Project Manual

Re-Bid Dodgen Research Facility
Nuclear Science Center HVAC Renewal
Washington State University
Pullman, WA

Project No. 1687-2022
Issued 8/15/2023
Washington State University
Facility Services, Capital
The Architect or Engineer Stamp on this page applies to all portions of the Specifications below.

MECHANICAL ENGINEERS:

MSI Engineers
108 N Washington, Suite 505
Spokane, WA 99201
Phone: 509-624-1050

Specification Divisions 23

END OF ARCHITECTURAL / ENGINEERING STAMPS

ELECTRICAL ENGINEERS:

MSI Engineers
108 N Washington, Suite 505
Spokane, WA 99201
Phone: 509-624-1050

Specification Divisions 26

END OF ARCHITECTURAL / ENGINEERING STAMPS
CONSORTIUM OF THE CONTRACT

00 11 13 Advertisement for Bids
00 21 13 Instructions to Bidders
00 42 13 Form of Proposal Part A: Base Bid & Alternate Bids
00 50 00 Agreement between Owner and Completion Deliverables Exhibit
00 72 00 General Conditions for Washington State Facilities Construction with Washington State University Amendments
Attachment A: Good Faith Hazardous Material Survey

DIVISION 01 GENERAL REQUIREMENTS

01 11 00 Summary of Work
01 26 00 Change Order Procedures
01 29 00 Applications for Payment
01 29 73 Schedule of Values
01 31 19 Project Meetings
01 31 23 Coordination
01 32 13 Progress Schedule
01 32 33 Construction Photographs
01 33 00 Submittals
01 35 16 Alteration Procedures
01 41 00 Regulatory Requirements
01 41 19 Special Provisions
01 45 00 Quality Control
01 45 23 Testing Laboratory Services
01 45 34 Contract Performance Evaluation Program
01 50 00 Construction Facilities & Temporary Controls
01 58 00 Project Identification Sign
01 60 00 Material and Equipment
01 70 00 Project Close-Out
01 71 23 Field Engineering
01 74 19 Construction Waste Management
01 78 23 Operation & Maintenance Manuals
01 78 39 Project Record
01 81 19 Indoor Air Quality Management Plan
01 91 00 Commissioning Requirements

DIVISION 23 HEATING VENTILATING AND AIR CONDITIONING

23 00 00 HVAC General Provisions
23 05 19 Meters and Gages for HVAC Piping
23 05 23 Valves for HVAC Piping
23 05 29 Hangers and Support for HVAC Piping and Equipment
23 05 53 Identification for HVAC Piping and Equipment
23 05 93 Testing, Adjusting, and Balancing (TAB)
23 07 00 Mechanical Insulation
23 09 00 Instrumentation and Controls for HVAC
23 09 26 Variable Frequency Drives
23 22 13 Steam and Condensate Piping
23 22 16 Steam and Condensate Piping Specialties
23 23 15 Refrigerant Piping and Specialties – Split Systems
23 31 00 HVAC Ducts
23 33 00 Duct Accessories
23 34 23 Power Ventilators
23 41 00 Air Filters
23 63 13 Air-Cooled Refrigerant Condensers
23 73 13 Modular Indoor Air-Handling Units

DIVISION 26 ELECTRICAL

26 05 05 Selective Demolition for Electrical
26 05 19 Low-Voltage Electrical Power Conductors and Cables
26 05 26 Grounding and Bonding for Electrical Systems
26 05 29 Hangers and Supports for Electrical Systems
26 05 33.13 Conduit for Electrical Systems
26 05 33.16 Boxes for Electrical Systems
26 05 33.23 Surface Raceways for Electrical Systems
26 05 53 Identification for Electrical Systems
26 09 16 Electrical Controls and Relays
26 24 16 Panelboards
26 29 13 Enclosed Controllers

END OF SECTION 00 01 10
Sealed bids are being requested by the Board of Regents of Washington State University, for the above referenced project.

Project Scope:

This project at the Dodgen Research Facility will renew HVAC and electrical components serving the pool and beam rooms. Demolition and new construction will take place throughout the facility with most occurring in the mechanical penthouse. General scope includes, replacing aging HVAC fans, ductwork, dampers, heating coil, controls, and an obsolete motor control center. On-site work scheduling must be coordinated with the WSU Construction Manager and NSC staff. General work that does not require a shutdown or interfere with facility operation can be done during regular business hours (8am to 5pm M-F) throughout the year. Work that does require a shutdown or will interfere with facility operation must be done during facility down-time (approximately December to March). Project must be substantially complete by March 29, 2024. Proposals MUST BE based on these Contract Time constraints.

Project Physical address: 2480 NE Roundtop Dr, Pullman, WA 99164

Bid Estimate: $600,000 to $650,000

Bid Deadline: 9/12/2023, prior to 2:00 p.m., virtual bid opening at 2:30 p.m.

In-Person Pre-bid Meeting: 8/31/2023, 10:30am, at McCluskey room 173, 2425 E Grimes Way, Pullman, WA 99164-1150

Visit https://facilities.wsu.edu/facilities-services-capital/contractors/ for bid docs and meeting details.

Email contracts@wsu.edu to be added to the Planholder’s List.

Owner reserves the right to reject any and all bids and to waive any informalities or irregularities in the bids received.

Maja S. Huff
509-335-9082
Contracts@wsu.edu
Facilities Services
Washington State University

Additional Project Information available on the Website:

Bids will be received either by email to contracts@wsu.edu or in hard copy at McCluskey Services Building, 2425 East Grimes Way., Pullman, WA. Proposals will then be publicly opened and read aloud at 2:30 p.m. by https://wsu.zoom.us/j/99215211063?pwd=c2hjbFh5d1lScGFRcldZU3dMSG5BQT09 or Phone 253-215-8782 and entering Meeting ID 992 1521 1063 Passcode 6000971 Attendance in
person is not allowed.

Parking on campus is enforced 24 hours a day, every day. It is bidder’s responsibility to obtain parking permits to attend pre-bid meetings, site visits, and bid openings. Daily permit rates may be found at: http://transportation.wsu.edu/TempFees.html. Identify the meeting and project when obtaining the permit to receive appropriate rates.

Printing Disclaimer: The bidding documents are available for all interested bidders and plan centers. The University does not provide printing services; it is the bidder’s responsibility to print the drawings to the appropriate scale indicated. We encourage the use of professional printing shops.

END OF SECTION 00 11 13
PART 1 GENERAL

1.01 PROJECT IDENTIFICATION

A. Refer to the Advertisement for Bids for Project identification, availability of bidding documents, Prebid Conference, and Contract completion date. Refer to Summary of Work, Section 01 11 00, for a brief description of the Work.

B. The University is requiring that Zoom be downloaded and installed via a computer client rather than connecting through a web browser plugin. The computer client can be found here: https://support.zoom.us/hc/en-us/articles/207373866-Zoom-Installers

1.02 BIDDER QUALIFICATIONS

A. Contractor Registration:

1. Bidders subject to the Contractor's Registration Act (RCW Chapter 18.27) must show their State of Washington Contractor's license number on the Form of Proposal. In addition, bidders are cautioned to verify that all subcontractors submitting bids are also registered and licensed in accordance with the laws of the State of Washington. Owner is prohibited by virtue of RCW 39.06.010 from executing any Contract for public works with any contractor who is not registered or licensed in accordance with the laws of this state. Prior to submitting a bid, bidder must obtain an appropriate clearance and license to do business in the State of Washington as follows:

a. Contractor's License: Make license application to the Department of Labor and Industries, Contractor's Registration, P.O. Box 7689, Olympia, Washington 98504.

b. Registration Number: Out-of-State Contractors must obtain a registration number and permission to do business in the State of Washington from the Secretary of State, Olympia, Washington 98501.

c. Other Registrations: Register with the State Department of Revenue as a contractor engaging in business in this state and register with the State Department of Labor and Industries and the Employment Security Department.

2. Payment and Performance Bonds:

a. Bidders must be able to furnish satisfactory separate Payment and Performance Bonds for full amount of the initial Contract Sum, plus sales tax.
1.03 EXAMINATION OF SITE AND CONTRACT DOCUMENTS

A. Before submitting a bid or proposal, bidders shall carefully examine the Contract Documents, visit the Project site, and fully inform themselves as to all existing conditions and limitations, and shall include in their bid or proposal a sum to cover the cost of all items included in the Work, and shall rely on their own examination in making their bid or proposal. No change in the Work, the Contract Sum, or the Contract Time will be allowed for issues that would have been reasonably apparent by the foregoing examination.

B. Bidder acknowledges that it has satisfied itself as to the character, quality and quantity of surface and subsurface materials or obstacles to be encountered insofar as this information is reasonably ascertainable from an inspection of the Project site, including all exploratory work done by Owner, as well as from the Drawings and Specifications made a part of the Contract Documents.

C. Bidder acknowledges that adjoining areas will be in normal course during the Work. Bidder should anticipate pedestrian and traffic congestion, limited parking, and the need to coordinate all Work with ongoing operations.

D. Owner assumes no responsibility for any conclusions or interpretations made by bidder based on the information made available by Owner. Should a bidder find discrepancies or omissions in the Drawings or Specifications, or should bidder be in doubt as to their meaning, bidder shall at once notify Owner. If appropriate, Owner will send written instructions to all bidders by addenda. Questions received less than 7 Days before the time of bid opening may not be answered. All issued addenda shall be incorporated into these Contract Documents.

1.04 PREBID CONFERENCE

A. All bidders are encouraged to attend a pre-bid conference due to site access and complexity of project. Refer to the Advertisement for Bids for the date, time and location.

B. Parking on campus is enforced 24 hours a day, every day. It is bidder’s responsibility to obtain parking permits to attend pre-bid meetings, site visits, and bid openings. Due to the possibility of parking at multiple locations on campus, bidders are advised to consider obtaining Orange Temporary Permits. Go to http://transportation.wsu.edu/TempFees.html for more information about parking permits.

1.05 CLARIFICATIONS

A. Should bidders find discrepancies in, omissions from, or unclear information within the Contract Documents, they should notify Owner at once. Owner shall issue a written instruction in the form of an addendum to all bidders. Neither the Owner nor Architect/Engineer will be responsible for any oral instructions. Questions received less than 7 Days before bid opening may not be answered.
All addenda issued prior to the opening of bids will be incorporated into the Contract.

1.06 SPECIFIED PRODUCTS

A. Bids must be based upon items identified in the Specifications or approved substitutions. In certain cases, specific items have been named because of operational or maintenance considerations; approval of substitutions should not be assumed.

B. Requests for approval of substitutions must be made in writing and received by Owner at least 7 Days prior to the date of bid opening. Said request must include complete descriptions, technical data, and performance records. Any approval of the proposed substitution will be made by addendum issued to all bidders.

C. To submit substitution requests prior to Bid opening:

1. Only one substitution request per bidder will be considered for each product.

2. Requests for substitutions shall provide sufficient data to allow Owner to evaluate the suitability of the proposed product. Bidder must clearly identify product and model number of proposed substitution.

D. By requesting a substitution, bidder represents and warrants that (1) it has personally investigated the proposed material or product and determined that it is equal or better in all respects to that specified, (2) the same or better warranty will be provided for the substitution, (3) it has coordinated with affected subcontractors, (4) the substitution will not impact other parts of the Work, (5) the aggregate costs associated with the substitution actually reduces its bid amount, (6) all costs associated with the substitution are included in its bid, and (7) it waives any known or unknown future claim for an increase in the Contract Sum or Contract Time associated with the substitution.

E. Owner retains full discretion over whether to approve a substitution, and Owner’s approval does not relieve bidder of the above requirements.

1.07 TAXES

A. State of Washington Sales Tax shall not be included in the bid price, except that the retail sales tax upon sales and rentals to prime contractors and subcontractors of tools, cranes, air compressors, bulldozers, lubricating oil, sandpaper, form lumber, and similar items of material and equipment which are primarily for use by the bidder rather than for resale as a component part of the finished work, shall be included in the bid price. (See WAC 458-20-170 (State Department of Revenue Rule 170))

B. Sales tax applicable to the Contract Sum will be added to the Contract Sum by Owner at the time the Contract (Section 00 50 00) is written and shall be paid to
Contractor shall then remit payment for the sales tax to the State Department of Revenue in conformance with the law.

1.08 FILING FEES

A. Applicable state laws concerning prevailing wages, hours, workers' compensation, and other conditions of employment are called to the attention of bidders for their compliance. Bidders shall include in their bid any and all fees, including filing fees, required to comply with applicable labor laws.

1.09 PAYMENT AND PERFORMANCE BONDS

A. Upon award of the Contract, the successful bidder will be required to provide Owner with satisfactory separate payment and performance bonds. Cost of bond premiums must be included in the bidder's proposal.

1.10 FORM OF PROPOSAL

A. Proposals must be formatted in accordance with the following:

1. Bidder must utilize the Form of Proposal (Parts A and B), examples of which are included in the Contract Documents; all numbers must be clearly and legibly stated both in writing and in figures; and signatures must be in longhand.

2. Bids must not contain any recapitulation of the Work to be done.

3. Bidders must include prices for all Alternate Bid items if they are included in the Form of Proposal.
 a. Bidders shall bid upon all Alternates indicated in the Form of Proposal. When bidding on alternates for which there is no charge, bidder shall write the words "No Charge" or some similar designation in the space provided on the Form of Proposal. If a bidder fails to bid an alternate, or notes "no bid," it will be construed as meaning that there will be no change in the Contract Sum and that the alternate is included in the Contract Sum.

4. Bids shall be received either electronically or in hard copy:
 a. Electronic Bids: Bidders may submit their bid via email to contracts@wsu.edu prior to the bid submission deadline. The emailed bid must include all documents that would have normally been submitted in the sealed envelope, including but not limited to the Form of Proposal and bid bond, in either PDF or Image format.
 1) The official clock for receipt of electronic bids will be the time and date stamp by WSU email services, not bidders email services.
 b. Hard Copy Bids: Each part of the Form of Proposal must be sealed in its own opaque envelope and marked "Proposal Re-Bid Dodgen Research Facility: Nuclear Science Center HVAC"
Renewal”. Bidders name shall appear on the outside of this sealed envelope. All bids are to be delivered or mailed to Facilities Services, P.O. Box 641150, McCluskey Services Building, Washington State University, Pullman, WA 99164-1150. If mailed, the Bid envelope shall be enclosed in another envelope for mailing.

1) An official clock, at the office location designated for receipt of bids, will be designated by Owner for determining the timely receipt of each bid.

c. Bidders are solely responsible for delivery of their proposals at the specified location and before the specified time set for receipt of bids.

5. Bids will be received on the dates and at the times indicated in the Advertisement for Bids.

6. Proposals received and determined untimely by Owner, may be considered as non-responsive and hard copy bids will be returned to bidder unopened, or notification will be made by email for electronic bids.

7. Bids will be received until the respective times indicated in the Advertisement for Bids. They must be received prior to the respective times stated; i.e., where bids for Part A are required until 2:00 p.m., all bids received by 1:59:59 p.m. are timely; all bids received on or after 2:00:00 p.m. are untimely.

8. Proposals shall consist of the following components:

a. Proposal: Completed Part A proposal indicating the following:

1) Base Bid and Alternate Bid (if any) amounts;

2) Acknowledgment of Addenda received;

3) Signature, Corporate Identification, and Contractor License number; and

4) Bid Security to be attached to Part A proposal form.

9. All proposals will remain sealed/unshared until the bid opening.

1.11 BID ALTERNATES, ALLOWANCES AND UNIT PRICES

A. Bid Alternates, Allowances, and Unit Prices adjust the Project scope by adding, deleting, or modifying specific parts of the Work as stated hereinafter.

B. An Alternate is an amount proposed by bidders and stated on the Bid Form for certain construction activities defined in the bidding documents that may be added to or deducted from the Base Bid amount and/or the Owner decides to accept a corresponding change in either the amount of construction to be completed, or in the products, materials, equipment, systems, or installation
methods described in the Contract Documents.

1. Each bidder shall submit, on the Form of Proposal, an amount for each Bid Alternate stating the difference in cost from the Base Bid amount for adding, deleting, or modifying specific materials and/or construction.

2. The difference in cost shall include all deletions, additions, and adjustments to all trades as may be necessary by each modification.

3. Only Alternates authorized by these specifications or pursuant to addenda will be considered.

C. An Allowance is an amount established in the Contract Documents for inclusion in the Contract Sum to cover the cost of prescribed items not specified in detail sufficient to estimate at time of bid.

1. Each bidder shall include in the Base Bid amount the amount for each Allowance as identified in the bidding documents.

D. A Unit Price is an amount as a price per unit of measurement for materials or services added or deleted from the Base Bid amount.

1. Each bidder shall submit on the Bid Proposal Form, an amount for each Unit Price stating the difference per unit or measurement for materials or services added or deleted from the Base Bid amount.

2. The Unit Price stated shall be used as the amount for either adding or deleting the item per unit of measurement from the Work.

3. The Unit Price amounts submitted on the Form of Proposal shall be used as the cost per unit of measurement for the entire duration of the Contract.

1.12 BID GUARANTEE

A. Bidder shall furnish a bid guarantee in the form of a cashier’s check or bid bond made payable to the Board of Regents of Washington State University for an amount equal to at least 5% of the total Base Bid amount, as evidence of good faith and as a guarantee that, if awarded the Contract, the bidder will execute the Contract and provide payment and performance bonds as required.

1. Electronic submission of the Bid Guarantee shall constitute full submittal as if delivered in hard copy.

B. Should the successful bidder fail to enter into a Contract and furnish satisfactory bonds within 10 Days after its proposal has been accepted, the bid security shall be forfeited as liquidated damages.

C. Owner reserves the right to hold the bid guarantee of the 3 lowest bidders until the successful bidder has entered into a contract and furnished required bonds.

1.13 MWBE PARTICIPATION
A. Washington State University is committed to the enhancement of opportunities for minority and women owned and controlled businesses in public contracting. The use or solicitation of minority and women's business enterprise firms is expressly encouraged.

1.14 MODIFICATION OF PROPOSALS

A. Modifications to proposals already submitted will be permitted only if requested in writing over the signature of the bidder and provided such requests are received prior to the time set for receipt of bids.

B. The original Form of Proposal will remain unopened until bid opening. Modifications in the form of facsimile transmissions will not be accepted.

C. Withdrawal of proposals will be permitted only if requested in writing over the signature of the bidder and provided such requests are received prior to the time set for receipt of bids.

D. Withdrawal requests in the form of facsimile transmissions will not be accepted.

E. After the scheduled closing time for the receipt of Form of Proposals, no bidder will be permitted to withdraw a proposal unless said award is delayed for a period exceeding 60 Days.

1.15 ALTERATIONS PROHIBITED

A. Except as otherwise provided herein, Forms of Proposal which are incomplete, or which are conditioned in any way, or which contain items not called for in the Proposal Form, or which are not in conformity to the law, may be rejected.

B. The Form of Proposal invites bids on specific Drawings and Specifications. Only the amounts and information asked for on the Form of Proposal furnished will be considered.

1.16 BID PROTEST PROCEDURES

A. A bidder protesting for any reason the bidding documents, a bidding procedure, the University's objection to a bidder or a person or entity proposed by the bidder, including but not limited to, a finding of non-responsibility, the award of the Contract or any other aspect arising from, or relating in any way to, the bidding, shall file a written protest with the University within two (2) business days of the event giving rise to the protest. (Intermediate Saturdays, Sundays, and legal holidays are not counted as business days.) The written protest shall include the name of the protesting bidder, the title of the bid under which the protest is submitted, a detailed description of the specific factual and legal grounds for the protest, copies of all supporting documents, evidence that the apparent low bidder has been given notice of the protest, and the specific relief requested. The written protest shall be sent by email to contracts@wsu.edu.
B. Upon receipt of the written protest, the University will consider the protest. The University may, within three (3) business days of the University’s receipt of the protest, provide any other affected bidder(s) the opportunity to respond in writing to the protest. If the protest is not resolved by mutual agreement of the protesting bidder and the University, the Assistant Vice President for Facilities Services, Capital of the University, or her or his designee, will review the issues and promptly furnish a final and binding written decision to the protesting bidder, and any other affected bidder(s), within six (6) business days of the University’s receipt of the protest. (If more than one (1) protest is received, the University’s decision will be provided within six (6) business days of the University’s receipt of the last protest.) If no reply is received from the University during the six (6) business-day period, the protest will be deemed rejected.

