MEDICAL RECORDS THAT GUIDE AND TEACH

Lawrence J. Wedd, M.D.*

The beginning clinical clerk, the house officer, and the practicing physician are all confronted with conditions that are frustrating in every phase of normal action. The purpose of this article is to:

1/10 pm: received 40 units of red cells because of B & A, cataracts surgery. A normal cc: 2800 cc., sjo: 1400 cc., hct: 40%, hgb: 10.7. In all night up to 40 & 8 PM this, gradually came down to 70 & 8 PM, systolic & diastolic blood pressure continued 120 to 150, urine cultures on Amstrong, urine culture not bacteriologic. WBC: 114, no bacteria.

1/10 at 12:30

10 a.m. check nurse 2:50-3:00. Given 10 U. reg. ins. at 12:30 PM. Tense, distressed. Sick & little errant. However, during suctioning pt. seemed 100-150 cc. quiet fast. Personal pneumotocograph tube drawn, well now.

1/11 at 9 AM

Urinalysis: given 10 U reg. inact. pt. was becoming alert & able AM. Levin tube was passed & 500-600 cc. urine fluid removed. Levin tubes have been drawn manually. Will have Levin tube drawn.

THERE ARE SIMILAR NOTES FOLLOW UNTIL 9/30/67

2/9

Last night pt. in PM & red cells like behavior and acting strange. Apparently hallucinatory. Blood sugar did not register on monitor. Blood was given 15 units regular at 8 PM, HgC glucose returned to normal by 1 AM. Blood sugar by 12 midnight was 160 mg/100 ml. Blood sugar noted to be around normal by 1:50 AM. Levin tube had been out since 5 PM. Levin tube replaced & some small amount withdrawn. Pt. received 1 NPO & NG tube to Caution 9/30.

5/11-12 A.M. Levin tube was given 4 1/2 & continued. Blood sugar returned to follow if symptoms still persist. Chest X ray today showed infiltration in R lower lung. No suction. Spontaneous growth observed. But Dr. elected not to total this.

ON SERVICE NOTE: please read red blood blister and please use #7's sheet.

2/17 6 PM

1. Blood alcohol positive.

2. Levin tube: continuous massive amount of V4 of sterile urine for...

3. Levin tube: 10 U regular given at 6 PM.

5. Levin tube: Levin tube.

2/17 9 PM

1. Levin tube: Levin tube.

2. Levin tube: Levin tube.

5. Levin tube: Levin tube.

7. Levin tube: Levin tube.

Fig. 1. Sputum of Note Extracted from a Cervical Cervical.

In the first, unassisted portion, facts and peculiarities are presented that suggest difficulties in many systems, but the confusion in such a collection of data because of the physician defined logically pertains to each patient.

In the last, unassisted portion, facts and peculiarities are presented that suggest difficulties in many systems, but the confusion in such a collection of data because of the physician defined logically pertains to each patient.

In the last, unassisted portion, facts and peculiarities are presented that suggest difficulties in many systems, but the confusion in such a collection of data because of the physician defined logically pertains to each patient.

On 1/12: new physician took over, and the improvement is apparent.

By reading the titles alone of each of the progress notes one begins immediately to grasp the nature of the case. In this, in all such figures, the record is a reproducible, original sheet.

*Medical director, O.F. Clinee, Cleveland Metropolitan General Hospital. Address reprint requests to Dr. Wedd at 13934 Scovill Rd., Cleveland, Ohio 44105.

Plan was to see N.G. take Dr. D.... (G.N.T.) found lesion and see at 4:00 P.M. today. No further action required.

#3 Depression - possible agrammatism - lost weight - given Deseril 5 mg. No improvement. mail tomorrow for urine and blood sample for endocrine study and today semi-responsive unable to take orally and has low platelet count.

P.E.
R.F. 140/70 P. 80-140 g, T. 100° R. 52/min.
Responds to voice occasionally - pain regularly - not intelligible speech.
EENT - sl. c/ o, dry mucous mem. N/V - slight - not constant.
LYMPH - clear, arrange well.
HEART - N.R. - C. 121, S. I., R. Max. - a gallop, rh. etc.
NEURO - responds as noted - DTR's symmetrical, depressed & pathological reflexes.
SKIN - several ecchymotic areas & superficial abrasions marked extensive edema - waxed urticaria to skin.
CHEST X-RAY = cardiomegaly

*See footnote for fever of unknown origin.

W.B.C. = 10,500
Urine - not requested
Imp: Same Phys. - 6/9 week, origin?
Plan - Admit for observation.

