
Self-organizing Maps (SOM)

Like all maps, the basic aim of SOM is data compression.
Given a large set of input vectors, find a smaller set of
prototypes, vectors with the same features at the input, that
can provide a good approximation to the whole input dataset.

Prototypes can become a basis for clustering the input data.
For any vector in the dataset, find the prototype that is most
like it. Call this prototype the “best matching unit” (BMU).
Place input vectors with the same BMU in the same cluster.

“Self-organizing” because a machine-leaning algorithm will
find the prototypes for us.

Colorful illustration of SOM in clustering
Input: randomly colored pixels. Output: ordered bands of color

Each pixel has an input vector
with specific RGB values.
Find prototypes, vectors with
RGB values that we recognize
as purple, yellow, brown, etc.
Cluster the pixels by BMUs
and illustrate the clusters by
placing pixels with the same
BMU close together (color
bands)

Process of finding prototypes
is iterative. Color bands
become more distinct as
prototypes are refined.

In 1982 Kohonen published an algorithm to find prototypes
based on input nodes connected to a 2D array of output
nodes.
wk = weight vector connecting input nodes to output node k

Creating prototypes
If the input space contains
many instances like x, i(x)
will become the BMU of
this type of input.

wi, the weight vector that
connects input nodes to
the ith output node, will
become a prototype of
instances like x.

SOM algorithm
Initialize weights on all connections to small random numbers

3 aspects of training:
Output nodes compete for activation based on a discriminant
function

Winning node, with largest value of discriminant, becomes the
center of a cooperative neighborhood.

Neighborhood adapts to an input pattern because cooperation
increases the susceptible to large values of the discriminant
function.

Competitive learning

Given a randomly selected input vector x, the BMU is the
output node with weight vector closes to x.

i(x) = arg mink ||x – wk|| k = 1, 2,…L

where L = # of nodes in the output array and
wk = weight vector connecting input nodes to output node k

Since wk have been normalized to unit length, the smallest
Euclidean difference is equivalent to the largest dot product
with x (the discriminant).

The output node with weight vector most like the randomly
selected input vector wins the competition.

Gaussian
cooperative
neighborhood ú

û

ù
ê
ë

é
-= 22s

2
ik,

i(x)k, exp
d

h

Probability that output nodes k belongs to the neighborhood
of winning output node i(x)

dk,i is the lattice separation between k and i(x)

s(n) = s0 exp(-n/n0)
Initially neighborhood is large.
Decreases on successive iterations.

Adaptation

))()(()()()(nwxnnnw1nw ki(x)k,kk -+=+ hh

Modification on the nth iteration is applied to the
weights of all output nodes but focused on the
neighborhood of winning node k.

Makes the weight vector connecting input x to the
winning node more like x

Leaning rate h(n) = h0 exp(-n/n0)

s ~ size of lattice

s~nearest neighbors

ú
û

ù
ê
ë

é
-= 22s

2
ik,

i(x)k, exp
d

h

Colorful illustration of SOM in clustering
Input: randomly colored pixels. Output: ordered bands of color

Kohonen’s famous example: SOM clustering of animals

13 attributes of 16 animals
10 x 10 lattice, 2000 iterations of SOM training
Note: not data compression!

Converged BMU of each training example is shown

predators prey

birds

Our prior knowledge detects topological ordering of BMUs
Design test examples to show strength of response of each node.

Mammals

predatorsprey

Semantic map: All lattice sites labeled by animal type
inducing the strongest response test example.

Topology of responses define 4 region of output array based on our prior
understanding of the meaning of the labels.

Unified distance matrix (u-matrix or UMAT) a function
that defined the similarity of neighbors in output nodes

In a square lattice, corner, edge and internal output nodes have 2, 3, or
4 neighboring, respectively.

Euclidian distance between the prototype vectors of neighboring
output nodes approximates the distance between different parts of the
underlying input data space.

After averaging over neighbors, UMAT distance of each node is
displayed as a heat map with darker colors for larger distance.

Similar prototypes denoted by groups of lightly colored nodes; darker
colors suggests boundaries between the clusters of similar prototypes

UMAT of Kohonen’s animal SOM: birds and mammals are in
separate clusters of prototypes but fine structure is present.

birds mammals

SOM using MATLAB: Hands on example

Get data, train SOM, show output

load iris_dataset
inputs=irisInputs;
d1=6;
d2=6;
net=selforgmap([d1,d2]);
[net,tr]=train(net,inputs);
outputs=net(inputs);

Display options
%view(net)
%figure, plotsomtop(net)
%figure, plotsomnc(net)
%figure, plotsomnd(net)
%figure, plotsomplanes(net)
%figure, plotsomhits(net,inputs)
%figure, plotsompos(net,inputs)

iris dataset: 3 classes,
50 records each,
4 attributes per record

load iris_dataset
inputs=irisInputs;
d1=6;
d2=6;
net=selforgmap([d1,d2]);
[net,tr]=train(net,inputs);
outputs=net(inputs);

Click on New Script. Editor will open. Type the 7 lines of code below.
Copy and paste into command window. Return.

plotsomnc
6x6 hexagonal grid. Corner nodes: 2 or 3 neighbors, Edge
nodes: 3 or 5 neighbors, Internal nodes: 6 neighbors.

plotsomhits
Number of input instances for which a node is BMU
Your numbers may differ slightly.

plotsomnd
UMAT displayed as heatmap on connections between nodes.
Bright colors highlight connections between similar nodes.

How many clusters are suggested by Hits and UMAT outputs?
One boundary is clear. Labeled data has 3 classes. Is the
larger region a cluster of 2 classes?

Are the suggestions of SOM consistent with K-means
clustering of input data?

Add these lines to your script
x= irisInputs';
E= evalclusters(x,'kmeans','DaviesBouldin','klist',[1:6]);
plot(E)

Copy and enter them into command window at >>

BDI index for K-means. K=2 favored by minimum similarity.
SOM and K-means clustering of iris data are consistent.

x= irisInputs';
E= evalclusters(x,'kmeans','DaviesBouldin','klist',[1:6]);
plot(E)

Thanks for your attention.
Any questions?