C. Failure to comply with these protest procedures will render a protest waived.

D. Timely and proper compliance with, and exhaustion of, these protest procedures shall be a condition precedent to any otherwise permissible judicial consideration of a protest.

1.17 LOW RESPONSIBLE BIDDER

A. It is the intent of Owner to award the Contract to the low responsible bidder. Before award, the bidder must meet the following bidder responsibility criteria to be considered a responsible bidder. The bidder may be required by Owner to submit documentation demonstrating compliance with the criteria. Bidder must:

1. Have a current certificate of registration in compliance with chapter 18.27 RCW, which must have been in effect at the time of bid submittal;

2. Have a current Washington Unified Business Identifier (UBI) number;

3. If applicable:
 a. Have Industrial Insurance (workers’ compensation) coverage for the bidder’s employees working in Washington, as required in Title 51 RCW;
 b. Have a Washington Employment Security Department number, as required in Title 50 RCW;
 c. Have a Washington Department of Revenue state excise tax registration number, as required in Title 82 RCW;

4. Not be disqualified from bidding on any public works contract under RCW 39.06.010 or 39.12.065(3).

5. Not have been found out of compliance by the Washington State Apprenticeship and Training Council for working apprentices out of ratio, without appropriate supervision, or outside their approved work processes as outlined in their standards of apprenticeship under chapter 49.04 RCW for the one-year period immediately preceding the first date of advertising for this project.
6. Not have been determined by a final and binding citation and notice of assessment issued by the Department of Labor and Industries, or through a civil judgment entered by a court of limited or general jurisdiction, to have willfully violated, any provision of chapter 49.46, 49.48, or 49.52 RCW, as defined in RCW 49.48.82.

B. In addition to the bidder responsibility criteria above, bidder must also meet the following supplemental bidder responsibility criteria applicable to the Project:

1. The ability, capacity, and skill of bidder to perform the service required;
2. The experience and efficiency of bidder;
3. Whether bidder can perform the Contract within the time specified;
4. The satisfactory completion of previous contracts or services;
5. Such other information having a bearing on the decision to accept a bid proposal.

C. For projects involving research and laboratory space, or a combination of research, laboratory, and office space, the required experience for bidder, Project Manager, Superintendent, and Project Engineer shall be as follows:

1. Bidder shall have documented experience as a GC on projects of similar type, value, and scope for a minimum of eight years or three projects.
2. The Project Manager shall have documented experience managing and planning projects of similar type, value, and scope as the Contractor’s Project Manager for a minimum of five years or three projects.
3. The Superintendent shall have documented experience directing daily activities of all subcontractors on projects of similar type, value, and scope as the GC’s Superintendent for a minimum of five years or three projects.
4. The Project Engineer shall have documented experience coordinating and administering the work on projects of similar type, value and scope as the GC’s Project Engineer for a minimum of three years or two projects.

D. Within 48 hours of receipt of request, apparent low bidder will provide such information about its team as Owner determines to be reasonably necessary to evaluate the responsibility of the bidder. Failure to reply with requested information will render a bidder non-responsible at Owner’s option. At minimum, a bidder shall provide:

1. A financial statement;
2. List of projects currently under construction, including current contract amount and status of each;
3. Names and resumes of proposed Project Manager, Project Engineer, and Superintendent;
4. Name of bonding company/agent; and
5. References including project and owner name, a project contact, and project contact telephone number.

E. As evidence that bidder meets the bidder responsibility criteria, the apparent low bidder must submit documentation as may be required above to the Owner within 48 hours of the bid submittal deadline. Owner reserves the right to request such documentation from other bidders also.

F. Owner will review Contractor’s past Contract Performance to assist in evaluating the contractor’s qualifications and proven ability to successfully perform future contracts only when past performance has been previously documented via the Contract Performance Program.

G. If Owner determines bidder does not meet the bidder responsibility criteria above and is therefore not a responsible bidder, Owner shall notify bidder in writing with the reasons for its determination. If bidder disagrees with this determination, it may appeal the determination within 24 hours of receipt of Owner’s determination by presenting additional information to Owner. Owner will consider the additional information before issuing its final determination. If the final determination affirms that bidder is not responsible, Owner will not execute a Contract with any other bidder until 2 business days after the bidder determined to be not responsible has received the final determination.

1.18 CONTRACT AWARD

A. Owner intends but is not required to enter into a contract with the successful bidder, for all Work called for in the Contract Documents.

B. The determination of the successful bidder will be made on the basis of the sum of the Base Bid together with Owner-selected Alternates.

C. The responsibility of bidder and its subcontractors will be considered in making the award. Owner reserves the right to reject any or all bids and to waive informalities advantageous to Owner and/or the protection of the public interest.

D. Reinstatement of Bid Alternate not initially selected shall be in accordance with provisions of the Bid Proposal Form of Proposal.

1.19 CONTRACT FORMS

A. Owner’s standard form Contract is included with the Contract Documents.

END OF SECTION 00 21 13
Refer to Instructions to Bidders for bid submittal procedures.

Bidder's Firm Name: ____________________________ Date: ____________

To: Facilities Services, Capital
McCluskey Services Building, P.O. Box 641150
Washington State University
Pullman, Washington 99164-1150

Pursuant to and in compliance with the Advertisement for Bids and the Instructions to Bidders, the Bidder, having carefully examined the Contract Documents entitled "Re-Bid Dodgen Research Facility: Nuclear Science Center HVAC Renewal" and having visited the Project site and examined the conditions affecting the Work, hereby proposes and agrees to provide all labor, materials, equipment, services, and incidentals necessary to complete the Work for the following stipulated sums:

A. BASE BID

 __ DOLLARS ($_________),
 including allowance described in the Agreement. The amount of allowance(s) included above is $8,000.00.

B. UNIT PRICES – NOT USED

C. ALTERNATES – NOT USED

D. REINSTATEMENT OF BID ALTERNATES – NOT USED

E. SALES TAX

 The Bidder agrees that the amounts indicated in the proposal do not include Washington State and local sales taxes except as required by the Instructions to Bidders.

F. CONTRACT PROVISIONS

 Should the Bidder be notified of the acceptance of this proposal within 60 Days from the date set for the opening thereof or at any time thereafter before this proposal is withdrawn, the bidder agrees to execute a Contract for the Work and to furnish the required bonds.
1. **TIME OF COMPLETION**
 The bidder agrees, if awarded a Contract for the Work, to complete the Work within the Contract Time specified.

2. **LIQUIDATED DAMAGES**
 The bidder agrees that time is of the essence of the Contract and acknowledges that the amount of damages specified is a measure of the damages which the Owner will sustain should the Bidder fail to complete the Work within the Contract Time.

G. **BID GUARANTEE**
 The Bidder agrees that the bid guarantee accompanying the Part A Form of Proposal is left in escrow with Owner, that the amount of the guarantee is the measure of the damages that Owner will sustain by failure of the bidder to execute a Contract for the Work and furnish required bonds, and that if the bidder fails to deliver said documents within 10 Days after receipt of notice of award to the bidder, the bid guarantee shall become the property of Owner.

H. **MINORITY AND WOMEN'S BUSINESS ENTERPRISE (MWBE) PARTICIPATION**
 Owner is committed to the enhancement of opportunities for minority and women owned and controlled firms in public contracting. While neither required, nor a part of bidder responsiveness, the use or solicitation of minority and women business enterprises is expressly encouraged.

I. **ADDENDA**
 The bidder hereby acknowledges receipt of Addendum by number(s):

 __________ __________ __________ __________ __________

J. **PREVAILING WAGE CERTIFICATION**
 The bidder has not been determined by a final and binding citation and notice of assessment issued by the Department of Labor and Industries, or through a civil judgment entered by a court of limited or general jurisdiction, to have willfully violated, any provision of chapter 49.46, 49.48, or 49.52 RCW, as defined in RCW 49.48.82.

K. **DECLARATION**
 The bidder represents and warrants that he/she possess the authority to sign for and bind bidder.

 The Bidder declares under penalty of perjury under the laws of the State of Washington, that all of the foregoing information as recited is true and correct to the best of his/her knowledge.
Bidder’s Firm Name: __

Signed By: ___ Official Title: __________________________

Print Name: ___

Address: __

City: ___________________________ State: ____________ Zip Code: __________

Telephone: ______________________ Fax: _______________________________________

State of Washington Contractor’s License Number: ______________________________

Federal Tax Identification Number: __

Email Address: __

The firm represented by the above signature is a:

Sole Proprietorship ____________
Partnership ____________
Corporation ____________ State of Incorporation _____________________________
Other ____________

END OF SECTION 00 42 13
Re-Bid Dodgen Research Facility
Nuclear Science Center HVAC Renewal

Agreement between Owner and Contractor

(Fixed Contract Sum)

This AGREEMENT is effective as of the date of the first signature on the Agreement so long as all other parties’ authorized signatories have also executed the Agreement. This Agreement is made by and between the following parties in connection with the Project identified below.

OWNER: Washington State University
c/o Facilities Services, Capital
P.O. Box 641150
Pullman, WA 99164-1150

CONTRACTOR: [To be determined]

ARCHITECT (A/E): MSI Engineers
108 N Washington Suite 505
Spokane, WA 99201

PROJECT: Re-Bid Dodgen Research Facility
Nuclear Science Center HVAC Renewal
2480 NE Roundtop Drive
Pullman, WA 99164

In consideration of the mutual covenants and obligations contained herein, Owner and Contractor agree as set forth herein.

Article 1
The Work of the Contract

1.1 Contractor to fully execute the Work. Contractor shall fully execute the entire Work in strict accordance with the Contract Documents, and shall provide all material, equipment, tools, and labor necessary to timely complete the Work described in and reasonably inferable from the Contract Documents, except to the extent specifically indicated to be the responsibility of others.

1.2 Contractor to further Owner’s interests. Contractor accepts the relationship of trust and confidence established by this Agreement and covenants with Owner to cooperate and collaborate with Owner and others involved with the Project and to exercise Contractor’s best skill and judgment; to furnish efficient, professional construction administration, management services and supervision with sufficient quantities of fully qualified, competent and experienced personnel; and to perform the Work in an expeditious and economical manner consistent with Owner’s interests. The parties will endeavor to promote harmony, cooperation and mutual respect among the Project participants to the fullest extent possible in order to further the success of the Project and to effect prompt and successful completion of the Project within the requirements of the Contract Documents, the Contract Time and...
the Contract Sum.

Article 2

Contract Documents

2.1 **The Contract Documents.** The “Contract Documents” form the “Contract.” The Contract Documents consist of this Agreement (Agreement between Owner and Contractor or the “Agreement”); any attached Exhibits and other documents listed in the Contract Documents; the General Conditions; other documents listed in Article 8 of this Agreement; and written modifications, amendments and Change Orders to the Contract issued after execution of this Agreement.

2.2 **Contract is complete and integrated agreement.** The Contract represents the entire, complete, and integrated agreement between the parties and supersedes prior negotiations, representations or agreements, either written or oral. No oral representations or other agreements have been made by the parties except as specifically established in the Contract.

2.3 **Contract is between only Owner and Contractor.** The Contract Documents shall not be construed to create a contractual relationship of any kind between any Persons other than Owner and Contractor.

Article 3

Definitions

3.1 **Terms, words and phrases to have ordinary meanings.** Terms, words and phrases used in the Contract Documents shall have the meanings given them in this Agreement and in the General Conditions or, if not defined, in a manner consistent with construction industry standards. In the event of any inconsistency in such definitions, the definitions in this Agreement shall control.

3.2 **Construction Documents.** The Construction Documents are identified in the General Conditions and other Contract Documents as Drawings and Specifications. The Construction Documents do not include shop drawings or other Submittals.

3.3 **Contractor.** “Contractor” is the Person identified as such in the Agreement and General Conditions. Contractor must be licensed, bonded, and insured as a contractor in the State of Washington, and must legally be permitted to do business. Contractor’s authorized representative, including its Designated Representative, shall be authorized to act on Contractor’s behalf with respect to the Project.

3.4 **General Conditions modified.** Section 4.03E of the General Conditions is hereby modified to clarify that Contractor and Owner may agree on the number of copies of Submittals to be provided to Owner. If no such agreement is reached, Contractor shall submit five copies.

Article 4

Notice to Proceed and Substantial Completion

4.1 **Notice to Proceed.** The date of Notice to Proceed will be specified in a written Notice issued by Owner. Owner may issue separate written authorizations to proceed for different portions of the Work.
4.2 Contract Time measured from date of commencement. The Contract Time shall be measured from the Notice to Proceed date to the contractual date of Substantial Completion established in Section 4.3, subject to adjustments as provided in the Contract Documents. Time is of the essence in completion of the Work.

4.3 Substantial Completion and Final Completion. Contractor shall achieve Substantial Completion of the Work by March 29, 2024, subject to adjustments as provided in the Contract Documents, and shall achieve Final Completion not later than Thirty (30) Days thereafter. Contractor represents to Owner that the Contract Time is adequate for full performance of the Work. Contractor shall also achieve any interim milestones and phasing requirements set forth in the Contract Documents.

4.4 Liquidated damages. Owner will assess, and Contractor will be responsible for, liquidated damages in the amount of Four thousand seven hundred seventy-one dollars and twenty-eight cents ($4,771.28) per Day for each Day beyond the contractual date for Substantial Completion that Substantial Completion is not timely achieved, and subsequently Five hundred twenty three dollars and seventy-eight cents ($523.78) per Day for each Day beyond the time period established in Section 4.3 that Final Completion of the entire Work is not achieved. Contractor and Owner agree that the liquidated damages amounts are not penalties and are a reasonable estimation of actual damages to Owner, as of this date of Agreement, based on the inherent uncertainty and difficulty in calculating and quantifying damages caused by delays in the construction of university facilities.

Article 5
Contract Sum

5.1 Contract Sum. For Contractor’s performance of the Contract, Owner shall pay to Contractor the Contract Sum of _______________ dollars ($_______), subject to additions and deductions for changes in the Work as provided in the Contract Documents. The Contract Sum includes by way of example and not limitation all costs of construction; general conditions; all taxes except Washington State sales tax due on the Contract Sum; Contractor’s contingency; any approved Allowances; all insurance; overhead; and Contractor’s fee.

5.2 Alternates. The Contract Sum is based upon the following alternates, if any, which are described in the Contract Documents and are hereby accepted by Owner:

<table>
<thead>
<tr>
<th>Alternate Number</th>
<th>Description</th>
<th>Price ($0.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.3 Unit Prices. Any Unit Prices are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Units</th>
<th>Price ($0.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit Prices as set forth in the Contract Documents are “all in.” They include all material, equipment, labor, delivery, installation, and Subcontractor costs, any overhead and profit not included in the fee, and any other costs or expenses in
connection with, or incidental to, the performance of that portion of the Work to which such Unit Prices apply.

5.4 Allowances. Allowances included in the Contract Sum are as follows:

<table>
<thead>
<tr>
<th>Allowance</th>
<th>Amount</th>
<th>Included Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Management</td>
<td>$8,000.00</td>
<td>Unusual conditions pertaining to potential/unknown radioactive waste disposal</td>
</tr>
</tbody>
</table>

Allowances may be included in the Contract Sum due to uncertainty in scope, price and/or quantity at the time this Agreement is executed. Whenever actual costs are more or less than an allowance, the Contract Sum will be appropriately adjusted. Contractor must provide Owner with written notice of its intent to expend an allowance amount (providing Owner with the opportunity to approve or reject the cost) before expending an allowance amount.

5.5 Changes in the Work.

5.5.1 Owner may, without invalidating the Contract, order changes in the Work consisting of additions, deletions or other revisions. Owner shall issue such changes in writing.

5.5.2 Adjustments of the Contract Sum and/or Contract Time on account of changes in the Work may be determined by any of the methods listed in the General Conditions.

Article 6 Payments

6.1 Applications for Payment.

6.1.1 The Contract Documents detail the requirements for Applications for Payment. Based upon Applications for Payment that Contractor submits to Owner, Owner shall make progress payments to Contractor on account of the Contract Sum.

6.2 Progress Payments.

6.2.1 Subject to other provisions of the Contract Documents, the amount of each progress payment shall be computed as follows and in accordance with Section 01 29 00, Applications for Payment:

.1 Take that portion of the Contract Sum properly allocable to completed Work as determined by multiplying the percentage of completion of each portion of the Work by the share of the Contract Sum allocated to that portion in the Schedule of Values. Pending final determination of the cost to Owner of changes in the Work, amounts not in dispute may be included as provided in the General Conditions unless Owner requires that actual cost records be provided;

.2 Add that portion of the Contract Sum properly allocable to materials and equipment delivered and suitably stored at the site for subsequent incorporation in the completed construction (or, if approved in advance by Owner, suitably stored and insured off the site at a location agreed upon in writing);
.3 Subtract the aggregate sum of previous payments made by Owner;

.4 Subtract amounts, if any, for which Owner has withheld payment; and

.5 Subtract the statutory retainage of five percent (5%) of the above amount as a fund for the protection and payment of the claims of any Person arising out of the Work and the State of Washington with respect to taxes.

6.3 Final Payment.

6.3.1 Final payment, constituting the entire unpaid balance of the Contract Sum, less retainage, shall be made by Owner to Contractor no later than 30 Days after Contractor has fully performed the Contract and Final Completion has occurred (except for Contractor’s responsibility to correct non-conforming Work discovered after final payment or to satisfy other requirements, if any, that extend beyond final payment), and Contractor has submitted a final Application for Payment.

6.3.2 Owner shall release retainage to Contractor in accordance with Chapter 60.28 RCW and the Contract Documents.

Article 7
Miscellaneous Provisions

7.1 Designated Representatives.

7.1.1 Owner’s Designated Representative, designated below, shall be authorized to act on Owner’s behalf with respect to the Project:

<table>
<thead>
<tr>
<th>Phil Johnson</th>
<th>Brian Funke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Manager</td>
<td>Construction Manager</td>
</tr>
<tr>
<td>Facilities Services, Capital</td>
<td>Facilities Services, Capital</td>
</tr>
</tbody>
</table>

7.1.2 Contractor’s Designated Representative, identified below, shall be authorized to act on Contractor’s behalf with respect to the Project:

7.1.3 Neither Owner’s nor Contractor’s Designated Representatives shall be changed without 10 Days’ written notice to the other party.

7.2 Interest. Payments due and unpaid under the Contract Documents shall bear interest as specified by RCW 39.76, not to exceed the Bank of America prime plus two percent (2%) per annum.

7.3 Quality control and assurance and Owner’s right to inspect the Work: Contractor shall develop and submit an overall Quality Control and Assurance Plan to ensure that the Work is inspected by qualified members of Contractor’s staff or third parties. The Quality Control and Assurance Plan must be acceptable to Owner. Owner expressly reserves the right to inspect any and all portions of the Work at any time during the Project. Contractor shall provide access to the Work as needed by Owner.
or its representatives, including the use of scaffolding, platforms, or lifts. All corrections or observations noted by Owner shall be logged by Contractor for correction, tracking and documentation to the satisfaction of Owner.

7.4 **Contractor to actively manage and supervise Work.** Contractor shall review and inspect the Work of Subcontractors on a regular basis for defects and deficiencies in their Work and for conformance with the Construction Documents and other Contract Documents, and shall stop the Work of Subcontractors, if necessary. Contractor shall provide notification at regularly scheduled progress meetings of any major defects or deficiencies and recommend remedial action.

7.5 **Use of Third Party Neutral.** Owner and Contractor intend to utilize a Third Party Neutral to assist in addressing and resolving disputes that may arise during the Project. The Third Party Neutral will be jointly engaged and will have the roles and responsibilities set forth in a Third Party Neutral Agreement, which shall be established in accordance with Section 00 80 10, Third Party Neutral.

Article 8

Enumeration of the Contract Documents

8.1 **The Contract Documents.** The Contract Documents, except for modifications issued after execution of this Agreement, are enumerated as follows:

8.1.1 This executed Agreement, any attached Exhibits and other documents listed in this Agreement.

8.1.3 The Addenda, if any, are as follows:

<table>
<thead>
<tr>
<th>Number</th>
<th>Date</th>
<th>Pages</th>
</tr>
</thead>
</table>

8.1.4 Other documents, if any, forming part of the Contract Documents are as follows:

See Contract Documents.
Department of Labor and Industries Prevailing Wage Rates.