Figure 2. Board, Readily Taken from a File of Two Physicians Currently Conducting a Busy General Practice in a Small Town in Maine, Shoving the Approaches Advocated.

fields are far more advanced and immediately applicable than many realize and concern with them is neither premature nor impractical.

New Techniques Must Be Adopted

Among physicians there has been uncritical adherence to tradition in the first phase of medical action, which is the collection of data, upon which complete formulation and management of all the patient’s problems depends.

Routine completeness is expected of physicians in the history and physical examination regardless of specific indications, whereas initial laboratory determinations are arbitrarily relegated to an “only-when- indicated” category. Subclinical disease may thereby be missed. Exposure time is then paradoxically demonstrated by the ordering of excessive and inappropriately selected follow-up laboratory and x-ray examinations for the problems clinically evident. Thoroughness and order in the whole process decrease drastically and indiscriminately as work pressures build up, so that finally among physicians there is a remarkable spectrum of behavior from the compulsively elaborate to the sketchy and haphazard. In the field of medicine it has never been clearly determined what the minimum, effective initial data base needs to be. In the face of the confusion concerning the necessary quantity of data, the initial collection of data could be made as significant and complete as possible. The only limitations should be the discomfort, danger and expense to the patient! If useful historical and physical examination could be acquired and stored cheaply, completely and accurately by new computing and interview techniques without the use of expensive nuclear physicians, they should be seriously considered. That this is already so is strongly suggested by the work of Slack and by results of present efforts in our clinic using trained interviewers and computerized approaches to the recording and printing of narrative, historical data. By such measures every patient could be guaranteed a minimal recorded data base of historical information routinely acquired by a trained interviewer or by direct patient interaction with an organized series of branching questions presented on a television screen terminal. The doctor will always be expected to read this information, enliven upon it where indicated, and integrate it with that which he himself elicited. In this way recorded historical data will not be based on a sin-
ple encounter with anyone, and lucky physicians, who represent a wide spectrum of abilities, habits of thoroughness, attitudes and levels of efficiency, will not risk important omissions.

Paramedical personnel, armed with questions and interviewing techniques, and with multichannel analyzers, pulmonary-function tests, electronic instruments for studying all systems (particularly the cardiovascular system), and simple routines to assess the musculo-skeletal system can create a sound data base rapidly and accurately. At this institution there has been developed a computerized physical examination whose performance requires a high level of thoroughness and precision, but a significant part of it can be performed by paramedical personnel. The "print-outs" from the computer of both the interview and the physical examination are in readable narrative form with only the positive findings printed out under the appropriate system.

*This work has been under the direction of Dr. Charles Berger and Mr. Eugene Laven."
very limited number of problems, pursuing each until he finds a solution, the physician is asked to accept the obligation of multiple problems in a given clinical situation and yet to give each the single-minded attention that is fundamental to developing and mobilizing his enthusiasm and skill.

The university education, a physician receives suggests that his attitude should be scientific in focus, but the multiplicity of tasks that confront him during his clinical training often defeats this goal. He can act as a scientist, however, if he is able to organize the problems of each patient in a way that enables him to deal with them systematically.

It is here that an organized approach to the medical record can help. A present the physician has to read the entire record (often illegible and handwritten) and then sort the data in his mind if he is to know all the patient's difficulties and the extent to which each has been analyzed. There is no evidence that he does this reliably and consistently, and others using the record lose their way, and problems get neglected, missed entirely or treated out of context (Fig. 1).

One solution to the problem is to record data around each problem. Each medical record should have a complete list of all the patient's problems, including both clearly established diagnoses and all other unexplained findings that are not yet clear manifestations of a specific diagnosis, such as abnormal physical findings or symptoms. When the data warrant, these findings can be crystallized into a specific diagnosis. The "problems list" then is not static in its composition, but is a dynamic "table of contents" of the patient's chart, which will be updated at any time. Separate problems all found
to be part of the same entity or diagnosis may be combined. The list is separated into active and inactive problems, and in this way, those of immediate importance are easily discernible, and a compact history of the patient is embodied in the complete list. Once such a list has been established all subsequent orders, plans, progress notes and numerical data can be recorded under the numbered and titled problem to which they are specifically related (Fig. 2-4). For example, if we know that the patient has a perforated ulcer, it is stated; if we are not sure, we honestly state the problem as "abdominal pain" and immediately update it on the original list to perforated ulcer only when the evidence allows. Lists of "impressions" and guesses fail to convey the exact level of resolution of a problem and may result in premature interpretation of diagnostic action. Students must be taught to acquire a capacity for the "sustained middleheadedness" and the tolerance for ambiguity that Whitehead considered so essential when difficult unexplained findings are dealt with. A diagnosis is a step forward only when it can be sustained by the evidence at hand.

