE UNITED STATES AND OTHER COUNTRIES. THIRD PARTY MARKS AND BRANDS ARE THE

PROPERTY OF THEIR RESPECTIVE HOLDERS.

https://creativecommons.org/licenses/by-nc-sa/4.0/