OWNER:
WASHINGTON STATE UNIVERSITY

CONTRACTOR:
FIRM NAME
WA CONTRACTOR LICENSE NUMBER

(Signature) (Date) (Signature) (Date)
(Printed Name) (Title)
Vice President and Chief Financial Officer
Finance and Administration

END OF SECTION 00 50 00
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART 1 -</td>
<td>GENERAL PROVISIONS .. 3</td>
</tr>
<tr>
<td>1.01</td>
<td>DEFINITIONS ... 3</td>
</tr>
<tr>
<td>1.02</td>
<td>ORDER OF PRECEDENCE .. 5</td>
</tr>
<tr>
<td>1.03</td>
<td>EXECUTION AND INTENT .. 6</td>
</tr>
<tr>
<td>PART 2 -</td>
<td>INSURANCE AND BONDS .. 6</td>
</tr>
<tr>
<td>2.01</td>
<td>CONTRACTOR’S LIABILITY INSURANCE .. 6</td>
</tr>
<tr>
<td>2.02</td>
<td>COVERAGE LIMITS .. 8</td>
</tr>
<tr>
<td>2.03</td>
<td>INSURANCE COVERAGE CERTIFICATES .. 8</td>
</tr>
<tr>
<td>2.04</td>
<td>PAYMENT AND PERFORMANCE BONDS ... 8</td>
</tr>
<tr>
<td>2.05</td>
<td>ALTERNATIVE SURETY ... 9</td>
</tr>
<tr>
<td>2.06</td>
<td>BUILDER’S RISK ... 9</td>
</tr>
<tr>
<td>PART 3 -</td>
<td>TIME AND SCHEDULE ... 9</td>
</tr>
<tr>
<td>3.01</td>
<td>PROGRESS AND COMPLETION ... 9</td>
</tr>
<tr>
<td>3.02</td>
<td>CONSTRUCTION SCHEDULE ... 9</td>
</tr>
<tr>
<td>3.03</td>
<td>OWNER’S RIGHT TO SUSPEND THE WORK FOR CONVENIENCE 10</td>
</tr>
<tr>
<td>3.04</td>
<td>OWNER’S RIGHT TO STOP AND/OR CARRY OUT THE WORK FOR CAUSE 11</td>
</tr>
<tr>
<td>3.05</td>
<td>DELAY ... 11</td>
</tr>
<tr>
<td>3.06</td>
<td>NOTICE TO OWNER OF LABOR DISPUTES 13</td>
</tr>
<tr>
<td>3.07</td>
<td>DAMAGES FOR FAILURE TO ACHIEVE TIMELY COMPLETION 13</td>
</tr>
<tr>
<td>PART 4 -</td>
<td>SPECIFICATIONS, DRAWINGS, AND OTHER DOCUMENTS 13</td>
</tr>
<tr>
<td>4.01</td>
<td>DISCREPANCIES AND CONTRACT DOCUMENT REVIEW 13</td>
</tr>
<tr>
<td>4.02</td>
<td>PROJECT RECORD .. 14</td>
</tr>
<tr>
<td>4.03</td>
<td>SUBMITTALS ... 15</td>
</tr>
<tr>
<td>4.04</td>
<td>ORGANIZATION OF SPECIFICATIONS .. 16</td>
</tr>
<tr>
<td>4.05</td>
<td>OWNERSHIP AND USE OF DRAWINGS, SPECIFICATIONS, AND OTHER DOCUMENTS .. 16</td>
</tr>
<tr>
<td>PART 5 -</td>
<td>PERFORMANCE ... 17</td>
</tr>
<tr>
<td>5.01</td>
<td>CONTRACTOR CONTROL AND SUPERVISION 17</td>
</tr>
<tr>
<td>5.02</td>
<td>PERMITS, FEES, AND NOTICES .. 17</td>
</tr>
<tr>
<td>5.03</td>
<td>PATENTS AND ROYALTIES ... 18</td>
</tr>
<tr>
<td>5.04</td>
<td>PREVAILING WAGES ... 18</td>
</tr>
<tr>
<td>5.05</td>
<td>HOURS OF LABOR ... 19</td>
</tr>
<tr>
<td>5.06</td>
<td>NONDISCRIMINATION ... 19</td>
</tr>
<tr>
<td>5.07</td>
<td>SAFETY PRECAUTIONS .. 20</td>
</tr>
<tr>
<td>5.08</td>
<td>OPERATIONS, MATERIAL HANDLING, AND STORAGE AREAS 22</td>
</tr>
<tr>
<td>5.09</td>
<td>PRIOR NOTICE OF EXCAVATION ... 22</td>
</tr>
<tr>
<td>5.10</td>
<td>UNFORESEEN PHYSICAL CONDITIONS .. 22</td>
</tr>
<tr>
<td>5.11</td>
<td>PROTECTION OF EXISTING STRUCTURES, EQUIPMENT, VEGETATION, UTILITIES AND IMPROVEMENTS 23</td>
</tr>
<tr>
<td>5.12</td>
<td>LAYOUT OF WORK .. 23</td>
</tr>
<tr>
<td>5.13</td>
<td>MATERIAL AND EQUIPMENT .. 24</td>
</tr>
<tr>
<td>5.14</td>
<td>AVAILABILITY AND USE OF UTILITY SERVICES 24</td>
</tr>
<tr>
<td>5.15</td>
<td>TESTS AND INSPECTION ... 24</td>
</tr>
<tr>
<td>5.16</td>
<td>CORRECTION OF NONCONFORMING WORK 25</td>
</tr>
<tr>
<td>5.17</td>
<td>CLEAN UP ... 26</td>
</tr>
<tr>
<td>5.18</td>
<td>ACCESS TO WORK .. 27</td>
</tr>
<tr>
<td>5.19</td>
<td>OTHER CONTRACTS ... 27</td>
</tr>
</tbody>
</table>
Section Description

5.20 SUBCONTRACTORS AND SUPPLIERS ... 27
5.21 WARRANTY OF CONSTRUCTION .. 29
5.22 INDEMNIFICATION .. 29

PART 6 - PAYMENTS AND COMPLETION ... 30

6.01 CONTRACT SUM ... 30
6.02 SCHEDULE OF VALUES ... 30
6.03 APPLICATION FOR PAYMENT ... 30
6.04 PROGRESS PAYMENTS ... 31
6.05 PAYMENTS WITHHELD ... 32
6.06 RETAINAGE, BOND CLAIM RIGHTS, AND LIENS .. 33
6.07 SUBSTANTIAL COMPLETION ... 33
6.08 PRIOR OCCUPANCY .. 34
6.09 FINAL COMPLETION, ACCEPTANCE, AND PAYMENT 35

PART 7 - CHANGES ... 36

7.01 CHANGE IN THE WORK ... 36
7.02 CHANGE IN THE CONTRACT SUM ... 37
7.03 CHANGE IN THE CONTRACT TIME ... 40

PART 8 - CLAIMS AND DISPUTE RESOLUTION ... 41

8.01 CLAIMS ... 41
8.02 INFORMAL RESOLUTION OF DISPUTES ... 42
8.03 FORMAL RESOLUTION OF CLAIMS ... 43
8.04 CLAIMS PROCESS ... 44

PART 9 - TERMINATION OF THE WORK ... 48

9.01 TERMINATION BY OWNER FOR CAUSE ... 48
9.02 TERMINATION BY OWNER FOR CONVENIENCE ... 49
9.03 TERMINATION BY CONTRACTOR FOR CAUSE ... 50

PART 10 - MISCELLANEOUS PROVISIONS ... 50

10.01 GOVERNING LAW ... 50
10.02 SUCCESSORS AND ASSIGNS ... 50
10.03 MEANING OF WORDS .. 51
10.04 RIGHTS AND REMEDIES ... 51
10.05 CONTRACTOR REGISTRATION AND COMPLIANCE 51
10.06 TIME COMPUTATIONS .. 52
10.07 RECORDS RETENTION .. 52
10.08 THIRD-PARTY AGREEMENTS .. 52
10.09 ANTITRUST ASSIGNMENT ... 52
10.10 HEADINGS AND CAPTIONS .. 52
10.11 INDEPENDENT ASSIGNMENT .. 52
10.12 OWNER’S ROLE ... 52

WSU amendments to the Washington State Facility Construction
General Conditions are identified by a bar on the right hand side of modified paragraphs
PART 1 - GENERAL PROVISIONS

1.01 DEFINITIONS

A. “Application for Payment” means a written request submitted by Contractor to Owner for payment of Work completed in accordance with the Contract Documents and approved Schedule of Values, supported by such substantiating data as Owner may require.

B. “Architect,” “Engineer,” or “A/E” means a person or entity lawfully entitled to practice architecture or engineering, representing Owner within the limits of its delegated authority.

C. An “Allowance” is an amount included in the Contract Sum for a stated part of the Work that is not fully defined and/or quantified at the time the Contract Sum is established. When that part of the Work is adequately defined and/or quantified, the Contract Sum will be adjusted to account for the difference between the Allowance and the actual cost of the item. Following the adjustment, that part of the Work will no longer be an Allowance item. Although not capitalized in Section 5.02B, “allowance” shall mean “Allowance.”

D. “Change Order” means a written instrument signed by Owner and Contractor stating their agreement upon all of the following: (1) a change in the Work; (2) the amount of the adjustment in the Contract Sum, if any, and (3) the extent of the adjustment in the Contract Time, if any.

E. “Claim” means Contractor’s exclusive remedy for resolving disputes with Owner arising out of or relating to the Contract Documents or the breach thereof or requesting an adjustment in the Contract Sum or Contract Time, as more fully set forth in Part 8. As used in the Contract Documents, the exclusive meaning of “equitable adjustment” is the ability of Contractor to follow the contractual dispute resolution process in Part 8, including the requirement for submitting a timely Notice, substantiation, and Claim.

F. The “Contract” is the agreement between Owner and Contractor and is formed by the Contract Documents. The Contract represents the entire and integrated agreement between Owner and Contractor and supersedes prior negotiations, representations or agreements, either written or oral.

G. “Contract Award Amount” is the sum of the Base Bid and any accepted Alternates, if any, for Design-Bid-Build projects and is the accepted initial Guaranteed Maximum Price for Design-Build and GC/CM projects.

H. “Contract Documents” means the General Conditions, modifications to the General Conditions, Supplemental Conditions, Agreement, Drawings and Specifications, and all addenda and modifications thereof.

I. “Contract Sum” is the total amount payable by Owner to Contractor for performance of the Work in accordance with the Contract Documents, including all taxes imposed by law and properly chargeable to the Work, except Washington State sales tax.

J. “Contract Time” is the number of Days or other time period allotted in the Contract Documents from the Notice to Proceed for achieving Substantial Completion of the Work.

K. “Contractor” means the person or entity who has agreed with Owner to perform the Work in accordance with the Contract Documents.

L. “Day(s)” means calendar day(s) unless otherwise specified.
M. "Drawings" are the graphic and pictorial portions of the Contract Documents showing the design, location, and dimensions of the Work, and may include plans, elevations, sections, details, schedules, and diagrams.

N. "Final Acceptance" means the written acceptance of the Work by Owner, as more fully set forth in Section 6.08B.

O. "Final Completion" means that the Work is fully and finally complete in accordance with the Contract Documents and Contractor has submitted its final Application for Payment, as more fully set forth in Section 6.09A.

P. "Force Majeure" means those acts entitling Contractor to request an equitable adjustment in the Contract Time, as more fully set forth in paragraph 3.05A.

Q. "Notice" means a written notice which has been delivered in person to the individual or a member of the firm or entity or to an officer of the corporation for which it was intended or, if delivered or sent by registered or certified mail, to the last business address known to the party giving notice. Although not capitalized in the following provisions, "notice" shall mean "Notice" in Sections 3.03B, 3.03C, 3.06A, 5.01D, 5.02C, 5.03, 5.09A, 5.10A, 5.15A, 5.16F, 5.17, 9.01A, 9.02A, and 9.02B.

R. "Notice to Proceed" means a written Notice from Owner to Contractor that permits pre-construction and construction activities to commence upon specified terms and defines the date on which the Contract Time begins to run.

S. "Owner" means the Washington State University Board of Regents, which has the authority to enter into, administer, and/or terminate the Work in accordance with the Contract Documents. Owner shall designate in writing a Representative who shall have authority to bind Owner with respect to all matters requiring Owner’s approval or authorization. A/E does not have such authority.

T. “Person” means a corporation, partnership, business association of any kind, trust, company, or individual.

U. “Prior Occupancy” means Owner’s use of all or parts of the Project before Substantial Completion, as more fully set forth in Section 6.08A.

V. “Progress Schedule” means a schedule of the Work, in a form satisfactory to Owner, as further set forth in Section 3.02.

W. “Project” means the total construction of which the Work performed in accordance with the Contract Documents may be the whole or a part and which may include construction by Owner or by separate contractors.

X. “Project Record” means the separate set of Drawings and Specifications as further set forth in paragraph 4.02A.

Y. “Schedule of Values” means a written breakdown allocating the total Contract Sum to each principal category of Work, in such detail and format as requested by Owner.

Z. “Specifications” are that portion of the Contract Documents consisting of the written requirements for materials, equipment, construction systems, standards and workmanship for the Work, and performance of related services.
AA. "Subcontract" means a contract between Contractor and a Subcontractor for the purpose of obtaining supplies, materials, equipment, work or services of any kind for or in connection with the Work. Although not capitalized in the following provisions, “subcontract” shall mean “Subcontract” in Sections 5.10A, 5.20E, 9.01B, and 9.02B.

BB. “Subcontractor” means any Person of any tier, other than Contractor, who agrees to furnish or furnishes by contract with, or through Contractor, any supplies, materials, equipment, or services of any kind in connection with the Work. The term "Subcontractor" does not include a separate contractor or subcontractors of a separate contractor. Although not capitalized in the following provisions, “subcontractor” shall mean “Subcontractor” in Sections 5.04B, 5.04C, 5.04G, 5.20A, and 5.21B.

CC. "Substantial Completion" means that stage in the progress of the Work (or portion of the Work designated and approved by Owner) when the construction is sufficiently complete, in accordance with the Contract Documents, so that Owner can fully occupy or utilize the Work (or portion designated by Owner) for its intended use, as more fully set forth in Section 6.07. There may be separate dates of Substantial Completion specified in the Contract Documents for various phases or portions of the Work.

DD. "Work" means the construction and services required by the Contract Documents, and includes, but is not limited to, labor, materials, supplies, equipment, services, permits, and the manufacture and fabrication of components, performed, furnished, or provided in accordance with the Contract Documents. Although not capitalized in the following provisions, “work” shall mean “Work” in Sections 3.02D, 5.04B, 5.04C, 5.07D, 5.12A, 6.02 and 7.02A.

EE. A “Work Directive” (“WD”) is a binding written order prepared by Owner that directs Work prior to total agreement on adjustment, if any, in the Contract Sum or Contract Time, or both.

FF. "Work Site" means the space identified and circumscribed on construction documents. The work site is controlled by the Contractor and the Contractor is responsible for compliance to regulatory requirements within the circumscribed area. Changes to the work site shall be submitted by Contractor and approved by Owner.

1.02 ORDER OF PRECEDENCE

Any conflict or inconsistency in the Contract Documents shall be resolved by giving the documents precedence in the following order, with a revision to a Contract Document having precedence over the original document and a later document having precedence over an earlier document:

1. Signed Agreement, with any Change Orders having precedence.
2. Supplemental Conditions.
3. Modifications to the General Conditions.
4. General Conditions.
5. Specifications and Drawings. The Specifications and Drawings are complementary and shall have equal precedence. Thus, anything mentioned in the Specifications but not shown on the Drawings, or shown on the Drawings but not mentioned in the Specifications, shall be of like effect as if shown or mentioned in both. If there is any inconsistency between the Specifications and Drawings, Contractor will make an inquiry to Owner to determine how to proceed. Unless otherwise directed, Contractor will provide the better quality or greater quantity of any Work or materials, as reasonably interpreted by Owner, at no change in the Contract Sum or Contract
Time. In case of conflict within the Specifications, provisions in Division 1 shall take precedence over provisions of any other Division. In case of conflict within the Drawings, large scale Drawings shall take precedence over small scale Drawings.

1.03 EXECUTION AND INTENT

Contractor Representations: Contractor makes the following representations to Owner:

1. Contract Sum and Contract Time reasonable: The Contract Sum is reasonable compensation for the Work and the Contract Time is adequate for the performance of the Work, as represented by the Contract Documents;

2. Contractor familiar with project: Contractor has carefully reviewed the Contract Documents, visited and examined the Project site, become familiar with the local conditions in which the Work is to be performed, and satisfied itself as to the nature, location, character, quality and quantity of the Work, the labor, materials, equipment, goods, supplies, work, services and other items to be furnished and all other requirements of the Contract Documents, as well as the surface and subsurface conditions and other matters that may be encountered at the Project site or affect performance of the Work or the cost or difficulty thereof;

3. Contractor financially capable: Contractor is financially solvent, able to pay its debts as they mature, and possesses sufficient working capital to complete the Work and perform Contractor’s obligations required by the Contract Documents; and

4. Contractor can complete Work: Contractor is able to furnish the plant, tools, materials, supplies, equipment and labor required to complete the Work and perform the obligations required by the Contract Documents and has sufficient experience and competence to do so.

PART 2 - INSURANCE AND BONDS

2.01 CONTRACTOR'S LIABILITY INSURANCE

General insurance requirements: Prior to commencement of the Work, Contractor shall obtain all the insurance required by the Contract Documents and provide evidence satisfactory to Owner that such insurance has been procured, including but not limited to (1) Certificates of Insurance on ACORD Form 25, and/or ACORD Form 27 or their equivalents, and which shall list any applicable self-insured retentions, (2) the actual costs (expressed as a percentage) of Contractor’s liability insurance under Section 2.01A.1 below, (3) applicable endorsements evidencing proof of compliance with the requirements listed below, (4) evidence of State Workers’ Compensation coverage, and (5) a copy of any builder’s risk policy required by the Contract Documents. All policies, endorsements and certificates must be signed copies and shall contain a provision that policies will not be cancelled without first giving thirty (30) days (or in the event of non-payment of premium, ten (10) days) prior written Notice to Owner. Contractor shall furnish to Owner copies of any subsequently issued endorsements amending, modifying, altering or restricting coverage terms or limits. Review of Contractor’s insurance by Owner shall not relieve or decrease the liability of Contractor. Companies writing the insurance to be obtained by Part 2 shall be licensed to do business under Chapter 48 RCW or comply with the Surplus Lines Law of the State of Washington. Contractor shall include in the Contract Sum the cost of all insurance and bond costs required for the Work. Insurance carriers providing insurance shall be acceptable to Owner, and its A. M. Best rating shall be indicated on the insurance certificates.

A. Term of insurance coverage: Contractor shall maintain the following insurance coverage during the Work and for one year after Substantial Completion. Contractor shall also maintain the following insurance coverage during the performance of any corrective Work required by Section 5.16.
1. **General Liability Insurance**: Commercial General Liability (CGL) on an occurrence-based ISO Form CG 00 01 or broader, including products and completed operations, personal and advertising injury, bodily injury and property damage liability arising from Contractor’s operations or Work, including operations or Work Contractor may subcontract or sublet to others.

 The policy shall be purchased from a company or companies lawfully authorized to do business in the State of Washington possessing an A.M. Best's policyholder’s rating of A or better and a financial rating of no less than XI.

 Contractor’s policy shall be designated primary and non-contributory to Owner’s policies, and shall include a waiver of subrogation against Owner. Any self-insured retentions or deductibles must be disclosed and approved by Owner, and Contractor agrees to be responsible for payment of any and all self-insured retentions or deductibles.

2. **Automobile Liability Insurance**: Automobile liability on ISO Form CA 00 01 covering Code 1 (any auto).

3. **Stop Gap Liability Insurance** for damages because of bodily injuries to Contractor's employees.

B. **Industrial Insurance compliance**: Contractor shall comply with the Washington State Industrial Insurance Act and, if applicable, the Federal Longshoremen’s and Harbor Workers’ Act and the Jones Act.

C. **Insurance to protect for the following**: All insurance coverages shall protect against claims for damages for personal and bodily injury or death, as well as claims for property damage, which may arise from operations in connection with the Work whether such operations are by Contractor or any Subcontractor.

D. **Owner as Additional Insured**: All insurance coverages shall be endorsed to include Owner, its officers, and employees, and any required governmental agencies as additional named insureds with coverage at least as broad as ISO Forms CG 20 10, CG 20 37, and CA 20 48, with no self-insured retentions applicable to the additional insureds.