Inherent in the problem-oriented approach to data organization in the medical record is the necessity for completeness in the formulation of the problem list and careful analysis and follow-through on each problem as revealed in the titled progress notes, requiring that the proper data be collected and that the conclusions drawn from this data are logical and relevant. The precision of titled, problem-oriented progress notes and conclusions is directly related to the precision and integrity with which the problems are initially defined. The uncertainties inherent in complex biologic systems make titled progress notes the most crucial part of the medical record. There are never right or wrong single decisions in difficult cases, there are only intelligent and logical or unintelligent or illogical series of decisions carefully or carelessly followed.

For certain problems a narrative progress note is not adequate for relating multiple variables. Data involving physical findings, vital signs, laboratory values, medications, intakes and outputs can lead to sound interpretations and decisions only if they are organized (by means of a "flow sheet") to reveal closely temporal associations (Fig. 5). How often do younger physicians see older ones flip through a record, exposed on a single laboratory value, call at random for others in a "stream-of-consciousness" way and give an essay beginning with "in my experience"? Time relations are ignored, crucial data are never brought to light, and wrong decisions forever go unrecognized, because no tracks or logic pathways are discernible in the randomly recorded data.

Flow sheets can be used to facilitate the comprehension and interpretation of multiple interrelated and changing variables. On certain fast moving problems the flow sheet may be the only progress note. The time required initially in setting up a proper flow sheet is small compared to that wasted unraveling and reassembling disorganized and misplaced data. One major goal of clinical teaching should be to designate the problems that should have a flow sheet, the variables that should be included and the frequency with which they should be followed.

When the procedure, outlined above has been done manually, a basis for computerization will have been provided, and when physician findings are computer data on a given problem will be instantaneously retrievable in sequence and a physician will be able to focus on one, two or at a time, seeing the flow of data over extended periods. He will then be prepared to relate that fully digested problem to the other problems by returning to his up-to-date problem list.

Since a complete and accurate list of problems should play a central part in the understanding and management of individual patients and groups of patients, storage of this portion of the medical record in the computer should receive high priority to give immediate access to the list of problems for care of the individual patient and for statistical study on groups of patients.

It would seem most logical to have the physician enter the problem statements directly into the computer. Work at this institution after analysis of large numbers of manually recorded problems, has demonstrated the feasibility of using logically grouped displays of such problems on a television screen terminal. The physician makes a choice and, in some situations, will be led through further displays requiring more careful delineation of the problem. For example, he will first be required to state whether the problem in a given organ system is an endocrine diagnosis, a physiologic diagnosis (such as heart failure), a symptom or a laboratory finding (such as an abnormal electrocardiogram). If he chooses heart failure he will be required in the next display, which appears automatically, to say whether compensated or uncompensated, biventricular, right or left side. These previously prepared displays enable easy coding and yet give freedom of expression to the physician. This method is a tactful teacher because it requires the physician to formulate his problems consistently, completely and accurately. A large number of such precisely defined problems will provide the necessary data base to allow reliable work by statisticians to be undertaken. It can readily be seen that all narrative data presently in the medical record can be structured, and in the future all narrative data may be entered through series of displays, guaranteeing a thoroughness, retrievability, efficiency and economy important to the scientific analysis of a type of datum that has hitherto been handled in a very antiquated manner.
IMPLEMENTATION OF MORE COMPREHENSIVE CARE THROUGH THE MEDICAL RECORD AND THE COMPUTER

The organization of the record described above facilitates and accommodates psychiatric, social and demographic problems. Usually, these are not documented and followed in an organized fashion.

Psychiatric Problems

In the practice of medicine for many physicians, nonorganic problems have been neither challenging nor interesting. Because of this they have never been listed— even though they easily could have been— with the physician using clear descriptive formulations such as "cries easily" or "family difficulties" if he could not use sophisticated psychiatric jargon. Until all psychiatric problems are conscious objects of the physician's attention and are numbered and titled as such, it will not be possible for him to watch them evolve and thereby learn systematically from his own experience. Furthermore, by ignoring them he has never developed an appreciation for patterns of emotional disturbances, his attitude toward modern techniques of analysis becoming at best one of anxiety and perplexity and at worst one of disregard, ignorance and transformed rejection.

