CYBERSECURITY IN BIOMANUFACTURING

Dr. Arda Gozen, WSU

Brenden Fraser-Hevlin, PhD candidate, WSU

Biomanufacturing

- Biological systems (cells, tissues)
 → valuable products
- 2020: ~\$19B market
 - \$85B market by 2031 (annual growth rate of 15%)
- Addresses many major future issues
 - Medicine/health
 - Water/food security, climate change
 - Sustainable energy

Cybersecurity implications in biotech

- Many stakeholders: healthcare, government, industry
- Interruptions to global production, pandemic response
- Sensitive medical data
 - Data breaches in healthcare industry: up 10% each year 2010-2019
- Recent sabotage, IP theft, extortion attempts on systems in biotech industry

Example: Merck & Co, 2017

- Modified ransomware worm: encrypted data on computer systems
 - Affected the manufacturing facility
 - Vaccine shortages, Merck had to borrow from CDC
- Total cost of attack: ~\$1 billion
- US/UK attributed attack to Russia
- No evidence that Merck was specifically targeted

Next Gen Biomanufacturing

- Cyberbiosecurity in future: More attacks, more specific targets
- Old industry standard: large-scale equipment, bioreactors
 - Vulnerable, interruption of production = major risk
- Shift towards smaller, more flexible, systems for more patient specific therapy
 - Need to develop new approaches to cybersecurity in biotech
- Process control, digital automation
- Network-connected systems: vital
 - Remote access, automation, data handling etc.
 - Important but introduces vulnerability
 - Change design approach to account for possible cyberattacks

Centrifugal Bioreactor (CBR)

- Application: growth of T cells for cancer immunotherapy
 - · More efficient than existing industry standard

Mathematical Modeling of CBR

$$\frac{\partial C_{cell}}{\partial t} = \mu_{max} \cdot (1 - \frac{C_L}{C_{L_max}})^n \cdot (1 - \frac{C_A}{C_{A_max}})^m \cdot C_{cell}$$

$$\frac{\partial C_G}{\partial t} = D(C_{G0} - C_G) - Y_{GC} \cdot (\frac{\partial C_{Cell}}{\partial t})$$

$$\frac{\partial C_A}{\partial t} = D(C_{A0} - C_A) + Y_{AC} \cdot (\frac{\partial C_{Cell}}{\partial t})$$

$$\frac{\partial C_L}{\partial t} = D(C_{L0} - C_L) + Y_{LC} \cdot (\frac{\partial C_{Cell}}{\partial t})$$

$$\frac{\partial C_A}{\partial t} = D(C_{A0} - C_A) + Y_{AC} \cdot (\frac{\partial C_{Cell}}{\partial t})$$

$$\frac{\partial C_L}{\partial t} = D(C_{L0} - C_L) + Y_{LC} \cdot (\frac{\partial C_{Cell}}{\partial t})$$

- Ccell = cell density
- Glucose (G)
- Ammonium (A)
- Lactate (L)
- Can use Runge-Kutta method to solve

Model Results

Feedback Control

- Next steps: online control system
- Monitor levels of G, L, A
 - Modify parameters in real-time in response to metabolite levels
- Network operations: control system remotely and facilitate transfer of data
 - Introduces risk of cyberattack
- Model developed to simulate cyberattacks – Dr. Gozen

Questions?

Acknowledgements: NSF EAGER Grant # 1645249, Griffiss Institute (Contract #SA10012021MM0336)

Kitana Kaiphanliam, ChE PhD at WSU

Dr. Bill Davis, WSU

Sources:

- Yi-Heng Percival Zhang, Jibin Sun, Yanhe Ma, Biomanufacturing: history and perspective, *Journal of Industrial Microbiology and Biotechnology*, Volume 44, Issue 4-5, 1 May 2017, Pages 773–784, https://doi.org/10.1007/s10295-016-1863-2
- https://www.statista.com/statistics/1306021/next-generation-biomanufacturing-market-size/
- Guttieres D, Stewart S, Wolfrum J, Springs SL. Cyberbiosecurity in Advanced Manufacturing Models.
 Frontiers in Bioengineering and Biotechnology. 2019;7.
 https://www.frontiersin.org/article/10.3389/fbioe.2019.00210
- Detzel, C. J.; Mason, D. J.; Davis, W. C.; van Wie, B. J. Kinetic Simulation of a Centrifugal Bioreactor for High Population Density Hybridoma Culture. *Biotechnology Progress* **2009**, *25* (6), 1650–1659. https://doi.org/10.1002/btpr.240.