E. **Subcontractor Coverage**: Contractor shall ensure and require that Subcontractors have insurance coverage to cover bodily injury and property damage on all operations and all vehicles owned or operated by Subcontractors. Subcontractors shall name Contractor and Owner, any required governmental agencies, and others designated in the Contract Documents as well as their officers and employees, as additional insureds and give at least thirty (30) Days’ Notice of cancellation.

2.02 COVERAGE LIMITS

Insurance amounts: The coverage limits shall be not less than the amounts specified in the Agreement; if limits are not specified in the Agreement, coverage limits shall be not less than as follows:

A. $1,000,000 per occurrence for bodily injury, property damage, personal and advertising injury.

B. $2,000,000 general aggregate to apply separately to each project or location.

C. $2,000,000 annual aggregate for products and completed operations.

D. $1,000,000 combined single limit each automobile accident or loss.
E. $1,000,000 per accident for bodily injury or occupational disease of Contractor’s employees

Coverages and Minimums: Owner’s review, specification or approval of the insurance in this Contract or of its coverage or amount shall not relieve or decrease the liability of Contractor under the Contract Documents or otherwise. Coverages are the minimum to be provided and are not limitations of liability under the Contract, indemnification, or applicable law provisions. Contractor may, at its expense, purchase larger coverage amounts.

2.03 PROOF OF INSURANCE COVERAGE

A. Certificate & endorsements required: Prior to commencement of the Work, Contractor shall furnish to Owner completed certificates of insurance coverage and endorsements evidencing compliance with the additional insured, cancellation, and waiver of subrogation requirements.

B. List Project info: All insurance certificates shall name Owner’s Project number and Project title.

C. Policy: In the event of a claim or loss, Contractor shall promptly provide Owner with a complete copy of all applicable policies.

2.04 PAYMENT AND PERFORMANCE BONDS

Conditions for bonds: Payment and performance bonds for 100% of the Contract Award Amount, plus Washington State sales tax, shall be furnished for the Work, using the current version of the Payment Bond and Performance Bond form published by and available from the American Institute of Architects (AIA) – form A312. No payment or performance bond is required if the Contract Sum is $150,000 or less and Contractor requests and the Owner agrees that Owner may, in lieu of the bond, retain 10% of the Contract Sum for the period specified in RCW 39.08.010.

2.05 ALTERNATIVE SURETY

When alternative surety required: Contractor shall promptly furnish payment and performance bonds from an alternative surety if:

A. Owner has a reasonable objection to the surety; or

B. Any surety fails to furnish reports on its financial condition if required by Owner.

2.06 BUILDER’S RISK

A. Owner to buy builder’s risk insurance: Owner shall purchase and maintain builder’s risk insurance in the amount of the Contract Sum, including all Change Orders, for the Work on a replacement cost basis until Substantial Completion. For projects not involving new building construction, an “Installation Floater” is an acceptable substitute for the builder’s risk insurance. The insurance shall cover the interests of Owner, Contractor, and any Subcontractors, as their interests may appear.

B. Losses covered: Builder’s risk insurance shall be placed on an “all risk” basis or equivalent policy form and insure against the perils of fire and extended coverage and physical loss or damage including theft, vandalism, malicious mischief, collapse, false work, temporary buildings, debris removal including demolition, wind, and at Owner’s option may include flood and earthquake. The policy shall cover reasonable compensation for A/E’s services and expenses required as a result of an insured loss. Losses up to the deductible amount shall be the responsibility of Contractor.
C. Waiver of subrogation rights: Owner and Contractor waive all subrogation rights against each other, any Subcontractors, A/E, A/E’s subconsultants, separate contractors described in Section 5.19, if any, and any of their subcontractors, for damages caused by fire or other perils to the extent covered by property insurance obtained pursuant to this Section 2.06 or other property insurance applicable to the Work, except such rights as they have to proceeds of such insurance held by Owner as fiduciary. The policies shall provide such waivers of subrogation by endorsement or otherwise. A waiver of subrogation shall be effective to a Person or entity even though that Person or entity would otherwise have a duty of indemnification, contractual or otherwise, did not pay the insurance premium directly or indirectly, and whether or not the Person or entity had an insurable interest in the property damaged.

PART 3 - TIME AND SCHEDULE

3.01 PROGRESS AND COMPLETION

Contractor to meet schedule: Contractor shall diligently prosecute the Work, with adequate forces, achieve Substantial Completion within the Contract Time, and achieve Final Completion within the time period specified in the Contract Documents. If Contractor fails to perform in a timely manner in accordance with the Contract Documents and, through the fault of Contractor or Subcontractor(s), fails to meet the Progress Schedule, Contractor shall be in default and shall take such steps as may be necessary to immediately improve its progress without change in the Contract Sum or Contract Time.

3.02 CONSTRUCTION SCHEDULE

A. Preliminary Progress Schedule: Unless otherwise provided in Division 1, Contractor shall, within 14 Days after issuance of the Notice to Proceed, submit a preliminary Progress Schedule consistent with the requirements of the Contract Documents. The Progress Schedule shall not exceed time limits specified by the Contract Documents, shall be revised at appropriate intervals as required by the conditions of the Work, and shall show the sequence in which Contractor proposes to perform the Work, and the dates on which Contractor plans to start and finish major portions of the Work, including dates for submission of Submittals per Section 4.03, which shall be coordinated with the Progress Schedule and identify dates for Owner review, and for acquiring materials and equipment.

B. Form of Progress Schedule: Unless otherwise provided in Division 1, the Progress Schedule shall be in the form of a bar chart, or a critical path method analysis, as specified by Owner. The preliminary Progress Schedule may be general, showing the major portions of the Work, with a more detailed Progress Schedule submitted as directed by Owner.

C. Owner comments on Progress Schedule: Owner shall return comments on the preliminary Progress Schedule to Contractor within 14 Days of receipt. Review by Owner of Contractor’s schedule does not constitute an approval or acceptance of Contractor’s construction means, methods, logic or sequencing, or its ability to complete the Work within the Contract Time. Contractor shall revise and resubmit its schedule, as necessary. Owner may withhold a portion of progress payments until a Progress Schedule has been submitted that meets the requirements of this Section 3.02.

D. Monthly updates and compliance with Progress Schedule: Contractor shall utilize and comply with the Progress Schedule. On a monthly basis, or as otherwise directed by Owner, Contractor shall submit an updated Progress Schedule at its own expense to Owner indicating actual progress. If, in the opinion of Owner, Contractor is not in conformance with the Progress Schedule for reasons other than acts of Force Majeure as identified in Section 3.05, Contractor shall take such steps as are necessary to bring the actual completion dates of its work activities into conformance with the Progress Schedule, and if directed by Owner, Contractor shall submit a
corrective action plan or revise the Progress Schedule to reconcile with the actual progress of the Work.

E. Contractor to notify Owner of delays: Contractor shall perform the Work in accordance with the most recent Progress Schedule submitted to Owner. Contractor shall promptly notify Owner in writing of any actual or anticipated event that is delaying or could delay achievement of any milestone or performance of any critical path activity of the Work. Contractor shall indicate the expected duration of the delay, the anticipated effect of the delay on the Progress Schedule, and the action being or to be taken to correct the problem. Provision of such Notice does not relieve Contractor of its obligation to complete the Work within the Contract Time.

3.03 OWNER’S RIGHT TO SUSPEND THE WORK FOR CONVENIENCE

A. Owner may suspend Work: Owner may, at its sole discretion, order Contractor, in writing, to suspend all or any part of the Work for up to 90 Days, or for such longer period as mutually agreed.

B. Compliance with suspension; Owner’s options: Upon receipt of a written notice suspending the Work, Contractor shall immediately comply with its terms and take all reasonable steps to minimize the incurrence of cost of performance directly attributable to such suspension. Within a period up to 90 Days after the notice is delivered to Contractor, or within any extension of that period to which the parties shall have agreed, Owner shall either:

1. Cancel the written notice suspending the Work; or

2. Terminate the Work covered by the notice as provided in the termination provisions of Part 9.

C. Resumption of Work: If a written notice suspending the Work is cancelled or the period of the notice or any extension thereof expires, Contractor shall resume Work.

D. Equitable Adjustment for suspensions: Contractor shall be entitled to an equitable adjustment in the Contract Time, or Contract Sum, or both, for increases in the time or cost of performance directly attributable to such suspension, provided Contractor complies with all requirements set forth in Part 7.

3.04 OWNER’S RIGHT TO STOP AND/OR CARRY OUT THE WORK FOR CAUSE

A. Owner may stop Work for Contractor’s failure to perform: If Contractor fails or refuses to perform its obligations in accordance with the Contract Documents, Owner may order Contractor, in writing, to stop the Work, or any portion thereof, until Owner has accepted satisfactory corrective action.

B. Owner may carry out the Work after Contractor’s failure to perform: If Contractor defaults or neglects to carry out the Work in accordance with the Contract Documents and fails within a 14-Day period after receipt of written Notice from Owner to commence and continue to make reasonable progress toward the correction of such default or neglect with diligence and promptness, Owner may, without prejudice to other remedies Owner may have, correct such deficiencies, and an appropriate Change Order shall be issued deducting from payments then or thereafter due Contractor the reasonable cost of correcting the deficiencies, including Owner’s expenses and compensation for A/E’s additional services made necessary by the default, neglect or failure. If payments then or thereafter due Contractor are not sufficient to cover such amounts, Contractor shall pay the difference to Owner.
C. No equitable adjustment for Contractor’s failure to perform: Contractor shall not be entitled to an equitable adjustment in the Contract Time or Contract Sum for any increased cost or time of performance attributable to Contractor’s failure or refusal to perform or from any reasonable remedial action taken by Owner based upon such failure.

3.05 DELAY

A. Force Majeure actions not a default; Force Majeure defined: Any delay in or failure of performance by Owner or Contractor shall not constitute a default if and to the extent the cause for such delay or failure of performance was unforeseeable and beyond the control of the party. Acts of Force Majeure include, but are not limited to:

1. Acts of God or the public enemy;
2. Acts or omissions of any government entity not the fault of Owner or Contractor;
3. Fire or other casualty for which Contractor is not responsible;
4. Quarantine or epidemic;
5. Industry-wide strike or defensive lockout;
6. Unusually severe weather conditions which could not have been reasonably anticipated; and
7. Unusual delay in receipt of supplies or products which were ordered and expedited and for which no substitute reasonably acceptable to Owner was available.

 a. “Unusually severe weather” shall mean weather conditions that are abnormal for the period of time for which Force Majeure is claimed, that could not reasonably have been anticipated or avoided, and that had an adverse effect on the Progress Schedule. Neither the Contract Time nor the Contract Sum will be adjusted for normal inclement weather or if the Work was behind schedule (unless behind schedule for a reason not the responsibility of the Contractor) at the time the unusually severe weather occurred. The Contractor shall be entitled to a change in the Contract Time only (but not a change in the Contract Sum) if the Contractor can substantiate to the reasonable satisfaction of the Owner that there was unusually severe weather as compared to normal using a ten (10) year average of accumulated record mean values from climatological data compiled by the U.S. Department of Commerce National Oceanic and Atmospheric Administration for the locale closest to the Project, and that the abnormal inclement weather actually impacted and extended the critical path of the Work. Unusual is defined as a 10-year weather event of either or both precipitation or temperature extremes that fall outside the upper and lower ranges within a 10-year periodicity.

B. Contract Time adjustment for Force Majeure: Contractor shall be entitled to an equitable adjustment in the Contract Time for changes in the time of performance directly attributable to an act of Force Majeure, provided it makes a request for equitable adjustment. Contractor shall not be entitled to an adjustment in the Contract Sum resulting from an act of Force Majeure.

C. Contract Time or Contract Sum adjustment if Owner at fault: Contractor shall be entitled to an equitable adjustment in Contract Time, and may be entitled to an equitable adjustment in
Contract Sum, if the cost or time of Contractor’s performance is changed due to the fault or negligence of Owner, provided the Contractor makes a request for equitable adjustment.

D. No Contract Time or Contract Sum adjustment if Contractor at fault: Contractor shall not be entitled to an adjustment in Contract Time or in the Contract Sum for any delay or failure of performance to the extent such delay or failure was caused by Contractor or anyone for whose acts Contractor is responsible.

E. Contract Time adjustment only for concurrent fault: To the extent any delay or failure of performance was concurrently caused by the Owner and Contractor, Contractor shall be entitled to an adjustment in the Contract Time for that portion of the delay or failure of performance that was concurrently caused, provided it makes a request for equitable adjustment, but shall not be entitled to an adjustment in Contract Sum.

F. Contractor to mitigate delay impacts: Contractor shall make all reasonable efforts to prevent and mitigate the effects of any delay, whether occasioned by an act of Force Majeure or otherwise. Contractor shall not recover damages, an equitable adjustment or an increase in the Contract Sum or Contract Time from Owner where Contractor could have reasonably avoided the delay by the exercise of due diligence.

G. Types of damages permitted: If Contractor and its Subcontractors are entitled to a change in the Contract Sum, the amount of the change shall be the actual costs incurred by the Contractor and Subcontractors directly related to the change calculated in accordance with Section 7.02. Contractor and its Subcontractors shall not otherwise (not reflected by the actual costs incurred as calculated in accordance with Section 7.02) be entitled to damages arising out of actual or alleged loss of efficiency; morale, fatigue, attitude, or labor rhythm; constructive acceleration; home office overhead; expectant underrun; trade stacking; reassignment of workers; rescheduling of Work, concurrent operations; dilution of supervision; learning curve; beneficial or joint occupancy; logistics; ripple; season change; extended overhead; profit upon damages for delay; impact damages including cumulative impacts; or similar damages. Any effect that such alleged events may have on Contractor or its Subcontractors, to the extent not otherwise paid, is subsumed in and fully compensated through the percentage Fee on Change Orders paid through Section 7.02A.3.e and any liquidated damages paid hereunder.

3.06 NOTICE TO OWNER OF LABOR DISPUTES

A. Contractor to notify Owner of labor disputes: If Contractor has knowledge that any actual or potential labor dispute is delaying or threatens to delay timely performance in accordance with the Contract Documents, Contractor shall immediately give notice, including all relevant information, to Owner.

B. Pass through notification provisions to Subcontractors: Contractor agrees to insert a provision in its Subcontracts and to require insertion in all sub-subcontracts, that in the event timely performance of any such contract is delayed or threatened by delay by any actual or potential labor dispute, the Subcontractor or Sub-subcontractor shall immediately notify the next higher tier Subcontractor or Contractor, as the case may be, of all relevant information concerning the dispute.

3.07 DAMAGES FOR FAILURE TO ACHIEVE TIMELY COMPLETION

A. Liquidated Damages:

1. Reason for Liquidated Damages: Timely performance and completion of the Work is essential to Owner and time limits stated in the Contract Documents are of the essence.
Owner will incur serious and substantial damages if Substantial Completion of the Work does not occur within the Contract Time. However, it would be difficult if not impossible to determine the exact amount of such damages. Consequently, provisions for liquidated damages are included in the Contract Documents.

2. Calculation of Liquidated Damages amount: The liquidated damage amounts set forth in the Contract Documents will be assessed not as a penalty, but as liquidated damages for breach of the Contract Documents. This amount is fixed and agreed upon by and between the Contractor and Owner because of the impracticability and extreme difficulty of fixing and ascertaining the actual damages the Owner would in such event sustain. This amount shall be construed as the actual amount of damages sustained by the Owner, and may be retained by the Owner and deducted from periodic payments to the Contractor.

3. Contractor responsible even if Liquidated Damages assessed: Assessment of liquidated damages shall not release Contractor from any obligations or liabilities pursuant to the Contract Documents. If Contractor substantially fails to perform in a timely manner in accordance with the Contract Documents and, through the fault of Contractor or Subcontractor(s), fails to achieve Substantial Completion within the Contract Time, Contractor shall be in default.

B. Actual Damages: If no liquidated damages are established, actual damages may be assessed for failure to achieve both Substantial Completion and Final Completion within the time provided. Actual damages will be calculated on the basis of direct architectural, administrative, and other related costs attributable to the Project from the date when Substantial and/or Final Completion should have been achieved, as applicable. Owner may offset these costs against any payment due Contractor.

PART 4 - SPECIFICATIONS, DRAWINGS, AND OTHER DOCUMENTS

4.01 DISCREPANCIES AND CONTRACT DOCUMENT REVIEW

A. Specifications and Drawings are basis of the Work: The intent of the Specifications and Drawings is to describe a complete Project to be constructed in accordance with the Contract Documents. Contractor shall furnish all labor, materials, equipment, tools, transportation, permits, and supplies, and perform the Work required in accordance with the Drawings, Specifications, and other provisions of the Contract Documents.

B. Parts of the Contract Documents are complementary: The Contract Documents are complementary. What is required by one part of the Contract Documents shall be binding as if required by all. Anything mentioned in the Specifications and not shown on the Drawings, or shown on the Drawings and not mentioned in the Specifications, shall be of like effect as if shown or mentioned in both.

C. Contractor to report discrepancies in Contract Documents: Contractor shall carefully study and compare the Contract Documents with each other and with information furnished by Owner. If, during the performance of the Work, Contractor finds a conflict, error, inconsistency, or omission in the Contract Documents, it shall promptly and before proceeding with the Work affected thereby, report such conflict, error, inconsistency, or omission to A/E in writing.

D. Contractor knowledge of discrepancy in documents – responsibility: Contractor shall do no Work without applicable Drawings, Specifications, and, where required, accepted shop drawings and other Submittals, unless instructed to do so in writing by Owner. If Contractor performs any construction activity, and it knows or reasonably should have known that any of the Contract
Documents contain a conflict, error, inconsistency, or omission, Contractor shall be responsible for the performance and shall bear the cost for its correction.

E. Contractor to perform Work implied by Contract Documents: Contractor shall provide any work or materials the provision of which is clearly implied and is within the scope of the Contract Documents even if the Contract Documents do not mention them specifically.

F. Interpretation questions referred to A/E: Questions regarding interpretation of the requirements of the Contract Documents shall be referred to the A/E.

4.02 PROJECT RECORD

A. Contractor to maintain Project Record Drawings and Specifications: Contractor shall legibly mark in ink on a separate set of the Drawings and Specifications all actual construction, including depths of foundations, horizontal and vertical locations of internal and underground utilities and appurtenances referenced to permanent visible and accessible surface improvements, field changes of dimensions and details, actual suppliers, manufacturers and trade names, models of installed equipment, changes made to the building enclosure, and Change Order Proposals. This separate set of Drawings and Specifications shall be the “Project Record.” The Project Record shall include all Architectural, Mechanical, Electrical, Structural and Civil as-built drawings, whether or not any changes occur and shall also include Addenda, Change Orders, WDs and other modifications to the Contract, in good order and marked currently to indicate field changes and selections made during construction, as well as one copy of accepted shop drawings, product data, samples and other required Submittals.

B. Update Project Record weekly and keep on site: The Project Record shall be maintained on the Project site throughout the construction and shall be clearly labeled “PROJECT RECORD.” The Project Record shall be available to A/E and Owner at all times. The Project Record shall be updated at least weekly noting all changes and shall be available to Owner at all times.

C. Final Project Record to A/E before Final Acceptance: Contractor shall submit the completed and finalized Project Record to A/E prior to Final Acceptance.

4.03 SUBMITTALS

A. Definition of Submittals: “Submittals” means documents and other information required to be submitted to A/E by Contractor pursuant to the Contract Documents, showing in detail: the proposed fabrication and assembly of structural elements; and the installation (i.e. form, fit, and attachment details) of materials and equipment. Submittals can include, but are not limited to, drawings, diagrams, layouts, schematics, descriptive literature, illustrations, schedules, performance and test data, samples, and similar materials furnished by Contractor to explain in detail specific portions of the work required by the Contract Documents. For materials and equipment to be incorporated into the Work, Contractor submittal shall include the name of the manufacturer, the model number, and other information concerning the performance, capacity, nature, and rating of the item. When directed, Contractor shall submit all samples at its own expense. Owner may duplicate, use, and disclose Submittals provided in accordance with the Contract Documents.