The computer is making a major contribution in this area. The vast amount of research on the Minnesota Multiphasic Personality Inventory (MMPI) and the computerization of the analyses of the MMPI is more likely, where it is employed, that the patient will gain from his physician an immediate sympathetic understanding of the forces with which he or she is struggling, and much inadvertent neglect and inadequate analyses by the medical profession can be avoided. There are many physicians who reject the help of modern techniques on the basis that Osler for three hours followed by Freud for three hours could have done better. Even if this were true, modern techniques are not competing in that league, but rather they are competing with hasty "off-the-cuff" five-minute analyses by untrained, impatient physicians who live from case to case and who have no systematic means of learning and improving from a highly organized and recorded data base which is kept up to date.

Depression

Physicians have for years been preoccupied with episodic illness, with problems only when they erupt into symptoms and only with patients who can get themselves to the doctor. At present it is almost impossible to obtain the history of illness from its earliest stages on a sample of the population, or even on an individual. And except for a few pioneers such as Robbins and Hall, most of us do not even think of demographic problems; let alone record, understand and deal with them. As they point out, for a 40-year-old woman whose problem list contains only a fractured arm, we have completely neglected the fact that it may be of major medical significance to her that she is 40 and female and over the next ten years her greatest medical risk is cancer of the breast, and that a yearly breast examination is the most important part of her care. We are so accustomed to dealing with disease only in the individual and only after it becomes explicit, symptomatic or terminal, that we think people are talking about another field when they discuss health hazards from automobiles, smoking, alcohol, diet, smoking, family problems, heredity, factors or mental stress— or just being fat or 40— male or female.

The problem list of the medical record should include demographic problems as well as all others. This will lead to very specific action appropriately focused for preventive procedures and will continually remind us of exactly where in health care our total obligations lie.

Paramedical personnel, such as public health workers, social workers, psychologists and chemists, are already doing a major portion of the work in this area by collecting data that make it possible to define all sorts of social and demographic problems. Physicians must assume the leadership in providing each patient with a total list of problems, irrespective of who in the medical hierarchy provided the data, and in seeing that therapeutic action reflects some perspective on the total needs of the patient.

When large amounts of demographic data are developed, by means of the computer, a system could be developed whereby input of certain vital statistics on any patient would automatically result in an immediate print-out of his main demographic problems along with the current approaches to their management.

Those who provide total care or who are trying to learn how to provide it, and who normally integrate findings into well formulated problems should not and usually do not, feel threatened by a request for a complete list. The specialist who is annoyed or made anxious by health scores in his patient beyond the limited area of his specialty may feel threatened by this strict accounting. Through physicians' inef
ficiency in getting a broad data base, their past neglect of good record-keeping habits and their neglect of quantity of care as they have pointed with pride to quality, they have almost lost their capacity to handle rationally or even to define large-scale tasks of health care.

IMPLICATIONS OF THE PROBLEM-ORIENTED RECORD

The structured, problem-oriented medical record provides a focus for corrective action in a variety of "trouble" areas in medicine: medical problems dealt with out of context; inefficiency in medicine; lack of continuity of care; inapplicability of "basic science" facts and principles; "off-the-cuff" and undisciplined rounds and conferences, and finally meaningful audits in the practice of medicine.
Problems List

Problem

Resolved

1. Accelerated hypertension
 Retinopathy
 Renal Disease

2. H. pylorica — etiology
 Gastritis

3. Vomiting — dehydration
 (NYT — 9/6/60, #40)

4. Diarrhea — unknown etiology
 Diarrhea

5. Renal pelvic ulcer disease
 Chronic gastritis

6. Exogenous obesity

7. Breast mass
 Incisional scar

8. Chronic renal insufficiency
 Incisional scar

9. Renal pelvic ulcer disease
 Chronic gastritis

10. Chronic renal insufficiency
 Chronic gastritis

11. Chronic renal insufficiency
 Chronic gastritis

12. Peripheral neuropathy

13. Decreased vision (R) eye present
 Central nervous system disease

14. Cardiac (M) continuous
 Never before described — Chest wall murmur

2. Problem (S) pmm 12/6/67

Figure 2. List of Problems on a 36-Year-Old Woman.

The management of Problem #1, the dehydration, demonstrated improved Problem #2, the accelerated hypertension. The control of diabetes and other appropriate variables were followed by means of a flow sheet in intermittent volume expansion was greatly improved. Concomitant drug therapy of the medical student's experience set out of context could have led various concepts.

