
Self-organizing Maps (SOM)

Like all maps, the basic aim of SOM is data compression.
Given a large set of input vectors, find a smaller set of 
prototypes, vectors with the same features at the input, that 
can provide a good approximation to the whole input dataset.

Prototypes can become a basis for clustering the input data. 
For any vector in the dataset, find the prototype that is most 
like it. Call this prototype the “best matching unit” (BMU). 
Place input vectors with the same BMU in the same cluster.

“Self-organizing” because a machine-leaning algorithm will 
find the prototypes for us.



Colorful illustration of SOM in clustering
Input: randomly colored pixels. Output: ordered bands of color

Each pixel has an input vector 
with specific RGB values. 
Find prototypes, vectors with 
RGB values that we recognize 
as purple, yellow, brown, etc. 
Cluster the pixels by BMUs 
and illustrate the clusters by 
placing pixels with the same 
BMU close together (color 
bands) 

Process of finding prototypes 
is iterative. Color bands 
become more distinct as 
prototypes are refined.



In 1982 Kohonen published an algorithm to find prototypes 
based on input nodes connected to a 2D array of output 
nodes.
wk = weight vector connecting input nodes to output node k



Creating prototypes
If the input space contains 
many instances like x, i(x) 
will become the BMU of 
this type of input.

wi, the weight vector that
connects input nodes to 
the ith output node, will 
become a prototype of 
instances like x.



SOM algorithm
Initialize weights on all connections to small random numbers

3 aspects of training:
Output nodes compete for activation based on a discriminant 
function

Winning node, with largest value of discriminant, becomes the 
center of a cooperative neighborhood.

Neighborhood adapts to an input pattern because cooperation 
increases the susceptible to large values of the discriminant 
function.



Competitive learning

Given a randomly selected input vector x, the BMU is the 
output node with weight vector closes to x.

i(x) = arg mink ||x – wk|| k = 1, 2,…L

where L = # of nodes in the output array and
wk = weight vector connecting input nodes to output node k

Since wk have been normalized to unit length, the smallest 
Euclidean difference is equivalent to the largest dot product 
with x (the discriminant).

The output node with weight vector most like the randomly 
selected input vector wins the competition. 
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Probability that output nodes k belongs to the neighborhood 
of winning output node i(x)

dk,i is the lattice separation between k and i(x)

s(n) = s0 exp(-n/n0)
Initially neighborhood is large. 
Decreases on successive iterations.



Adaptation

))()(()()()( nwxnnnw1nw ki(x)k,kk -+=+ hh

Modification on the nth iteration is applied to the 
weights of all output nodes but focused on the 
neighborhood of winning node k.

Makes the weight vector connecting input x to the 
winning node more like x

Leaning rate h(n) = h0 exp(-n/n0) 



s ~ size of lattice

s~nearest neighbors
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Colorful illustration of SOM in clustering
Input: randomly colored pixels. Output: ordered bands of color



Kohonen’s famous example: SOM clustering of animals

13 attributes of 16 animals
10 x 10 lattice, 2000 iterations of SOM training
Note: not data compression!



Converged BMU of each training example is shown

predators prey

birds

Our prior knowledge detects topological ordering of BMUs
Design test examples to show strength of response of each node.

Mammals

predatorsprey



Semantic map: All lattice sites labeled by animal type 
inducing the strongest response test example.

Topology of responses define 4 region of output array based on our prior 
understanding of the meaning of the labels.



Unified distance matrix (u-matrix or UMAT) a function 
that defined the similarity of neighbors in output nodes

In a square lattice, corner, edge and internal output nodes have 2, 3, or 
4 neighboring, respectively.

Euclidian distance between the prototype vectors of neighboring 
output nodes approximates the distance between different parts of the 
underlying input data space.

After averaging over neighbors, UMAT distance of each node is 
displayed as a heat map with darker colors for larger distance.

Similar prototypes denoted by groups of lightly colored nodes; darker 
colors suggests boundaries between the clusters of similar prototypes



UMAT of Kohonen’s animal SOM: birds and mammals are in 
separate clusters of prototypes but fine structure is present.

birds mammals



SOM using MATLAB: Hands on example

Get data, train SOM, show output

load iris_dataset
inputs=irisInputs;
d1=6;
d2=6;
net=selforgmap([d1,d2]);
[net,tr]=train(net,inputs);
outputs=net(inputs);

Display options
%view(net)
%figure, plotsomtop(net)
%figure, plotsomnc(net)
%figure, plotsomnd(net)
%figure, plotsomplanes(net)
%figure, plotsomhits(net,inputs)
%figure, plotsompos(net,inputs)

iris dataset: 3 classes, 
50 records each, 
4 attributes per record



load iris_dataset
inputs=irisInputs;
d1=6;
d2=6;
net=selforgmap([d1,d2]);
[net,tr]=train(net,inputs);
outputs=net(inputs);

Click on New Script. Editor will open. Type the 7 lines of code below. 
Copy and paste into command window. Return.



plotsomnc
6x6 hexagonal grid. Corner nodes: 2 or 3 neighbors, Edge 
nodes: 3 or 5 neighbors, Internal nodes: 6 neighbors.



plotsomhits
Number of input instances for which a node is BMU
Your numbers may differ slightly.



plotsomnd
UMAT displayed as heatmap on connections between nodes.
Bright colors highlight connections between similar nodes.



How many clusters are suggested by Hits and UMAT outputs?
One boundary is clear. Labeled data has 3 classes. Is the 
larger region a cluster of 2 classes?



Are the suggestions of SOM consistent with K-means 
clustering of input data?

Add these lines to your script
x= irisInputs';
E= evalclusters(x,'kmeans','DaviesBouldin','klist',[1:6]);
plot(E)

Copy and enter them into command window at >>



BDI index for K-means. K=2 favored by minimum similarity.
SOM and K-means clustering of iris data are consistent. 

x= irisInputs';
E= evalclusters(x,'kmeans','DaviesBouldin','klist',[1:6]);
plot(E)



Thanks for your attention.
Any questions?