B. Approval of Submittals by Contractor and A/E: Contractor shall coordinate all Submittals with the Progress Schedule per Section 3.02A, shall review them for accuracy, completeness, and compliance with the Contract Documents, and shall indicate its approval thereon as evidence of such coordination and review. Where required by law, Submittals shall be stamped by an appropriate professional licensed by the state of Washington. Submittals submitted to A/E without evidence of Contractor’s approval shall be returned for resubmission. Contractor shall
review, approve, and submit Submittals with reasonable promptness and in such sequence as to cause no delay in the Work or in the activities of Owner or separate contractors. Contractor’s submittal schedule shall allow a reasonable time for A/E review. A/E will review, approve, or take other appropriate action on the Submittals. Contractor shall perform no portion of the Work requiring submittal and review of Submittals until the respective submittal has been reviewed and the A/E has approved or taken other appropriate action. Owner and A/E shall respond to Submittal with reasonable promptness. Any Work by Contractor shall be in accordance with reviewed Submittals. Submittals made by Contractor which are not required by the Contract Documents may be returned without action.

C. Contractor not relieved of responsibility when Submittals approved: Approval, or other appropriate action with regard to Submittals, by Owner or A/E shall not relieve Contractor of responsibility for any errors or omissions in such Submittals, nor from responsibility for compliance with the requirements of the Contract Documents. Unless specified in the Contract Documents, review by Owner or A/E shall not constitute an approval of the safety precautions employed by Contractor during construction, or constitute an approval of Contractor’s means or methods of construction. If Contractor fails to obtain approval before installation and the item or work is subsequently rejected, Contractor shall be responsible for all costs of correction.

D. Variations between Submittals and Contract Documents: Submittals, including product data, samples and similar submissions, are not Contract Documents. If Submittals vary from the requirements of the Contract Documents, Contractor shall describe such variations in writing, separate from the Submittals, at the time it submits the Submittals containing such variations. If Owner approves any such variation, an appropriate Change Order will be issued. If the variation is minor and does not involve an adjustment in the Contract Sum or Contract Time, a Change Order need not be issued; however, the modification shall be approved by Owner in writing and recorded upon the Project Record. Approval for substitutions shall not be sought and shall not be approved through the submission of Submittals.

E. Contractor to submit 5 copies of Submittals: Unless otherwise provided in Division 1, Contractor shall submit to A/E for approval 5 copies of all Submittals. Unless otherwise indicated, 3 sets of all Submittals shall be retained by A/E and 2 sets shall be returned to Contractor.

4.04 ORGANIZATION OF SPECIFICATIONS

Specification organization by trade: Specifications are prepared in sections which conform generally with trade practices. These sections are for Owner and Contractor convenience and shall not control Contractor in dividing the Work among the Subcontractors or in establishing the extent of the Work to be performed by any trade.

4.05 OWNERSHIP AND USE OF DRAWINGS, SPECIFICATIONS, AND OTHER DOCUMENTS

A. A/E, not Contractor, owns Copyright of Drawings and Specifications: The Drawings, Specifications, and other documents prepared by A/E are instruments of A/E’s service through which the Work to be executed by Contractor is described. Neither Contractor nor any Subcontractor shall own or claim a copyright in the Drawings, Specifications, and other documents prepared by A/E, and A/E shall be deemed the author of them and will, along with any rights of Owner, retain all common law, statutory, and other reserved rights, in addition to the copyright. All copies of these documents, except Contractor’s set, shall be returned or suitably accounted for to A/E, on request, upon completion of the Work.

B. Drawings and Specifications to be used only for this Project: The Drawings, Specifications, and other documents prepared by the A/E, and copies thereof furnished to Contractor, are for use solely with respect to this Project. They are not to be used by Contractor or any Subcontractor on
other projects or for additions to this Project outside the scope of the Work without the specific written consent of Owner and A/E. Contractor and Subcontractors are granted a limited license to use and reproduce applicable portions of the Drawings, Specifications, and other documents prepared by A/E appropriate to and for use in the execution of their Work.

C. License granted to Owner: Contractor and all Subcontractors grant a non-exclusive license to Owner, without additional cost or royalty, to use for its own purposes (including reproduction) all Submittals, together with the information and diagrams contained therein, prepared by Contractor or any Subcontractor. In providing Submittals, Contractor and all Subcontractors warrant that they have authority to grant to Owner a license to use the Submittals, and that such license is not in violation of any copyright or other intellectual property right. Contractor agrees to defend and indemnify Owner pursuant to the indemnity provisions in Section 5.03 and 5.22 from any violations of copyright or other intellectual property rights arising out of Owner's use of the Submittals hereunder, or to secure for Owner, at Contractor's own cost, licenses in conformity with this section.

D. Submittals to be used only for this Project: Submittals prepared by Contractor, Subcontractors of any tier, or its or their equipment or material suppliers, and copies thereof furnished to Contractor, are for use solely with respect to this Project. They are not to be used by Contractor or any Subcontractor of any tier, or material or equipment supplier, on other projects or for additions to this Project outside the scope of the Work without the specific written consent of Owner. The Contractor, Subcontractors of any tier, and material or equipment suppliers are granted a limited license to use and reproduce applicable portions of the Submittals appropriate to and for use in the execution of their Work under the Contract Documents.

E. Electronic Files: If the parties intend to transmit the instruments of service or any other information or documentation in digital form (other than PDF), they shall endeavor to establish necessary protocols governing such transmissions, unless otherwise already provided in the Contract Documents.

PART 5 - PERFORMANCE

5.01 CONTRACTOR CONTROL AND SUPERVISION

A. Contractor responsible for Means and Methods of construction: Contractor shall supervise and direct the Work, using its best skill and attention, and shall perform the Work in a skillful manner. Contractor shall be solely responsible for and have control over construction means, methods, techniques, sequences, and procedures and for coordinating all portions of the Work, unless the Contract Documents give other specific instructions concerning these matters. Contractor shall disclose its means and methods of construction when requested by Owner.

B. Competent superintendent required: Contractor, as soon as practicable after award of the Contract, shall furnish in writing to Owner the name and qualifications of its proposed superintendent. Owner may reply within 14 Days to Contractor in writing stating (1) whether Owner has reasonable objection to the proposed superintendent or (2) that Owner requires additional time to review. Failure of Owner to reply within the 14-Day period shall constitute Notice of no reasonable objection. The superintendent shall not be employed on any other project during the course of the Work. Unless approved by the Owner’s representative and only when overseeing projects on the same campus or location where oversite and supervision will not be degraded. Performance of the Work shall be directly supervised by a competent superintendent who shall be in attendance at the Project site during performance of the Work and who has authority to act on behalf of Contractor. Communications given to the superintendent shall be as binding as if given to Contractor. The superintendent must be satisfactory to Owner and shall not be changed without the prior written consent of Owner. Owner may require
Contractor to remove the superintendent from the Work or Project site, if Owner reasonably deems the superintendent incompetent, careless, or otherwise objectionable, provided Owner has first notified Contractor in writing and allowed a reasonable period for transition.

C. **Contractor responsible for acts and omissions of self and agents**: Contractor shall be responsible to Owner for acts and omissions of Contractor, Subcontractors, and their employees and agents.

D. **Contractor to employ competent and disciplined workforce**: Contractor shall enforce strict discipline and good order among all of the Contractor’s employees and other persons performing the Work. Contractor shall not permit employment of persons not skilled in tasks assigned to them. Contractor’s employees shall at all times conduct business in a manner which assures fair, equal, and nondiscriminatory treatment of all persons. Owner may, by written notice, request Contractor to remove from the Work or Project site any employee Owner reasonably deems incompetent, careless, or otherwise objectionable.

E. **Contractor to keep project documents on site**: Contractor shall keep on the Project site a copy of the Drawings, Specifications, addenda, reviewed Submittals, and permits and permit drawings.

F. **Contractor to comply with ethical standards**: Contractor shall ensure that its owner(s) and employees, and those of its Subcontractors, comply with the Ethics in Public Service Act RCW 42.52, which, among other things, prohibits state employees from having an economic interest in any public works contract that was made by, or supervised by, that employee. Contractor shall remove, at its sole cost and expense, any of its, or its Subcontractors’ employees, if they are in violation of this act.

5.02 PERMITS, FEES, AND NOTICES

A. **Contractor to obtain and pay for permits**: Unless otherwise provided in the Contract Documents, Contractor shall secure and pay for the building, any land use permits and all other permits, licenses, and inspections necessary for proper execution and completion of the Work. Prior to Final Acceptance, the approved, signed permits shall be delivered to Owner.

B. **Allowances for permit fees**: If allowances for permits or utility fees are called for in the Contract Documents and set forth in Contractor’s bid, and the actual costs of those permits or fees differ from the allowances in the Contract Documents, the difference shall be adjusted by Change Order.

C. **Contractor to comply with all applicable laws**: Contractor shall comply with and give notices required by all federal, state, and local laws, ordinances, rules, regulations, and lawful orders of public authorities applicable to performance of the Work.

D. **Taxes**: Contractor shall pay sales, consumer, use, business and occupation, income and similar taxes for the Work that are legally enacted when the initial Contract Sum is agreed.

5.03 PATENTS AND ROYALTIES

Payment, indemnification, and notice: Contractor is responsible for, and shall pay, all royalties and license fees. Contractor shall defend, indemnify, and hold Owner harmless from any costs, expenses, and liabilities arising out of the infringement by Contractor of any patent, copyright, or other intellectual property right used in the Work; however, provided that Contractor gives prompt notice, Contractor shall not be responsible for such defense or indemnity when a particular design, process, or product of a particular manufacturer or manufacturers is required by the Contract Documents. If Contractor has reason to believe that use of the required design, process, or product constitutes an infringement of a patent or copyright, it shall promptly notify Owner of such potential infringement.
5.04 PREVAILING WAGES

A. Contractor to pay Prevailing Wages: Contractor shall pay the prevailing rate of wages to all workers, laborers, or mechanics employed in the performance of any part of the Work in accordance with RCW 39.12 and the rules and regulations of the Department of Labor and Industries. The schedule of prevailing wage rates for the locality or localities of the Work, is determined by the Industrial Statistician of the Department of Labor and Industries. It is the Contractor's responsibility to verify the applicable prevailing wage rate.

B. Statement of Intent to Pay Prevailing Wages: Before payment is made by the Owner to the Contractor for any work performed by the Contractor and subcontractors whose work is included in the application for payment, the Contractor shall submit, or shall have previously submitted to the Owner for the Project, a Statement of Intent to Pay Prevailing Wages, approved by the Department of Labor and Industries, certifying the rate of hourly wage paid and to be paid each classification of laborers, workers, or mechanics employed upon the Work by Contractor and Subcontractors. Such rates of hourly wage shall not be less than the prevailing wage rate.

C. Affidavit of Wages Paid: Prior to release of retainage, the Contractor shall submit to the Owner an Affidavit of Wages Paid, approved by the Department of Labor and Industries, for the Contractor and every subcontractor that performed work on the Project.

D. Disputes: Disputes regarding prevailing wage rates shall be referred for arbitration to the Director of the Department of Labor and Industries. The arbitration decision shall be final and conclusive and binding on all parties involved in the dispute as provided for by RCW 39.12.060.

E. Statement with pay application; Post Statements of Intent at job site: Each Application for Payment submitted by Contractor shall state that prevailing wages have been paid in accordance with the prefilled statement(s) of intent, as approved. Copies of the approved intent statement(s) shall be posted on the job site with the address and telephone number of the Industrial Statistician of the Department of Labor and Industries where a complaint or inquiry concerning prevailing wages may be made.

F. Contractor to pay for Statements of Intent and Affidavits: In compliance with chapter 296-127 WAC, Contractor shall pay to the Department of Labor and Industries the currently established fee(s) for each statement of intent and/or affidavit of wages paid submitted to the Department of Labor and Industries for certification.

G. Certified Payrolls: Consistent with WAC 296-127-320, the Contractor and any subcontractor shall submit a certified copy of payroll records if requested.

5.05 HOURS OF LABOR

A. Overtime: Contractor shall comply with all applicable provisions of RCW 49.28 and they are incorporated herein by reference.

5.06 NONDISCRIMINATION

A. Discrimination prohibited by applicable laws: Discrimination in all phases of employment is prohibited by, among other laws and regulations, Title VII of the Civil Rights Act of 1964, the Vietnam Era Veterans Readjustment Act of 1974, Sections 503 and 504 of the Vocational Rehabilitation Act of 1973, the Equal Employment Act of 1972, the Age Discrimination Act of 1967, the Americans with Disabilities Act of 1990, the Civil Rights Act of 1991, Presidential Executive Order 11246, Executive Order 13175, the Washington State Law Against Discrimination, RCW 49.60, and Gubernatorial Executive Order 85-09. These laws and
regulations establish minimum requirements for affirmative action and fair employment practices which Contractor must meet.

B. **During performance of the Work:**

1. **Protected Classes:** Contractor shall not discriminate against any employee or applicant for employment because of race, creed, color, national origin, sex, age, marital status, or the presence of any physical, sensory, or mental disability, Vietnam era veteran status, or disabled veteran status, nor commit any other unfair practices as defined in RCW 49.60.

2. **Advertisements to state nondiscrimination:** Contractor shall, in all solicitations or advertisements for employees placed by or for it, state that all qualified applicants will be considered for employment, without regard to race, creed, color, national origin, sex, age, marital status, or the presence of any physical, sensory, or mental disability.

3. **Contractor to notify unions and others of nondiscrimination:** Contractor shall send to each labor union, employment agency, or representative of workers with which it has a collective bargaining agreement or other contract or understanding, a notice advising the labor union, employment agency, or workers’ representative of Contractor’s obligations according to the Contract Documents and RCW 49.60.

4. **Owner and State access to Contractor records:** Contractor shall permit access to its books, records, and accounts, and to its premises by Owner, and by the Washington State Human Rights Commission, for the purpose of investigation to ascertain compliance with this section of the Contract Documents.

5. **Pass through provisions to Subcontractors:** Contractor shall include the provisions of this section in every Subcontract.

5.07 SAFETY PRECAUTIONS

A. **Contractor responsible for safety:** Contractor shall be responsible for initiating, maintaining, and supervising all safety precautions and programs in connection with the performance of the Work. Contractor shall be solely and completely responsible for conditions of the Project site, including safety of all persons and property, during performance of the Work. Contractor shall maintain the Project site and perform the Work in a manner that meets statutory and common-law requirements for the provision of a safe place to work. This requirement shall apply continuously and not be limited to working hours. Any review by Owner or A/E of Contractor’s performance shall not be construed to include a review of the adequacy of Contractor’s safety measures in, on or near the site of the Work.

B. **Contractor safety responsibilities:** In carrying out its responsibilities according to the Contract Documents, Contractor shall protect the lives and health of employees performing the Work and other persons who may be affected by the Work; prevent damage to materials, supplies, and equipment whether on site or stored off-site; and prevent damage to other property at the site or adjacent thereto. Contractor shall comply with all applicable laws, ordinances, rules, regulations, and orders of any public body having jurisdiction for the safety of persons or property or to protect them from damage, injury, or loss; shall erect and maintain all necessary safeguards for such safety and protection; and shall notify owners of adjacent property and utilities when prosecution of the Work may affect them.

C. **Contractor to maintain safety records:** Contractor shall maintain an accurate record of exposure data on all incidents relating to the Work resulting in death, traumatic injury, occupational disease, or damage to property, materials, supplies, or equipment. Contractor shall immediately report
any such incident to Owner. Owner shall, at all times, have a right of access to all records of exposure.

D. Contractor to provide HazMat training: Contractor shall provide all persons working on the Project site with information and training on hazardous chemicals in their work at the time of their initial assignment, and whenever a new hazard is introduced into their work area.

1. Information. At a minimum, Contractor shall inform persons working on the Project site of:
 a. WAC: The requirements of chapter 296-62 WAC, General Occupational Health Standards;
 b. Presence of hazardous chemicals: Any operations in their work area where hazardous chemicals are present; and
 c. Hazard communication program: The location and availability of written hazard communication programs, including the required list(s) of hazardous chemicals and material safety data sheets required by chapter 296-62 WAC.

2. Training. At a minimum, Contractor shall provide training for persons working on the Project site which includes:
 a. Detecting hazardous chemicals: Methods and observations that may be used to detect the presence or release of a hazardous chemical in the work area (such as monitoring conducted by the employer, continuous monitoring devices, visual appearance or odor of hazardous chemicals when being released, etc.);
 b. Hazards of chemicals: The physical and health hazards of the chemicals in the work area;
 c. Protection from hazards: The measures such persons can take to protect themselves from these hazards, including specific procedures Contractor, or its Subcontractors, or others have implemented to protect those on the Project site from exposure to hazardous chemicals, such as appropriate work practices, emergency procedures, and personal protective equipment to be used; and
 d. Hazard communication program: The details of the hazard communication program developed by Contractor, or its Subcontractors, including an explanation of the labeling system and the material safety data sheet, and how employees can obtain and use the appropriate hazard information.

E. Hazardous, toxic or harmful substances: Contractor’s responsibility for hazardous, toxic, or harmful substances shall include the following duties:

1. Illegal use of dangerous substances: Contractor shall not keep, use, dispose, transport, generate, or sell on or about the Project site, any substances now or hereafter designated as, or which are subject to regulation as, hazardous, toxic, dangerous, or harmful by any federal, state or local law, regulation, statute or ordinance (hereinafter collectively referred to as “hazardous substances”), in violation of any such law, regulation, statute, or ordinance, but in no case shall any such hazardous substance be stored more than 90 Days on the Project site.
2. **Contractor notifications of spills, failures, inspections, and fines:** Contractor shall promptly notify Owner of all spills or releases of any hazardous substances which are otherwise required to be reported to any regulatory agency and pay the cost of cleanup. Contractor shall promptly notify Owner of all failures to comply with any federal, state, or local law, regulation, or ordinance; all inspections of the Project site by any regulatory entity concerning the same; all regulatory orders or fines; and all responses or interim cleanup actions taken by or proposed to be taken by any government entity or private party on the Project site.

F. **Public safety and traffic:** All Work shall be performed with due regard for the safety of the public. Contractor shall perform the Work so as to cause a minimum of interruption of vehicular traffic or inconvenience to pedestrians. All arrangements to care for such traffic shall be Contractor’s responsibilities. All expenses involved in the maintenance of traffic by way of detours shall be borne by Contractor.

G. **Contractor to act in an emergency:** In an emergency affecting the safety of life or the Work or of adjoining property, Contractor is permitted to act, at its discretion, to prevent such threatened loss or injury, and Contractor shall so act if so authorized or instructed.

H. **No duty of safety by Owner or A/E:** Nothing provided in this Section 5.07 shall relieve Contractor of sole and complete responsibility for safety at the Project site, for sole and complete responsibility for any violation of safety or property protection requirements or the correction thereof, or impose any duty upon Owner or A/E with regard to, or as constituting any express or implied assumption of control or responsibility over, any other safety conditions relating to employees or agents of Contractor or any of its Subcontractors, or the public. Any Notice Owner or A/E gives to Contractor of a safety or property protection violation will not: (1) relieve Contractor of sole and complete responsibility for the violation and the correction thereof, or for sole liability for the consequences of said violation; (2) impose any obligation upon Owner or A/E to inspect or review Contractor’s safety program or precautions or to enforce Contractor’s compliance with the requirements of this Section 5.07; or (3) impose any continuing obligation upon Owner or A/E to provide such Notice to Contractor or any other persons or entity.

5.08 **OPERATIONS, MATERIAL HANDLING, AND STORAGE AREAS**

A. **Limited storage areas:** Contractor shall confine all operations, including storage of materials, to Owner-approved areas.

B. **Temporary buildings and utilities at Contractor expense:** Temporary buildings (e.g., storage sheds, shops, offices) and utilities may be provided by Contractor only with the consent of Owner and without expense to Owner. The temporary buildings and utilities shall be removed by Contractor at its expense upon completion of the Work.

C. **Roads and vehicle loads:** Contractor shall use only established roadways or temporary roadways authorized by Owner. When materials are transported in prosecuting the Work, vehicles shall not be loaded beyond the loading capacity recommended by the manufacturer of the vehicle or prescribed by federal, state, or local law or regulation.

D. **Ownership and reporting by Contractor of demolished materials:** Ownership and control of all materials or facility components to be demolished or removed from the Project site by Contractor shall immediately vest in Contractor upon severance of the component from the facility or severance of the material from the Project site. Contractor shall be responsible for compliance with all laws governing the storage and ultimate disposal. Contractor shall provide Owner with a copy of all manifests and receipts evidencing proper disposal when required by Owner or applicable law.
E. Contractor responsible for care of materials and equipment on-site: Contractor shall be responsible for the proper care and protection of its materials and equipment delivered to the Project site. Materials and equipment may be stored on the premises subject to approval of Owner. When Contractor uses any portion of the Project site as a shop, Contractor shall be responsible for any repairs, patching, or cleaning arising from such use.