Problems out of Context

Multiple problems may interact, and sophisticated understanding and management of any one of them require a knowledge of at least the presence of all of them. In situations such as the patient with heart failure and azotemia, it is apparent that the right treatment for one may be the wrong treatment for the other, and the need for skillful management is obvious. In other situations the interaction may not be so obvious—e.g., in paroxysmal hypertension, dehydration and hypovolemia (Fig. 6), and physiologists are always risking interpretation and treatment of problems out of context. The medical literature is replete with papers on single entities from series of patients (for example, myocardial infarction, cancer of the colon or pneumonia) to which no complete problem list for each patient was systematically presented. A paper may talk about X per cent mortality for perforated ulcer when, for example, what it should really be saying is Y per cent if heart failure is also on the list or Z per cent if another problem or no others are present. Pneumococcal pneumonia alone may well be a different disease from pneumococcal pneumonia in the presence of azotemia. Potent drugs are administered, and major management decisions made for specific problems taken out of context. It is no wonder that controversies in medicine abound; the present lack of techne for the recollected and presentation of data on multiple problems almost guarantees chaos.

Until a well conceived problem list is in evidence, so that each is dealt with in context, the fragmentation of care in today's specialty clinics and wards, on rounds and in conferences will never be considered seriously. One must learn how to move easily from a single-minded focus on one problem to attention to the total list and interrelations of multiple problems, such as a biochemist meticulo-

ously purifying cardiolipin and at the same time considering reactions and then returns to consider its relationship to the others. He does not, and could not, get basic data on all the enzymes simultaneously to the interest of total biochemistry or the "art of biocinetics," nor does he work on only one and arbitrarily dismiss the others as "little corners." The extent of combination of clarifying single problems and integrating multiple problems is greatly facilitated by a medical specialist that is committed to a single problem list and titled progress notes. Since the body is a complex group of systems, in each of which abnormalities develop that resolve through the other systems to varying degrees, the specialist, as a responsible scientist, must know the variables in the total system as they affect his specialized judgment and action. A patient's intuitive demand for a "whole doctor" is completely consistent with the demands that good science and knowledge of all relevant factors impose upon the specialist, independently of general discussions of "primary" physicians, total cars and humanitarian care.

Fragmentation of single diagnostic entities resulting from listing separately single related findings is not a legitimate complaint against a complete list of problems. If a comprehensive analysis is done on each finding, integration of related ones is an automatic by-product. Failure to integrate findings into a valid single entity can almost always be traced to incomplete understanding of the implications of one or all of them. If a beginner puts customarily, edema, hepatomegaly and shortness of breath as four separate problems, it is his way of clearly admitting that he does not recognize cardiac failure when he sees it. The most important point is that nothing is lost. On the contrary, the interest of more experienced observers is immediately aroused, and some of the medical problems it is identified may be a single bear on the original list and are carried one step closer to diagnosis and treatment. The system does not prevent analysis and integration; it merely reveals the extent to which it is performed and it defines the level of sophistication at which the physician functions.

Choice of Problems and Time for Problems

A scientist likes to choose his own problems, determines the time table for action and then spend as much time as necessary. In medicine as now practiced, the patient chooses the problem and initiates the encounter; the physician must react independently of his interests and his zoods. Many symptomatic problems demanding immediate care might have had organized care at times specified by a physician in a less acute phase. Since they were never identified in the problem list, they were
never followed systematically in numbered, titled progress notes by the too busy doctor, who was deleting off random notes on the acute episode of some other previously neglected situation. A physi-
cian should always consciously look at a patient's complete but arbitrarily pigeonholed record on the front of the record. If his time is limited he should select prior-
ities, directing attention to those having the greatest potential for a positive change in the acute phase. The rule should be: when under pressure, do what you do very well; select the problem wisely, and never do what you don't know how to do. Then the work reflected in each titled progress note can re-
sult in a precisely defined building block, and all effort can be cumulative. Lack of time is not a le-
gimate argument against keeping data in order. From leads to speed in almost all human endeavors.

To the extent that physicians are allowed to study patients and direct therapy in the absence of form (orderly data), they obscure the evidence that re-
veals whether their actions were or were not com-
plete and justified. We cannot build a sound medi-
cal structure on a system that would violate such fundamental rules of scientific behavior as the ex-
cuse, "lack of time." Disorganization and ineffi-
ciency cost time; the principles of data collection that have been accepted by all other areas in science save time in the long run.

Medical students and physicians can be taught to deal with heavy work loads, set priorities, direct par-
taking without losing efficiency. The medical record is an ideal instrument and focus for achieving these educational goals. We should not assert a physician's effectiveness by how much time he does or does not spend with patients or how sophisticated his specialized techniques are. Rather, we should judge him by his completeness and per-
curacy of the data base he requires at the time he starts his work, the speed and the economy with which he does it on his patients, the accom-
quacy in the formulation of all the problems, the effectiveness of the therapy he prescribes and the total quantity of acceptable care that he is able to deliver.