F. Contractor responsible for loss of materials and equipment: Contractor shall protect and be responsible for any damage or loss to the Work, or to the materials or equipment until the date of Substantial Completion, and shall repair or replace without cost to Owner any damage or loss that may occur, except damages or loss caused by the acts or omissions of Owner. Contractor shall also protect and be responsible for any damage or loss to the Work, or to the materials or equipment, after the date of Substantial Completion, and shall repair or replace without cost to Owner any such damage or loss that might occur, to the extent such damages or loss are caused by the acts or omissions of Contractor, or any Subcontractor.

5.09 PRIOR NOTICE OF EXCAVATION

A. Excavation defined; Use of locator services: “Excavation” means an operation in which earth, rock, or other material on or below the ground is moved or otherwise displaced by any means, except the tilling of soil less than 12 inches in depth for agricultural purposes, or road ditch maintenance that does not change the original road grade or ditch flow line. Before commencing any excavation, Contractor shall provide notice of the scheduled commencement of excavation to all owners of underground facilities or utilities, through locator services.

5.10 UNFORESEEN PHYSICAL CONDITIONS

A. Notice requirement for concealed or unknown conditions: If Contractor encounters conditions at the site which are subsurface or otherwise concealed physical conditions which differ materially from those indicated in the Contract Documents, or unknown physical conditions of an unusual nature which differ materially from those ordinarily found to exist and generally recognized as inherent in construction activities of the character provided for in the Contract Documents, then Contractor shall give written notice to Owner promptly and in no event later than 7 Days after the first observance of the conditions. Conditions shall not be disturbed prior to such notice.

B. Adjustment in Contract Time and Contract Sum: If such conditions differ materially and cause a change in Contractor’s cost of, or time required for, performance of any part of the Work, the Contractor may be entitled to an equitable adjustment in the Contract Time or Contract Sum, or both, provided it makes a request therefore as provided in Part 7.

5.11 PROTECTION OF EXISTING STRUCTURES, EQUIPMENT, VEGETATION, UTILITIES AND IMPROVEMENTS

A. Contractor to protect and repair property: At all times until Owner’s occupancy of the Work or a designated portion of the Work, Contractor shall protect the Work from damage, weather, deterioration, theft, vandalism and malicious mischief and shall bear the risk of any uninsured loss or destruction of, or injury or damage to, all materials, equipment, tools, and other items incorporated or to be incorporated in the Work or designated portion, or consumed or used in the performance of the Work or designated portion, including all Work in process and completed Work. Contractor shall protect from damage all existing structures, equipment, improvements, utilities, streets, curbs, walks and vegetation at or near the Project site or on adjacent property of a third party, the locations of which are made known to or should be known by Contractor. Contractor shall repair any damage, including that to the property of a third party, resulting from failure to comply with the requirements of the Contract Documents or failure to exercise reasonable care in performing the Work. If Contractor fails or refuses to repair the damage...
promptly, Owner may have the necessary work performed and charge the cost to Contractor. If a governmental authority having jurisdiction requires that the repairing and patching be done with its own labor and/or materials, Contractor shall abide by such regulations, and it shall pay for this work at no additional cost to Owner.

B. Tree and vegetation protection: Contractor shall only remove trees when specifically authorized to do so, and shall protect vegetation that will remain in place.

C. Special site conditions: If, in the course of the Work, Contractor encounters human remains or recognizes the existence of burial markers, archaeological sites or wetlands not indicated in the Contract Documents, Contractor shall immediately suspend any operations that would affect them and shall notify Owner and A/E. Upon receipt of such Notice, Owner shall promptly take any action necessary to obtain governmental authorization required to resume the operations. Contractor shall continue to suspend these operations until otherwise instructed by Owner but shall continue with all other operations that do not affect those remains or features. Requests for adjustments in the Contract Sum and Contract Time arising from the existence of such remains or features may be made as provided in Part 8.

5.12 LAYOUT OF WORK

A. Advanced planning of the Work: Contractor shall plan and lay out the Work in advance of operations so as to coordinate all work without delay or revision.

B. Lay out responsibilities: Contractor shall lay out the Work from Owner-established baselines and bench marks indicated on the Drawings, and shall be responsible for all field measurements in connection with the layout. Contractor shall furnish, at its own expense, all stakes, templates, platforms, equipment, tools, materials, and labor required to lay out any part of the Work. Contractor shall be responsible for executing the Work to the lines and grades that may be established. Contractor shall be responsible for maintaining or restoring all stakes and other marks established.

5.13 MATERIAL AND EQUIPMENT

A. Contractor to provide new and equivalent equipment and materials: All equipment, material, and articles incorporated into the Work shall be new and of the most suitable grade for the purpose intended, unless otherwise specifically provided in the Contract Documents. References in the Specifications to equipment, material, articles, or patented processes by trade name, make, or catalog number, shall be regarded as establishing a standard quality and shall not be construed as limiting competition. Contractor may, at its option, use any equipment, material, article, or process that, in the judgment of A/E and after submittal and approval of a substitute request, is equal to that named in the Specifications, unless otherwise specifically provided in the Contract Documents.

B. Contractor responsible for fitting parts together: Contractor shall do all cutting, fitting, or patching that may be required to complete the Work or to make its several parts fit together properly, or receive or be received by work of others set forth in, or reasonably implied by, the Contract Documents. Contractor shall not damage or endanger any work of Owner or separate contractors by cutting, excavating, or otherwise altering the Work and shall not cut or alter the work of any other contractor unless approved in advance by Owner. Contractor shall restore all areas requiring cutting, fitting and patching to the condition existing prior to the cutting, fitting and patching, unless otherwise required by the Contract Documents.

C. Owner may reject defective Work: Should any of the Work be found defective, or in any way not in accordance with the Contract Documents, this Work, in whatever stage of completion, may be
rejected by Owner. However, neither this authority of Owner nor a decision made either to exercise or not to exercise such authority shall give rise to a duty or responsibility of Owner or its representatives to Contractor, Subcontractors, their agents or employees, or other persons or entities performing portions of the Work.

5.14 AVAILABILITY AND USE OF UTILITY SERVICES

A. Owner to provide and charge for utilities: Owner shall make all reasonable utilities available to Contractor from existing outlets and supplies, as specified in the Contract Documents. Unless otherwise provided in the Contract Documents, the utility service consumed shall be charged to or paid for by Contractor at prevailing rates charged to Owner or, where the utility is produced by Owner, at reasonable rates determined by Owner. Contractor will carefully conserve any utilities furnished.

B. Contractor to install temporary connections and meters: Contractor shall, at its expense and in a skillful manner satisfactory to Owner, install and maintain all necessary temporary connections and distribution lines, together with appropriate protective devices, and all meters required to measure the amount of each utility used for the purpose of determining charges. Prior to the date of Final Acceptance, Contractor shall remove all temporary connections, distribution lines, meters, and associated equipment and materials.

5.15 TESTS AND INSPECTION

A. Contractor to provide for all testing and inspection of Work: Contractor shall maintain an adequate testing and inspection program and perform such tests and inspections as are necessary or required to ensure that the Work conforms to the requirements of the Contract Documents. Contractor shall be responsible for inspection and quality surveillance of all its Work and all Work performed by any Subcontractor. Unless otherwise provided, Contractor shall make arrangements for such tests, inspections, and approvals with an independent testing laboratory or entity acceptable to Owner, or with the appropriate public authority, and shall bear all related costs of tests, inspections, and approvals. Contractor shall give Owner timely notice of when and where tests and inspections are to be made. Contractor shall maintain complete inspection records and make them available to Owner.

B. Owner may conduct tests and inspections: Owner may, at any reasonable time, conduct such inspections and tests as it deems necessary to ensure that the Work is in accordance with the Contract Documents. Owner shall promptly notify Contractor if an inspection or test reveals that the Work is not in accordance with the Contract Documents. Unless the subject items are expressly accepted by Owner, such Owner inspection and tests are for the sole benefit of Owner and do not:

1. Constitute or imply acceptance;
2. Relieve Contractor of responsibility for providing adequate quality control measures;
3. Relieve Contractor of responsibility for risk of loss or damage to the Work, materials, or equipment;
4. Relieve Contractor of its responsibility to comply with the requirements of the Contract Documents; or
5. Impair Owner’s right to reject defective or nonconforming items, or to avail itself of any other remedy to which it may be entitled.
C. Inspections or inspectors do not modify Contract Documents: Neither observations by an inspector retained by Owner, the presence or absence of such inspector on the site, nor inspections, tests, or approvals by others, shall relieve Contractor from any requirement of the Contract Documents, nor is any such inspector authorized to change any term or condition of the Contract Documents.

D. Contractor responsibilities on inspections: Contractor shall promptly furnish, without additional charge, all facilities, labor, material and equipment reasonably needed for performing such safe and convenient inspections and tests as may be required by Owner. Owner may charge Contractor any additional cost of inspection or testing when Work is not ready at the time specified by Contractor for inspection or testing, or when prior rejection makes reinspection or retest necessary. Owner shall perform its inspections and tests in a manner that will cause no undue delay in the Work.

5.16 CORRECTION OF NONCONFORMING WORK

A. Work covered by Contractor without inspection: If a portion of the Work is covered contrary to the request of Owner or the requirements in the Contract Documents or a governmental authority having jurisdiction, it must, if required in writing by Owner, be uncovered for Owner’s observation and be replaced at Contractor’s expense and without change in the Contract Sum or Contract Time.

B. Payment provisions for uncovering covered Work: If, at any time prior to Final Completion, Owner desires to examine the Work, or any portion of it, which has been covered, Owner may request to see such Work and it shall be uncovered by Contractor. If such Work is in accordance with the Contract Documents, the Contractor shall be entitled to an adjustment in the Contract Sum for the costs of uncovering and replacement, and, if completion of the Work is thereby delayed, an adjustment in the Contract Time, provided it makes such a request as provided in Part 7. If such Work is not in accordance with the Contract Documents, the Contractor shall pay the costs of examination and reconstruction.

C. Contractor to correct and pay for non-conforming Work: Contractor shall promptly correct Work found by Owner not to conform to the requirements of the Contract Documents, whether observed before or after Substantial Completion and whether or not fabricated, installed, or completed. Contractor shall bear all costs of correcting such nonconforming Work, including additional testing and inspections.

D. Contractor’s compliance with correction and warranty provisions: If, within one year after the date of Substantial Completion of the Work or designated portion thereof, or within one year after the date for commencement of any system warranties established under Section 6.08, or within the terms of any applicable special warranty required by the Contract Documents, any of the Work is found to be not in accordance with the requirements of the Contract Documents, Contractor shall correct it promptly after receipt of written Notice from Owner to do so. Owner shall give such Notice promptly after discovery of the condition. This period of one year shall be extended, with respect to portions of Work first performed after Substantial Completion, by the period of time between Substantial Completion and the actual performance of the Work. Contractor’s duty to correct with respect to Work repaired or replaced shall run for one year from the date of repair or replacement. Obligations under this Section 5.16D shall survive Final Acceptance and are in addition to other warranties provided by contract or law.

E. Contractor to remove non-conforming Work: Contractor shall remove from the Project site portions of the Work which are not in accordance with the requirements of the Contract Documents and are neither corrected by Contractor nor accepted by Owner.
F. Owner may charge Contractor for non-conforming Work: If Contractor fails to correct nonconforming Work within a reasonable time after written notice to do so, Owner may replace, correct, or remove the nonconforming Work and charge the cost thereof to the Contractor.

G. Contractor to pay for damaged Work during correction: Contractor shall bear the cost of correcting destroyed or damaged Work, whether completed or partially completed, caused by Contractor’s correction or removal of Work which is not in accordance with the requirements of the Contract Documents.

H. No Period of limitation on other requirements: Nothing contained in this section shall be construed to establish a period of limitation with respect to other obligations which Contractor might have according to the Contract Documents. Establishment of the time period of one year as described in Section 5.16D relates only to the specific obligation of Contractor to correct the Work, and has no relationship to the time within which the Contractor’s obligation to comply with the Contract Documents may be sought to be enforced, including the time within which such proceedings may be commenced.

I. Owner may accept non-conforming Work and charge Contractor: If Owner prefers to accept Work which is not in accordance with the requirements of the Contract Documents, Owner may do so instead of requiring its removal and correction, in which case the Contract Sum may be reduced as appropriate and equitable.

5.17 CLEAN UP

Contractor to keep site clean and leave it clean: Contractor shall at all times keep the Project site, including hauling routes, infrastructures, utilities, and storage areas, free from accumulations of waste materials. Before completing the Work, Contractor shall remove from the premises its rubbish, tools, scaffolding, equipment, and materials. Upon completing the Work, Contractor shall leave the Project site in a clean, neat, and orderly condition satisfactory to Owner. If Contractor fails to clean up as provided herein, and after reasonable notice from Owner, Owner may do so and the cost thereof shall be charged to Contractor.

5.18 ACCESS TO WORK

Owner and A/E access to Work site: Contractor shall provide Owner and A/E access to the Work in progress wherever located.

5.19 OTHER CONTRACTS

Owner may award other contracts; Contractor to cooperate: Owner may undertake or award other contracts for additional work at or near the Project site. Owner shall help coordinate the activities of Owner’s own forces and of each separate contractor engaged by Owner with the Work of Contractor, who shall reasonably cooperate with the other contractors and with Owner’s employees and shall carefully adapt scheduling and perform the Work in accordance with these Contract Documents to reasonably accommodate the other work.

5.20 SUBCONTRACTORS AND SUPPLIERS

A. Subcontractor Responsibility: The Contractor shall include the language of this paragraph in each of its first tier subcontracts, and shall require each of its subcontractors to include the same language of this section in each of their subcontracts, adjusting only as necessary the terms used for the contracting parties. Upon request of the Owner, the Contractor shall promptly provide documentation to the Owner demonstrating that the subcontractor meets the subcontractor responsibility criteria below. The requirements of this paragraph apply to all subcontractors.
regardless of tier. At the time of subcontract execution, the Contractor shall verify that each of its first tier subcontractors meets the following bidder responsibility criteria:

1. Have a current certificate of registration as a contractor in compliance with chapter 18.27 RCW, which must have been in effect at the time of subcontract bid submittal;

2. Have a current Washington Unified Business Identifier (UBI) number;

3. If applicable, have:
 a. Industrial Insurance (workers’ compensation) coverage for the subcontractor’s employees working in Washington, as required in Title 51 RCW;
 b. A Washington Employment Security Department number, as required in Title 50 RCW;
 c. A Washington Department of Revenue state excise tax registration number, as required in Title 82 RCW;
 d. An electrical contractor license, if required by Chapter 19.28 RCW;
 e. An elevator contractor license, if required by Chapter 70.87 RCW.

4. Not be disqualified from bidding on any public works contract under RCW 39.06.010 or 39.12.065 (3).

5. On a project subject to the apprenticeship utilization requirements in RCW 39.04.320, not have been found out of compliance by the Washington state apprenticeship and training council for working apprentices out of ratio, without appropriate supervision, or outside their approved work processes as outlined in their standards of apprenticeship under chapter 49.04 RCW for the one-year period immediately preceding the date of the Owner’s first advertisement of the project.

6. Meet all supplemental responsibility criteria set forth in the Contract Documents.

B. Provide names of Subcontractors and use qualified firms: Before submitting the first Application for Payment, Contractor shall furnish in writing to Owner the names, addresses, and telephone numbers of all Subcontractors, as well as suppliers providing materials in excess of $2,500. Contractor shall utilize Subcontractors and suppliers which are experienced and qualified, and meet the requirements of the Contract Documents, if any. Contractor shall not utilize any Subcontractor or supplier to whom Owner has a “reasonable objection,” and shall obtain Owner’s written consent before making any substitutions or additions. A “reasonable objection” shall include without limitation:

1. a proposed Subcontractor differing from the entity listed with a proposal or bid,

2. lack of "responsibility" of the proposed Subcontractor, as defined in RCW 39.04.350 or otherwise in the Contract Documents, or

3. lack of qualification, including technical qualification, as required by the Specifications.

C. Subcontracts in writing and pass through provision: All Subcontracts must be in writing. By appropriate written agreement, Contractor shall require each Subcontractor, so far as applicable to the Work to be performed by the Subcontractor, to be bound to Contractor by terms of the
Contract Documents, and to assume toward Contractor all the obligations and responsibilities which Contractor assumes toward Owner in accordance with the Contract Documents. Each Subcontract shall preserve and protect the rights of Owner in accordance with the Contract Documents with respect to the Work to be performed by the Subcontractor so that subcontracting thereof will not prejudice such rights. Where appropriate, Contractor shall require each Subcontractor to enter into similar agreements with Sub-subcontractors. However, nothing in this paragraph shall be construed to alter the contractual relations between Contractor and its Subcontractors with respect to insurance or bonds.

D. Coordination of Subcontractors; Contractor responsible for Work: Contractor shall schedule, supervise, and coordinate the operations of all Subcontractors. No Subcontracting of any of the Work shall relieve Contractor from its responsibility for the performance of the Work in accordance with the Contract Documents or any other obligations of the Contract Documents.

E. Automatic assignment of subcontracts: Each subcontract agreement for a portion of the Work is hereby assigned by Contractor to Owner provided that:

1. Effective only after termination and Owner approval: The assignment is effective only after termination by Owner for cause pursuant to Section 9.01 and only for those Subcontracts which Owner accepts by notifying the Subcontractor in writing; and

2. Owner assumes Contractor's responsibilities: After the assignment is effective, Owner will assume all future duties and obligations toward the Subcontractor which Contractor assumed in the Subcontract.

3. Impact of bond: The assignment is subject to the prior rights of the surety, if any, obligated under any bond provided in accordance with the Contract Documents.

5.21 WARRANTY OF CONSTRUCTION

A. Contractor warranty of Work: In addition to any special warranties provided elsewhere in the Contract Documents, Contractor warrants that all Work conforms to the requirements of the Contract Documents and is free of any defect in equipment, material, or design furnished, or workmanship performed by Contractor.

B. Contractor responsibilities: With respect to all warranties, express or implied, for Work performed or materials furnished according to the Contract Documents, Contractor shall:

1. Obtain warranties: Obtain, assign if requested, and furnish directly to Owner, all warranties that would be given in normal commercial practice or that are required by the Contract Documents, first executed by the applicable Subcontractor and those suppliers and manufacturers furnishing materials for the Work, and subsequently countersigned by Contractor, which shall extend to Owner all rights, claims, benefits and interests that Contractor may have under express or implied warranties or guarantees against the Subcontractor, supplier or manufacturer for defective or non-conforming Work;

2. Warranties for benefit of Owner: Require all warranties to be executed, in writing, for the benefit of Owner;

3. Enforcement of warranties: Enforce all warranties for the benefit of Owner, if directed by Owner; and
4. Contractor responsibility for subcontractor warranties: Be responsible to enforce any subcontractor’s, manufacturer’s, or supplier’s warranties should they extend beyond the period specified in the Contract Documents.

C. Warranties beyond Final Acceptance: The obligations under this section shall survive Final Acceptance.

5.22 INDEMNIFICATION

A. Contractor to indemnify Owner: To the fullest extent permitted by law, Contractor shall defend, indemnify, and hold Owner and A/E, their consultants, and agents and employees, directors, officers, lenders, successors and assigns of any of them (collectively, the "Indemnified Parties"), harmless from and against all third-party claims, demands, losses, damages, or costs, including but not limited to damages arising out of bodily injury or death to persons and damage to property, direct and indirect, or consequential (including but not limited to costs and attorneys' fees incurred on such claims or in proving the right to indemnification), arising out of, caused by or resulting from:

1. Sole negligence of Contractor: The sole negligence or willful misconduct of Contractor or any of its Subcontractors, their agents and anyone directly or indirectly employed by them or anyone for whose acts they may be liable ("Indemnitor");

2. Concurrent negligence: The concurrent negligence of Indemnitor, but only to the extent of the negligence of Indemnitor; and

3. Patent infringement: The use of any design, process, or equipment that constitutes an infringement of any United States patent presently issued, or violates any other proprietary interest, including copyright, trademark, and trade secret, unless specifically directed to use such design, process, or equipment by Owner.