Lack of Continuity of Care
Lack of continuity of care by the same physician is associated with doctors in training and specialists in medical centers and urban areas to a far greater degree than it is with the community physician with a relatively stable practice. There are many factors that attest to this fact, but the point disturbing is that the chief request of our clinic patients when asked for suggestions about the improvement of their care is in effect, "Could you please fix it so that I won't see a different doctor every time I come? They never really understand, some 'pass the buck,' and they all tell you different things." The second disturbing factor indicating this lack of con-
tinuity is the inefficiency that can be directly traced to multiple physicians. Tests are repeated unnee-
sarily, results are not followed up, and large amounts of time are wasted by both the physician and the patient even when the records are ade-
quate. A physician familiar with a good record kept by himself can make sound judgments and decisions in one tenth the time that a physician unfamiliar with the record will require.

A complete medical record is essential to reliable contiguity of medical care, even with the same physi-
cian. According to the present situation, a problem oriented medical record will be invaluable to any physi-
cian and is essential to the busy one. A table of contents and an index facilitate greatly the use of any unfamiliar book.

Basic-Science Training, the Physician and the Medical Record
A great deal that physicians labor over such as the Krebs cycle, plaque histories or monoclonal theory cannot be applied by them (and often by no one) directly to the complex biologic problems that con-
front them. The simple quantity of molecular biol-
y and theoretical physiology that is now develop-
ing can frustrate and overwhelm anyone if it is not coupled with his research or his continuing develop-
ment. Since the practice of medicine is a research activity when a clinician deals scientifically with unique combinations of multiple interacting prob-
lems, it can be coupled to training in basic science either through the facts themselves or through dis-
ciplined approaches to defining problems and han-
dling data.

Collaboration between physicians and basic sci-
centists would occur more frequently if the facts in medical records were structured as they are in scientific documents. It is true, however, that a large body of basic-science facts cannot at present be rigorously correlated with clinical action, and it is also unfortunately true that many basic scientists teaching in medical schools "find it more interesting to explore the fascinating interactions of genetics and chemistry in their uniquely favorable 'non-clinical' material than to bother about 'correlations' with medical and other practical matters." The "infinite elaboration," of details in the laboratory of the basic scientific frequently seems to lead him away from the clinician instead of toward him. Details oriented to specific problems and recorded in an organized manner in clinical charts can do much to make clin-
ic problems attractive to the basic scientist and subject to his advanced techics of investigation and analysis.

Basic-science training could have contributed to clinical practice if through the teaching of system-
atic approaches if the physician had been, as a stu-
dent, required by the basic scientist to formulate problems and write protocols as well as to perform experiments. It is his capacity to formulate and pursue a problem that distinguishes a good clinici-
ain, and a teacher of basic science has failed the physician if he does not teach this discipline but merely dispenses facts through lectures and "cook-
sus" experiments.
There is one fundamental aspect in the preparation of the physician that the basic scientist is not taught. Basic scientists are themselves taught to choose and focus on a single or limited number of problems, and they teach neither the philosophy nor the technique for coping with the multiplicity of problems that patients inevitably present. The failure of clinical teachers to develop and articulate an approach to multiple problems has led to a serious discontinuity in the scientific training of the physician. The chaotic medical record is a symptom of this phenomenon and its root—"the degree to which we organize the record and elevate it to the level of a scientific document will be a measure of our capacity to develop and teach a workable philosophy of multiple problems."

Medical Rounds and Conferences

In earlier times bedside and autopurse-teaching predominated, and most of the data used in the discussion were acquired at the bedside. This was a marvelous mechanism to keep physicians and students anchored to the realities of their patients' problems. At present, even though some teaching at the bedside has continued, the collection of data is no longer done exclusively by the physician, and discussion is often a ritual taking place from memory and at random rather than from highly organized problem-oriented manuscripts. This is usually a positive determinant to rational progress in total patient care. No good scientist would make a judgment or even a recommendation on a single oral presentation of data, nor would he fail to follow up the result. On serious problems, scientists usually study their data carefully before meeting with any one. No scientist would seriously consider medical results as frequently conducted as good scientific, good care or good education. To those involved in care and education, multiple typed copies of well-organized problem-oriented records must be at all times available for study and could be the basis for a major change in attendance teaching rounds. Such rounds will require that the attending physician study the data beforehand, time that is now spent in presenting cases, determining what went on and giving random displays of emotion will be spent instead in analyzing and criticizing and redirecting the recorded efforts of the physician in solving the patient's problems. The young physician should be taught to anticipate and instead carry such analyses for the rest of his life.

We should be allowed the luxury of conferences, grand rounds or a clinicopathological conference only when the original data are in good order and completely and carefully presented, but certain educational goals cannot be met by this means. How many teachers of medicine under the delusion that they can convey to physicians in one hour or a grand rounds the factual content or the wisdom of their 10, 20 or 30 years of personal experience and evolution in a field? A mere realistic goal in teaching is to discipline the physician in the most effective application and growth of his own developing store of factual information through his own disciplined study of actual cases. The computer can make an enormous contribution in this area. Problem-oriented medical records can be made primarily for use by the physician. Authorized individual physicians or participants in a medical conference, who can then be expected to study the patient's data and analyze the list of problems, then the plan and the progress notes. Typed summaries of cases containing only selected data are not sufficient for rigorous analysis and evaluation.

It is true that this could be and is being done now at this institution at manually constructed problem-oriented charts, but the student will not allow immediate retrieval of all the data in sequence on any given problem, graphic representation of data and relations, multiple copies at distant terminals (also used for teaching rounds) and immediate correlations with large amounts of data on similar problems already stored in the computer. Furthermore, when many institutions have similarly developed data banks of patients' records, they can teach and audit one another.

Since the aim is to have the records of current patients readily available, the individual physician or member of a conference can question the doctor in charge of the patient for clarification, pointing out errors or shedding new light on the problems. They may be able to suggest additions to the data base, offering alternatives to the formulation of the problems and the approaches to handling them. By this means a link is forged between education, audit and patient care. Every time someone gets education, a physician will be educated, and at every audit a patient may get better care.

There are those who fear that rigid adherence to the patient's problems will emphasize only the physician's practical knowledge and development and create a truculent who is doted with the technical expertise of an era. unable to meet new situations in a changing world. The approaches described here, however, are based on faculty and student consent, a research attitude and a willingness to apply first principles to the new situations inherent in the infinite variety of problems arising from multiple interacting medical problems. Biologic reality, honestly confronted, facilitate rather than hinder scientific advance. This is the art of medicine. Lack of Supervisory and Feedback System on the Physician's Own Work

There is no audit by outside authorities on each piece of work as it is completed analogous to what is done in basic sciences. Basic scientists are

1 The computer science aspects of these developments are under the direction of Mr. Jack Szemly.

2 Dr. Robert Epstein is investigating techniques whereby actual computerized problem-oriented medical records can be used to feed a major source of teaching material for computer-assisted grading of the medical student.
monitored by a system that monitors the criticism of their peers. Clinical medicine, on the other hand, has tried to substitute qualifying examinations at a single point in a career for a recurring, lifelong audit on each piece of work as it is completed. The strategy and completeness of the physician's own search for data, the depth of analytical capacity in the theoretical understanding and therapeutic decisions and the capacity for sustained quality and energy in his daily attack on problems, both clinical and mundane, are poorly evaluated by any examining procedure that is done at just one point in a physician's career and uses case material besides his own. Professors of clinical medicine and practicing physicians must be provided with the advantages of an audit whose origin is independent of their own organization. The medical record can be used in the solution of this audit and feedback problem if we accept certain basic premises:

Premise (1). All the data in the medical record must be identified with a problem to determine whether the data are fundamental to solving the problem and whether factors such as redundancy, unnecessary delays and unjustified decisions are present.

Premise (2). All the data on any given problem must be easily retrieved in sequence and in a completely up-to-date fashion (for example, x-rays and laboratory data must be in the record as soon as they are available). The data are then immediately available to the staff members responsible in a given specialty area for determining whether certain standards for quality are being met. At the outset the staff member will use the same criteria he has always used to assess the quality of management in his area. Eventually, as the data bank grows in both number of patients with a given problem and numbers of variables followed and recorded, new standards for reasonable numbers of tests and good care will emerge.

Premise (3). Development of standards for quality of patient care as outlined in premise (2) may evolve easily when a patient has one or several unrelated problems. Conclusions will be more difficult when there are multiple concomitant problems in the same patient (such as cardiac failure, renal failure and malnutrition); the final solution of any one of which is intimately related to the progress on the others. In these particular cases fixed standards of care do not apply, and quality must be determined on an individual basis within a framework of generally accepted principles. The doctor's role in cases of this type may well be likened to that of an analogue computer, which plots specific points on a curve as a function of the time and type of input and the shape of the curve is not known until the input steps.