The obligations of Contractor under this Section 5.22 shall not be construed to negate, abridge, or otherwise reduce any other right or obligations of indemnity that would otherwise exist as to any party or person described in this Section. To the extent the wording of this Section 5.22 would reduce or eliminate the insurance coverage of Owner or Contractor, this Section 5.22 shall be considered modified to the extent that such insurance coverage is not affected. To the extent that any portion of this Section 5.22 is stricken by a court or arbitrator for any reason, all remaining provisions shall retain their vitality and effect. The provisions of this Section 5.22 shall survive completion, acceptance, final payment and termination of the Contract.

B. Employee action and RCW Title 51: In any action against Owner and any other entity indemnified in accordance with this section, by any employee of Contractor, its Subcontractors, Sub-subcontractors, agents, or anyone directly or indirectly employed by any of them, the indemnification obligation of this section shall not be limited by a limit on the amount or type of damages, compensation, or benefits payable by or for Contractor or any Subcontractor under RCW Title 51, the Industrial Insurance Act, or any other employee benefit acts. In addition, Contractor waives immunity as to Owner and A/E only, in accordance with RCW Title 51.

PART 6 - PAYMENTS AND COMPLETION

6.01 CONTRACT SUM

Owner shall pay Contract Sum: Owner shall pay Contractor the Contract Sum plus Washington State sales tax for performance of the Work, in accordance with the Contract Documents.
6.02 SCHEDULE OF VALUES

Contractor to submit Schedule of Values: Before submitting its first Application for Payment, Contractor shall submit to Owner for approval a breakdown allocating the total Contract Sum to each principal category of work, in such detail as requested by Owner (“Schedule of Values”). The approved Schedule of Values shall allocate at least the percentage of the original Contract Sum so designated in the Contract Documents to that portion of the Work between Substantial Completion and Final Completion to recognize not-yet-earned costs for demobilization, Project Record, O&M manuals, and any other requirements for Project closeout and in advancing the Work from Substantial Completion to Final Completion. The approved Schedule of Values shall be used by Owner as a basis for reviewing progress payments. Payment for Work shall be made only for and in accordance with those items included in the Schedule of Values.

6.03 APPLICATION FOR PAYMENT

A. Monthly Application for Payment with substantiation: At monthly intervals, unless determined otherwise by Owner, Contractor shall submit to Owner an itemized Application for Payment for Work (using Owner's form) completed in accordance with the Contract Documents and the approved Schedule of Values. Each application shall be supported by such substantiating data as Owner may require.

B. Contractor certifies Subcontractors paid: By submitting an Application for Payment, Contractor is certifying that all Subcontractors have been paid, less earned retainage in accordance with RCW 60.28.011, as their interests appeared in the last preceding Application for Payment. By submitting an Application for Payment, Contractor is recertifying that the representations set forth in Section 1.03 are true and correct, to the best of Contractor's knowledge, as of the date of the Application for Payment. Owner has the right to request written evidence from Contractor that Contractor has properly paid Subcontractors and material and equipment suppliers amounts paid by Owner to Contractor for subcontracted Work. Owner shall have the right to contact Subcontractors to ascertain whether they have been properly paid. Owner shall not have an obligation to pay or to see to the payment of money to a Subcontractor, except as may otherwise be required by law.

C. Reconciliation of Work with Progress Schedule: At the time it submits an Application for Payment, Contractor shall analyze and reconcile, to the satisfaction of Owner, the actual progress of the Work with the Progress Schedule. The submission of an Application for Payment constitutes a certification that the Work is current on the Progress Schedule.

D. Payment for material delivered to site or stored off-site: If authorized by Owner, the Application for Payment may include request for payment for material delivered to the Project site and suitably stored, or for completed preparatory work. Payment may similarly be requested for material stored off the Project site, provided Contractor complies with or furnishes satisfactory evidence of the following:

1. Suitable facility or location: The material will be placed in a facility or location that is structurally sound, dry, lighted and suitable for the materials to be stored or otherwise approved by Owner;

2. Facility or location within 10 miles of Project: The facility or location is located within a 10-mile radius of the Project. Other locations may be utilized, if approved in writing, by Owner;
3. **Facility or location exclusive to Project’s materials:** Only materials for the Project are stored within the facility or location (or a secure portion of a facility or location set aside for the Project);

4. **Insurance provided on materials in facility or location:** Contractor furnishes Owner a certificate of insurance extending Contractor's insurance coverage for damage, fire, and theft to cover the full value of all materials stored, or in transit;

5. **Facility or location locked and secure:** The facility or location (or secure portion thereof) is continuously under lock and key, and only Contractor’s authorized personnel shall have access;

6. **Owner right of access to facility or location:** Owner shall at all times have the right of access in company of Contractor;

7. **Contractor assumes total responsibility for stored materials:** Contractor and its surety assume total responsibility for the stored materials; and

8. **Contractor provides documentation and Notice when materials moved to site:** Contractor furnishes to Owner certified lists of materials stored, bills of lading, invoices, and other information as may be required, and shall also furnish Notice to Owner when materials are moved from storage to the Project site.

6.04 PROGRESS PAYMENTS

A. **Owner to pay within 30 Days:** Owner shall make progress payments, in such amounts as Owner determines are properly due, within 30 Days after receipt of a properly executed Application for Payment. Owner shall notify Contractor in accordance with chapter 39.76 RCW if the Application for Payment does not comply with the requirements of the Contract Documents.

B. **Withholding retainage; Options for retainage:** Owner shall retain 5% of the amount of each progress payment until 45 Days after Final Acceptance and receipt of all documents required by law or the Contract Documents, including, at Owner’s request, consent of surety to release of the retainage. In accordance with chapter 60.28 RCW, Contractor may request that monies reserved be retained in a fund by Owner, deposited by Owner in a bank or savings and loan, or placed in escrow with a bank or trust company to be converted into bonds and securities to be held in escrow with interest to be paid to Contractor. Owner may permit Contractor to provide an appropriate bond in lieu of the retained funds.

C. **Title passes to Owner upon payment:** Title to all Work and materials covered by a progress payment shall pass to Owner at the time of such payment free and clear of all liens, claims, security interests, and encumbrances. Passage of title shall not, however, relieve Contractor from any of its duties and responsibilities for the Work or materials, or waive any rights of Owner to insist on full compliance by Contractor with the Contract Documents. A progress payment, or partial or entire use or occupancy of the Project by Owner, shall not constitute acceptance of Work.

D. **Interest on unpaid balances:** Payments due and unpaid in accordance with the Contract Documents shall bear interest as specified in chapter 39.76 RCW.
6.05 PAYMENTS WITHHELD

A. Owner’s right to withhold payment: Owner may withhold or, on account of subsequently discovered evidence, nullify the whole or part of any payment to such extent as may be necessary to protect Owner from loss or damage for reasons including but not limited to:

1. Non-compliant Work: Work not in accordance with the Contract Documents;

2. Remaining Work to cost more than unpaid balance: Reasonable evidence that the Work required by the Contract Documents cannot be completed for the unpaid balance of the Contract Sum;

3. Owner correction or completion of Work: Work by Owner to correct defective Work or complete the Work in accordance with Section 5.16;

4. Third party claims for which Contractor may be responsible: Claims (except where an insurer has unconditionally accepted coverage without prior payment of any deductibles or self-insured retentions) filed or reasonable evidence indicating probable filing of such claims unless Contractor provides security acceptable to Owner;

5. Failure to pay Subcontractor: The failure of Contractor to make payments to Subcontractors for labor, materials or equipment;

6. Damages: Damage to Owner or a separate contractor (except where an insurer has unconditionally accepted coverage);

7. Affidavits of Wages Paid: Failure to submit affidavits pertaining to wages paid as requested or otherwise required by statute;

8. Progress Schedule: Failure to submit a properly updated Progress Schedule;

9. Maintenance of Project Record: Failure to properly maintain as the Project Record;

10. Other construction records: Failure to properly submit any other required construction reports or records;

11. Certified payrolls: Failure to properly submit certified payrolls when requested;

12. Contractor’s failure to perform: Contractor’s failure otherwise to perform in accordance with the Contract Documents; or

13. Contractor’s negligent acts or omissions: Cost or liability that may occur to Owner as the result of Contractor’s fault or negligent acts or omissions.

B. Owner to notify Contractor of withholding for unsatisfactory performance: In any case where part or all of a payment is going to be withheld for unsatisfactory performance, Owner shall notify Contractor in accordance with chapter 39.76 RCW.

6.06 RETAINAGE, BOND CLAIM RIGHTS, AND LIENS

A. Chapters 39.08 RCW and 60.28 RCW incorporated by reference: Chapters 39.08 RCW and 60.28 RCW, concerning the rights and responsibilities of Contractor and Owner with regard to the performance and payment bonds and retainage, are made a part of the Contract Documents by reference as though fully set forth herein.
B. **Liens:** Contractor shall promptly pay (and secure the discharge of any liens asserted by) all persons properly furnishing labor, equipment, materials or other items in connection with the performance of the Work (including, but not limited to, any Subcontractors) to the extent that Owner has paid Contractor for this Work. Owner may, at its option, withhold payment, in whole or in part, to Contractor until lien and claim releases are furnished. Contractor may provide other security acceptable to Owner, such as a bond, in lieu of paying disputed liens or claims. Contractor shall defend, indemnify, and hold harmless Owner from any liens, including all expenses and attorneys’ fees, except to the extent a lien has been recorded because of a failure of payment by Owner for the Work implicated in any such lien.

6.07 SUBSTANTIAL COMPLETION

A. **Substantial Completion defined:** Substantial Completion is the stage in the progress of the Work (or portion thereof designated and approved by Owner) when the construction is sufficiently complete, in accordance with the Contract Documents, so Owner has full and unrestricted use and benefit of the facilities (or portion thereof designated and approved by Owner) for the use for which it is intended, the Project has been constructed in substantial accordance with the Contract Documents, and at minimum the following elements have been accomplished (see also, Section 01 70 00 Project Completion):

1. A written punch list has been prepared;
2. The Authority Having Jurisdiction has granted a certificate of occupancy; and
3. The first final draft of the Operation and Maintenance manuals has been submitted to Owner.

All Work other than incidental corrective or punch list work shall be completed. Substantial Completion shall not have been achieved if the Work cannot achieve Final Completion within the time specified in the Agreement. The date Substantial Completion is achieved shall be established in writing by Owner. Contractor may request an early date of Substantial Completion which must be approved by Change Order. Owner’s occupancy of the Work or designated portion thereof does not necessarily indicate that Substantial Completion has been achieved.

B. **Contractor to provide weekly reports before Substantial Completion:** Beginning at least 30 Days before the scheduled date of Substantial Completion, Contractor shall prepare reports weekly, identifying items to be completed in order to obtain necessary occupancy certificates and permits, and make recommendations to Owner for effectuating the earliest possible completion. When Contractor considers that the Work, or a portion thereof that Owner agrees to accept separately, has achieved Substantial Completion, Contractor shall prepare and submit to Owner a comprehensive list of items to be completed or corrected prior to final payment. Contractor shall proceed promptly to complete and correct items on the list. Failure to include an item on the list does not alter the responsibility of Contractor to complete all Work in accordance with the Contract Documents.

C. **Owner to determine if Work is complete:** Upon receipt of Contractor’s list, Owner will make an inspection to determine whether the Work or designated portion thereof has achieved Substantial Completion. If Owner’s inspection discloses any item, whether or not included on Contractor’s list, that is not sufficiently complete in accordance with the Contract Documents so that Owner can occupy or utilize the Work or designated portion thereof for its intended use, Contractor shall, before the occurrence of Substantial Completion, complete or correct the item upon notification by Owner, and Contractor shall then submit a request for another inspection by Owner to determine Substantial Completion. If Owner determines that the Work or designated portion has not achieved Substantial Completion, Contractor shall expeditiously complete the Work or
designated portion, again request an inspection, and pay the costs associated with the re-
inspection.

D. **Owner may take over punch list:** If, at 30 Days after the date of Substantial Completion, Owner
considers that the remaining items on its list (“punch list”) are unlikely to be completed within the
time period specified in the Contract Documents for Final Completion, Owner may, upon seven
Days’ written Notice to Contractor, take over and perform some or all of the punch list items. If
Contractor fails to correct the deficiencies within the time period specified, Owner may deduct the
actual cost of performing this punch list work, including any design costs, plus ten 10% to account
for Owner’s transaction costs, from the Contract Sum.

E. **Owner to establish date of Substantial Completion:** When the Work or designated portion thereof
has achieved Substantial Completion, Owner shall establish the date of Substantial Completion in
writing, establish responsibilities of Contractor for security, maintenance, heat, utilities, damage to
the Work and insurance, and fix the time within which Contractor shall finish all items on the list
accompanying the document. The writing establishing Substantial Completion shall be submitted
to Contractor for its written acceptance of the responsibilities assigned to it. Any items not
included in the document but required or necessary for Final Completion of the Work shall be
supplied and installed by Contractor as a part of the Contract Sum, notwithstanding their not
being included in the punch list. Upon written acceptance of the writing establishing Substantial
Completion by Contractor and Owner, and upon Contractor’s Application for Payment, Owner
shall make payment as provided in the Contract Documents. Such payment shall be adjusted for
Work that is incomplete or not in accordance with the requirements of the Contract Documents.
No further payment will be due or owing until the payment following Final Completion.

F. **Contractor to complete punch list in timely manner:** Contractor shall prepare, continue to monitor,
and cause to be completed, all punch lists with respect to the activity of each Subcontractor and
report weekly to Owner on outstanding punch list items.

6.08 PRIOR OCCUPANCY

A. **Prior Occupancy defined; Restrictions:** Owner may, when legally permissible to do so and upon
written Notice to Contractor, take possession of or use any completed or partially completed
portion of the Work (“Prior Occupancy”) at any time prior to Substantial Completion, and
Contractor shall cooperate with such occupancy and use and the establishment of a punch list. Unless
otherwise agreed in writing, Prior Occupancy shall not: be deemed an acceptance of any
portion of the Work; accelerate the time for any payment to Contractor; prejudice any rights of
Owner provided by any insurance, bond, guaranty, or the Contract Documents; relieve Contractor
of the risk of loss or any of the obligations established by the Contract Documents; establish a
date of Substantial or Final Completion; establish a date for termination or partial termination of
the assessment of liquidated damages; or constitute a waiver of claims.

B. **Damage; Duty to repair and warranties:** Notwithstanding anything in the preceding paragraph,
Owner shall be responsible for loss of or damage to the Work resulting from Prior Occupancy.
Contractor’s one year duty to repair any system warranties shall begin on building systems
activated and used by Owner as agreed in writing by Owner and Contractor.

6.09 FINAL COMPLETION, ACCEPTANCE, AND PAYMENT

A. **Final Completion defined:** Final Completion shall be achieved when the Work is fully and finally
complete in accordance with the Contract Documents. The date Final Completion is achieved
shall be established by Owner in writing, but in no case shall it constitute Final Acceptance, which
is a subsequent, separate, and distinct action (see also, Section 01 70 00 Project Completion).
B. **Final Acceptance defined:** Unless otherwise determined by Owner, Final Acceptance shall be achieved after Contractor has completed all the requirements of the Contract Documents. The date Final Acceptance is achieved shall be established by Owner in writing. Pursuant to RCW 60.28, "Lien for Labor, Materials, Taxes on Public Works," completion of the Contract Work shall occur upon Final Acceptance. Neither Final Acceptance nor final payment shall release Contractor or its sureties from any obligations of these Contract Documents or the payment and performance bonds, or constitute a waiver of any claims by Owner arising from Contractor’s failure to perform the Work in accordance with the Contract Documents (see also, Section 01 70 00 Project Completion).

C. **Final payment waives Claim rights:** Acceptance of final payment by Contractor or any Subcontractor shall constitute a waiver and release to Owner of all claims by Contractor or any such Subcontractor for an increase in the Contract Sum or the Contract Time, and for every act or omission of Owner relating to or arising out of the Work, except for those Claims made in accordance with the procedures, including the time limits, set forth in Part 8.

PART 7 - CHANGES

7.01 CHANGE IN THE WORK

A. **Changes in the Work:** Changes in the Work may be accomplished after execution of the Contract without invalidating the Contract. Changes in the Work that adjust the Contract Sum and/or Contract Time are incorporated into the Contract solely by Change Order and are subject to the limitations stated in this Part 7 and elsewhere in the Contract Documents. A Change Order may be bilateral or unilateral, as described below. Change Orders may be initiated by mutual agreement or through a Contract Change Proposal (“CCP”) or Work Directive (“WD”).

B. **Change Orders:**

1. A Bilateral Change Order is signed by Owner and Contractor to record their agreement on the terms of a change in the Work. A Bilateral Change Order may reflect the agreement of Owner and Contractor on a standalone issue, or it may incorporate one or more mutually agreed upon CCPs or WDs. A Bilateral Change Order shall constitute full payment and final settlement of all claims for time and cost, including direct, indirect, impact and consequential costs, related to the Change Order and Work covered by, affected by and related to the events giving rise to the Change Order.

2. A Unilateral Change Order is initially signed only by Owner to set forth, subject to the Contract, the terms of a change in the Work based upon one or more CCPs and/or WDs to which the parties have not yet fully agreed. Within 7 Days of its receipt of a Unilateral Change Order, Contractor shall notify Owner in writing either (a) of its acceptance of its terms, in which case the Unilateral Change Order will automatically become a Bilateral Change Order, or (b) of Contractor’s rejection, in which case Contractor must submit a written rejection within 14 Days after Contractor delivered written Notice of rejection to Owner as noted above. The written rejection must fully explain the reasons for rejecting the Unilateral Change Order and include all necessary supporting documentation. The rejection will then be considered in accordance with Section 8.02 (Informal Resolution of Disputes). Failure to submit a written Notice of rejection within 7 Days of Contractor’s receipt of a Unilateral Change Order or a written rejection with 14 Days shall constitute Contractor’s acceptance of the terms of the Unilateral Change Order.
C. Change Orders via Contract Change Proposal:

1. Contractor shall be responsible for maintaining an Issues Log. If Contractor at any time believes that a change in the Work has or may have occurred, Contractor shall add such item to the Issues Log. At a minimum, the Issues Log shall identify:

 a. Detailed scope of the change in the Work;
 b. Contract Time impact noting specifically how it impacted the critical path of the project, if any;
 c. The amount of any anticipated, proposed, or approved change in the Contract Sum;
 d. Date first included on the Issues Log;
 e. Owner-initiated or Contractor-initiated; and
 f. Action status.

2. If the Contractor believes an item on the Issues Log warrants a CCP, Contractor shall provide written Notice to Owner in accordance with Section 8.02, and shall submit a written CCP in accordance with this Section. All CCPs shall be substantiated and submitted within 7 Days of being added to the Issues Log along with a revised progress schedule identifying the time impact affecting the critical path, if any. The CCP shall identify the proposed full compensation for implementing the proposed change in the Work, including any adjustment in the Contract Sum or Contract Time. Upon receipt of the CCP, Owner may accept the proposal and incorporate it into a Bilateral Change Order, reject the proposal and either issue a WD or elect not to proceed with the proposal, request further documentation, or negotiate acceptable terms with Contractor.

D. Work Directives:

1. A WD is a written order prepared by Owner that directs Contractor to perform Work prior to total agreement on an adjustment, if any, in the Contract Sum and/or Contract Time. Owner may direct Contractor, at any time and without invalidating the Contract, through a WD to proceed with a change in the Work or to perform Work that Contractor contends to be a change in the Work, with or without the agreement of Contractor and prior to agreement of the basis for adjustment, if any, to the Contract. Owner’s use of a WD does not constitute agreement that the directive constitutes a change in the Work, the Contract Sum or the Contract Time.

2. A WD normally includes:

 a. The scope of the directed Work,
 b. Any proposed adjustment to the Contract Sum or not-to-exceed amount,
 c. Any proposed change to the Contract Time,
 d. The proposed method of determining any change in the Contract Sum and/or Contract Time, and
e. The supporting data that Contractor must submit in accordance with the requirements of Part 7 of the General Conditions.

3. Upon receipt of a WD, Contractor shall promptly commence and proceed diligently with performance of the directed Work. Within 7 Days of its receipt of a WD, Contractor shall notify Owner in writing either (a) of its acceptance of its terms, in which case the terms will become effective, and the WD will be incorporated into a Bilateral Change Order, or (b) of Contractor’s rejection of the terms, in which case Contractor must submit a written rejection within 14 Days after Contractor delivered written Notice to Owner as noted above. The written rejection must fully explain the reasons for rejecting the WD and include all necessary supporting documentation. The rejection will then be considered in accordance with Section 8.02. Contractor’s rejection of a WD shall not relieve Contractor of its obligation to comply promptly with the WD.