Premise (4). The dimensions of the quality-control problem alluded to in premises (2) and (3) can never be assessed until computerization of the data is accomplished. Manual approaches have not, after all these years, resulted in a widely applicable and practical appraisal. It is through discipline and rapid effective audits and their demands for explicitness in the definition of problems and the orderly organization of the data that computers could make their main contribution to the problem of quality control in medicine. Physicians will be able to respond more constructively as soon as we give them a total picture of what it is that they are doing for specific problems.

The justification for a reorganization of the medical record is developed for a multiproblem audit and cannot be based on any proof that it will in itself guarantee improved quality of care and education. Titles, chapters and indexes in books, well thought out classification systems in organic chemistry and well established roles for presenting data in scientific manuscripts do not guarantee high quality of the material, and no one expects them to in and of themselves. But neither does anyone expect to use the book, work in the chemical field or refer to manuscripts if it is up to bits to take a mass of incomplete and randomly presented data and organize it before he can even start to deal with the matter of quality. It is used for nonscientific scientists to believe that we have allowed for this long the chaos in everyday medical data because scientists do not usually write papers on several questions simultaneously as do physicians; they have assumed that physicians have a system and immediately go to the second order of business, which is questions about quality of care. But we have not had a system for progress notes on multiple problems, and we therefore should not find it necessary to organize the record as a basis for beginning the development of a program of quality control. The basic premises stated above have grown from my convictions that it is already accepted in the field of science that all data should be recorded at the time it is acquired and that before it is removed from active use in the literature of the field, it should be organized and presented in relation to the problem the data are purported to solve.

There may be considerable urgency in these matters, because large amounts of money have already been spent and allocated to the computerization of simple components in the hospital complex such as laboratories and pharmacies, with little regard for problem orienting of data and decisions. This proliferation of automated systems within parts of a hospital complex without provisions for a central role for patients' problems make future evaluation of all these expensive efforts difficult. Such automation may be making highly efficient and accurate specific tests and maneuvers, but often it could merely be facilitating rapid action that is not necessarily solving the patient's problems. Daily reporting of an accurate chemical value, for example, has no particular virtue if the problem at hand requires only a weekly determination or no such determination at all. Some of the most advanced
and most expensive automation of laboratories today is not coupled with an equally sophisticated problem-oriented clinical situation and the value of these sophisticated efforts in terms of patients’ problems can never be assessed. Laboratories have relied on the assumption that all determinations that are ordered are indicated, and the frequency of givers, determinations is never overdone, and what is worse, much money has been spent on systems that were never designed to test this crucial assumption.

At present no system is available whereby a medical teacher or member of an accrediting agency can take a patient’s record at random, select one of the patient’s problems, see all the data pertinent to that problem in sequence and immediately ascertain whether current medical standards are being applied. Such an immediate amount of time is not being spent determining what was or was not done, and for what purpose, that on a time basis alone a teacher or auditor is rendered ineffective, and always may go uncorrected.

Also at present the details of the relation between patients’ problems and hospital resources and costs are very obscure. A medical record maintained by the technician described will make possible a fiscal management audit in which utilization of hospital resources and services involved in the care of the patient are a matter of the medical record and can be identified with each specific problem presented by the patient. This combination of facts (clinical problems, hospital resources and costs) will enable the hospital to establish a dynamic unit cost-accounting system similar to that employed by more sophisticated industries. The advantages of such a system have broad and favorable implications for the general management of a hospital in the areas of fiscal planning, organization of resources, measurement of efficiency and daily management of the institution.

Art in Practice of Medicine

It has been said that preoccupation with the medical record and the computer leads to neglect of the “humanitarian” side and the “art” of medical practice. The most humanitarian thing a physician can do is to precisely know what he is doing, and make the patient as comfortable as he can in the face of problems that he cannot yet solve. There have been major humanitarian and sociologic failings in medicine, but almost all of them can be attributed to our poor behavior as scientist: we have dealt with problems out of context and ignored data relevant to good medical care. It is true that no system will make one kind, thoughtful or sympathetic, but to say that the art of medicine is not dependent on a great deal of discipline and order is to miss perhaps the true understanding of what underlies art in any form. Words of Stenroos might be applied to our situation: “Human activity must improve limits upon itself. The more art is controlled, limited, worked over, the more it is free.” If we accept the limits of discipline and form as we keep data in the medical records the physician’s task will be better defined, the role of paramedical personnel and the computer will be clarified, and the art of medicine will gain freedom at the level of interpretation and be released from the constraints that disorder and confusion always impose.

REFERENCES

5. Idem. Patient’s record as extension of basic science training of physicians. J.A.M.A. case presented at Western Reserve University School of Medicine, Cleveland, Ohio, 1967.
7. Robben, L. C., and Hall, J. Personal communication.