E. Contractor fault or negligence alleged as basis for change in Contract Sum: No change in the Contract Sum shall be allowed to the extent Contractor’s changed cost of performance is due to the fault or negligence of Contractor or anyone for whose acts Contractor is responsible; or to the extent Contractor is responsible for change concurrently caused by Contractor and Owner; or to the extent the change is caused by an act of Force Majeure as defined in Section 3.05.

7.02 CHANGE IN THE CONTRACT SUM

A. General Application

1. Contract Sum changes only by Change Order: The Contract Sum shall only be changed by a Change Order.

2. Allowances: Any Allowances stated in the Contract Documents shall be included in the Contract Sum. Items covered by Allowances shall be supplied for such amounts and by such persons or entities as Owner may direct, but Contractor shall not be required to employ persons or entities to whom Contractor has made reasonable and timely objection. Owner shall select materials and equipment under an Allowance with reasonable promptness. Allowances shall cover the net cost to Contractor of materials and equipment delivered and/or installed at the site, as identified in the Allowance, and all required taxes, less applicable trade discounts. Whenever actual costs are more than or less than Allowances, the Contract Sum shall be adjusted accordingly by Change Order. The amount of the Change Order shall reflect the difference between actual, reasonable costs and the Allowances.

3. Pricing Components: Contractor shall maintain and submit a complete itemization of the costs incurred as a result of any change in the Work, including labor, material, Subcontractor costs, and fee. The total cost of any change in the Work or of any other increase or decrease in the Contract Sum, including a Claim, shall be limited to the actual, reasonable amounts for the following components, itemized in the manner set forth below and submitted on breakdown sheets in a form approved by Owner. If the total cost of the change in the Work does not exceed $5,000.00, Contractor shall not be required to submit a breakdown if the description of the change in the Work is sufficiently definitive for Owner to determine fair value.

a. Labor costs: The labor cost component is determined by multiplying the estimated or actual additional number of hours needed to perform the change in the Work by the fully burdened hourly labor costs. The fully burdened hourly costs shall include the following:
(1) **Basic wages and benefits:** Hourly rates and benefits as stated on the Department of Labor and Industries approved “Statement of Intent to Pay Prevailing Wages” shall be applicable unless a high, documented amount is actually paid by a contractor for the laborers, apprentices, journeymen, foremen, and other staff performing and/or directly supervising the change in the Work at the site. Any amount in excess of approved “Statement of Intent to Pay Prevailing Wages” shall be substantiated and subject to audit.

(2) **Worker’s insurance:** Direct contributions to the State of Washington for industrial insurance; medical aid; and supplemental pension, by the class and rates established by the Department of Labor and Industries.

(3) **Federal insurance:** Direct contributions required by the Federal Insurance Compensation Act; Federal Unemployment Tax Act; and the State Unemployment Compensation Act.

(4) **Supervision:** The labor cost component may include the actual, demonstrated additional supervision hours (not already compensated by Owner) directly related to a change in the Work.

(5) **Travel and Per Diem allowance:** Travel allowance and/or subsistence, if applicable, required by regional labor union agreements, which are itemized and identified separately.

b. **Material costs:** The material cost component must be itemized and include material invoices or reasonable lump-sum estimates of the quantity and cost of additional materials needed to perform the change in the Work. Material costs shall be developed first from actual known costs; second from supplier quotations; and, if neither of these is available, then from standard industry pricing guides acceptable to Owner. Material costs shall consider all available discounts. Freight costs, express charges, or special delivery charges shall be itemized.

c. **Equipment costs:** The equipment cost component must be itemized by the type of equipment and include the estimated or actual length of time the construction equipment appropriate for the Work is or will be used on the change in the Work on site. Costs will be allowed for construction equipment only to the extent used solely for the changed Work, or for additional rental costs actually incurred by Contractor solely for the changed Work. Equipment charges shall be computed on the basis of actual invoice costs or, if owned, from the current edition of the Associated General Contractors Washington State Department of Transportation (AGC WSDOT) Equipment Rental Agreement current edition as of the Contract execution date. The EquipmentWatch Rental Rate Blue Book shall be used as a basis for establishing rental rates of equipment not listed in the above source. The maximum rate for standby equipment shall not exceed that shown in the AGC WSDOT Equipment Rental Agreement. The rate for Contractor-owned equipment necessarily standing by for future use on the changed Work shall be no more than 50% of the rate established above unless otherwise approved by Owner. The total rental cost shall not exceed the cost of purchasing the equipment outright.

d. **Subcontractor costs:** The Subcontractor cost component consists of payments Contractor makes to Subcontractors for the cost of changed Work performed by
Subcontractors. Subcontractors’ costs shall be calculated and itemized in the same manner as prescribed herein for Contractor.

e. Fee: The Fee component is compensation for all items and costs not listed in subparagraphs a through d above, and is added to the total cost to Owner of the sum of these items. The Fee shall compensate Contractor, Subcontractor and suppliers for, among other things, combined overhead, profit and other costs, including all office, home office and site overhead, employee per diem, subsistence and travel costs not separately reimbursable under subparagraph a above, warranty, safety costs, printing and copying, quality control/assurance, purchasing, small or hand tool (a tool that costs $250 or less and is normally furnished by the performing contractor) or expendable charges, temporary construction facilities, field engineering, schedule updating, Project Record, home office cost, taxes (including all taxes except B&O tax and Washington State sales tax payable based on the amount of the approved Application for Payment), office engineering, estimating costs, additional overhead because of extended time, Claim and change preparation, direct and indirect delay, acceleration or impact, and any other cost incidental to the change in the Work. The Fee shall be strictly limited in all cases to the rates below.

(1). Contractor markup on Contractor Work: Contractor is allowed a Fee for any Work actually performed by Contractor's own forces of 16% of the first $50,000 of the cost of such Work and 4% of the remaining cost, if any.

(2). Subcontractor markup for Subcontractor Work: Each Subcontractor (including lower-tier Subcontractors) is allowed a Fee for any Work actually performed by its own forces of 16% of the first $50,000 of the cost of such Work and 4% of the remaining cost, if any.

(3). Contractor markup for Subcontractor Work: Contractor is allowed a Fee for any Work performed by its Subcontractor(s) of 6% of the first $50,000 of the amount due each Subcontractor for such Work and 4% of the remaining amount, if any.

(4). Subcontractor markup for lower-tier Subcontractor Work: Each Subcontractor is allowed a Fee for any Work performed by its Subcontractor(s) of any lower-tier of 4% of the first $50,000 of the amount due the lower-tier Subcontractor for such Work and 2% of the remaining amount, if any.

(5). Basis of cost applicable for markup: The cost of the Work to which the Fee is to be applied shall be based on the cost components in subparagraphs 7.02.A 3.a – d.

(6). Application of Fee: The Fee shall not be included on deductive changes in the Work. Where a change in the Work involves additive and deductive work by Contractor or the same Subcontractor, the Fee as well as bond and insurance markups will apply to the net difference.

f. Insurance and bond premiums: The cost of any change in insurance or bond premium is added to the sum of the cost components in subparagraphs 7.02.A 3.a – e and is limited to the following:
7.03 CHANGE IN THE CONTRACT TIME

A. Changes in Contract Time: The Contract Time shall only be changed by a Change Order.

B. Time extension permitted only if delay is not Contractor’s fault: If Contractor is delayed at any time in the commencement or progress of the Work (1) by an act or neglect of Owner or anyone for whose acts Owner is responsible; or (2) by changes ordered by Owner in the Work; or (3) by Force Majeure; or (4) by delay authorized by Owner pending dispute resolution; or (5) by other causes that Owner determines may justify delay, then Contractor shall reasonably attempt to mitigate the delay, and the Contract Time shall be extended by Change Order for such reasonable time as Owner may reasonably determine consistent with the provisions of the Contract Documents. No adjustment in the Contract Time shall be allowed to the extent Contractor’s changed time of performance is due to the fault or negligence of Contractor or anyone for whose acts Contractor is responsible.

C. Contractor must demonstrate impact on critical path of schedule: Any change in the Contract Time covered by a Change Order or Claim shall be limited to the change in the critical path of the Work attributable to the change or event(s) giving rise to the Change Order or Claim. Contractor shall be responsible for showing clearly on the Progress Schedule that the change or event had a specific impact on the critical path and, except in case of concurrent delay, was the sole cause of such impact, and could not have been avoided by resequencing of the Work or other reasonable alternatives in accordance with Section 01 32 13 Project Schedule.

D. Cost arising from change in Contract Time: Contractor is entitled to compensation for the cost of a change in Contract Time only if all the following conditions are met:

1. Must be solely fault of Owner: The change in Contract Time must solely be caused by the fault or negligence of Owner or others for whom Owner is responsible;

2. Procedures: Contractor must follow the procedure set forth in Section 7.03B and Section 8.02;

3. Demonstrate impact on critical path: Contractor must establish the extent of the change in Contract Time in accordance with Section 7.03C and Section 01 32 13 Project Schedule.
Schedule. Owner is not obligated directly or indirectly for damages or an increase in the Contract Sum for any delay suffered by a Subcontractor that does not increase the Contract Time; and

4. Cost measured exclusively by the pricing components of Section 7.02A.3: If Contractor or a Subcontractor of any tier is entitled to compensation arising from or related to a change in Contract Time, the pricing components of Section 7.02A.3 shall exclusively be used to measure the actual costs incurred as a result of the change in Contract Time. Neither Contractor nor a Subcontractor of any tier is entitled to payment for costs arising out of actual or alleged loss of efficiency; morale, fatigue, attitude, or labor rhythm; home office overhead; expectant underrun; trade stacking; reassignment of workers; rescheduling of work; concurrent operations; dilution of supervision; learning curve; beneficial or joint occupancy; logistics; ripple; season change; extended overhead; profit upon damages for delay; impact damages, including cumulative impact; or similar damages.

PART 8 - CLAIMS AND DISPUTE RESOLUTION

8.01 CLAIMS

A. Definition: A Claim is a demand or assertion by one of the parties seeking, as a matter of right, adjustment or interpretation of the Contract terms, payment of money, extension of time or other relief with respect to the terms of the Contract Documents. The term “Claim” also includes other disputes and matters in question between Owner and Contractor arising out of or relating to the Contract Documents. Claims must be initiated in writing and be made in accordance with the Contract Documents. Neither a CCP, a Request for Information, a Bilateral or Unilateral Change Order, a reservation of rights, minutes of a meeting, a daily report, or a log entry shall constitute a Claim or Notice of a Claim. However, Owner and Contractor may agree in a signed writing to supplement how Contractor can provide a Notice of Claim as specified in this Part 8.

B. Continuing Contract performance: Pending final resolution of a Claim, including the dispute resolution process in Part 8, and except as otherwise agreed in writing or in the Contract Documents, Contractor shall proceed diligently with performance of the Work and maintain the Progress Schedule, and Owner shall continue to make payments of undisputed amounts in accordance with the Contract Documents.

C. Claims for additional cost: If Contractor wishes to make a Claim for an increase in the Contract Sum, written Notice as provided herein shall be given before proceeding to execute the Work, and written Notice and a written Claim must be made in accordance with this Part 8, or it will be waived.

D. Claims for additional time: If Contractor wishes to make a Claim for an increase in the Contract Time, written Notice as provided herein shall be given, and a written Claim must be made in accordance with this Part 8, or it will be waived.

E. Claims for consequential damages: Contractor and Owner waive certain Claims against each other for consequential damages arising out of or relating to this Contract. This mutual waiver includes damages incurred by Owner for profit, financing, business and reputation, and for loss of management or employee productivity or of the services of such persons; and damages incurred by Contractor for principal and home office overhead and expenses including but not limited to the compensation of personnel stationed there, for loss of financing, business and/or reputation, for losses on other projects, for loss of profit, and for interest or financing costs. This mutual waiver is applicable, without limitation, to all consequential damages due to either party’s termination. Nothing contained in this subparagraph E, however, shall be deemed to preclude an...
award of liquidated or other delay damages, when applicable, in accordance with the Contract Documents, or to preclude or limit Contractor’s obligation to procure and maintain the insurance policies required by this Contract or indemnify Owner for damages, including direct, indirect or consequential damages, alleged by a third party.

8.02 **INFORMAL RESOLUTION OF DISPUTES**

A. Procedure to reduce disputes: In an effort to reduce the incidence and cost to all parties of extended disputes, all disputes, direct or indirect, arising out of or relating to the Contract Documents or the breach thereof, except those that have been waived under the terms of the Contract Documents, shall be decided exclusively by the dispute resolution procedure of Part 8 unless the parties mutually agree in writing otherwise. To the extent that Owner and Contractor agree to a partnering or dispute review process to help address disputes, these processes shall be in addition to, and not in place of, the mandatory contractual dispute resolution procedures.

B. Notice: Except for disputes requiring Notice before proceeding with the affected Work as otherwise described in the Contract Documents, Contractor shall submit a written Notice of any Claim to Owner's Project Manager, consistent with the requirements of the Contract Documents, within 7 Days of the occurrence of the event giving rise to a dispute. If Contractor did not have actual knowledge of such an event, the written Notice shall be submitted within 7 Days of the date that Contractor reasonably should have been aware of the event. The Notice shall set forth, at a minimum, a description of the event(s) leading to or causing the dispute, the nature of the impacts to Contractor and its Subcontractors, if any, and an estimate of any claimed adjustments in the Contract Sum and/or Contract Time. Without waiving any rights, Owner and Contractor may discuss and attempt to resolve a dispute identified in a Notice of Claim directly with each other or with a third-party neutral or dispute review board if utilized on a Project.

C. Substantiation: If an issue remains unresolved, Contractor shall submit timely written substantiation to support Contractor’s position relating to the Notice of Claim. Such substantiation, which shall include an explanation of Contractor's position and any supporting documentation, shall be provided within 30 Days of submitting a Notice. Contractor may delay submitting data by an additional 14 Days if it notifies Owner that substantial data must be assembled.

D. Owner's Project Manager to make initial decision on all disputes: After Contractor has submitted written substantiation to Owner that complies with all applicable provisions of Parts 7 and 8, as well as Section 01 32 13, Project Schedule, Owner’s Project Manager will endeavor to respond, in writing, to Contractor within 7 Days of the date substantiation is received, or with Notice to Contractor of the date by which Owner’s Project Manager expects to render a decision. If necessary to fully and fairly evaluate an issue, the Project Manager may request additional information or extend the time in which to respond. If the issue is not resolved, or if Project Manager does not respond within the later of 7 Days of the date written substantiation is received or the date specified for rendering a decision, the dispute may be escalated by Contractor to Owner's Assistant Vice President, Facilities Services, Capital as set forth in Section 8.02E below.

E. Contractor may respond to initial decision: The initial decision of the Project Manager will be final and conclusive unless, within 7 Days of the date Contractor receives the initial decision or the date specified for rendering a decision, Contractor notifies Owner's Project Manager in writing of Contractor’s disagreement with the initial decision, in which case Contractor must then submit a written rejection to Owner’s Assistant Vice President, Facilities Services, Capital within 14 Days. The written rejection must attach the submitted Notice and substantiation and fully explain the reasons for Contractor’s disagreement with the initial decision. It must also include all applicable supporting documentation. Failure to submit a written rejection to Owner’s Assistant Vice
President, Facilities Services, Capital within 14 Days shall constitute Contractor’s acceptance of the initial decision.

F. Assistant Vice President, Facilities Services, Capital decision: Following Contractor’s full compliance with the procedure above, Owner’s Assistant Vice President, Facilities Services, Capital will endeavor to respond in writing to Contractor with a decision within 7 Days of delivery of the Contractor’s rejection or with Notice to Contractor of the date by which Owner’s Assistant Vice President, Facilities Services, Capital expects to render a decision. If Owner’s Assistant Vice President, Facilities Services, Capital does not respond within the later of 7 Days after delivery of the rejection or the date specified to render a decision, the dispute will be deemed denied and Contractor may further escalate the dispute as set forth in Section 8.02G below.

G. Claim: If Contractor disagrees with the decision of the Assistant Vice President, Facilities Services, Capital, or if no decision is timely received, Contractor shall timely submit a Claim if it wishes to pursue formal dispute resolution or seek additional relief against Owner of any kind. A Claim must be consistent with the Notice, substantiation and rejection previously provided, be submitted to Owner in writing within 14 Days of the date the decision of the Assistant Vice President, Facilities Services, Capital is received by Contractor or due, and comply with Section 8.04. Any claim of a Subcontractor of any tier may be brought only through, and after review by, Contractor. Contractor acknowledges and agrees that no additional documentation from what was submitted to Owner’s Assistant Vice President, Facilities Services, Capital (per part ‘F’ of this section) may be submitted and considered in any subsequent dispute resolution proceeding. Contractor’s failure to provide timely information for Owner’s consideration during the dispute resolution procedure of Part 8 has a substantial impact upon and prejudices Owner, including but not limited to its inability to fully investigate or verify a Claim, mitigate damages, choose alternative options, adjust the budget, delete or modify the impacted Work, and/or monitor time, cost and quantities.

8.03 FORMAL RESOLUTION OF CLAIMS

A. Option for direct discussions: At any time following Contractor’s initiation of formal dispute resolution, Owner may require that an officer of Contractor and Owner’s Assistant Vice President, Facilities Services, Capital (all with authority to settle) meet, confer, and attempt to resolve the Claim. If the Claim is not resolved during such meeting, or if no such meeting is requested, Contractor may bring no litigation against Owner unless Contractor complies with the procedures described in Sections 8.03B and C. This requirement cannot be waived except by an explicit written waiver signed by Owner and Contractor.

B. Mediation:

1. Mediation required: Claims, disputes, or other matters in controversy arising out of or related to the Contract shall be subject to mediation as a condition precedent to the initiation of binding dispute resolution. This requirement cannot be waived except by an explicit written waiver signed by both Owner and Contractor. Unless Owner and Contractor mutually agree in writing otherwise, all unresolved Claims shall be considered at a single mediation session that shall occur after Substantial Completion and prior to Final Acceptance by Owner.

2. Mediation procedure: The parties shall endeavor to resolve Claims by mediation. A request for mediation shall be delivered in writing to the other party to the Contract, and the parties shall promptly attempt to mutually agree on a mediator. If the parties do not agree on a mediator within 30 Days of a party’s demand, the mediation, unless the parties mutually agree otherwise, shall be administered by the American Arbitration Association in accordance with its Construction Industry Mediation Procedures in effect.
on the date of the Agreement. Mediation shall proceed in advance of binding dispute
resolution proceedings.

3. **Mediation fee to be shared:** The parties to the mediation shall share the mediator's fee
and any filing fees equally. The mediation shall be held in the place where the Project is
located, unless another location is mutually agreed upon. Agreements reached in
mediation shall be enforceable as settlement agreements in any court having jurisdiction.

4. **Representatives with authority must attend mediation:** Representatives of Contractor and
Owner must attend the mediation session in person with authority to settle the Claim. To
the extent there are other parties in interest, such as A/E, insurers or Subcontractors,
their representatives, also with authority to settle the Claim, shall also attend the
mediation session in person.

C. **Litigation:** Contractor may bring no litigation on a Claim unless the Claim has been raised and
considered in accordance with the procedures of this Part 8, including mandatory mediation.
Contractor shall have the burden to demonstrate in any litigation that it has complied with all
requirements of this Part 8. All unresolved Claims of Contractor shall be waived and released
unless Contractor has complied with the time limits of the Contract Documents, and litigation is
served and filed within 180 Days after the Date of Substantial Completion approved in writing by
Owner. This requirement cannot be waived except by an explicit, written waiver signed by Owner
and Contractor. The pendency of a mediation, which shall mean the time period between a
party's receipt of a written mediation demand and the date of the initial mediation session, shall
stay this deadline for serving and filing a lawsuit. The deadline may also be stayed for an
additional period by agreement of the parties or court order. Neither Contractor nor a
Subcontractor, whether claiming under a bond or lien statute or otherwise, shall be entitled to
attorneys’ fees directly or indirectly from Owner (but may recover attorneys’ fees from the bond or
statutory retainage fund itself to the extent allowable under law).

8.04 **CLAIMS PROCESS**

A. **Notice and Claims:** Any Notice and any Claim of Contractor, whether under the Contract or
otherwise, must be made pursuant to and in strict accordance with the applicable provisions of
the Contract Documents. No act, omission, or knowledge, actual or constructive, of Owner or
anyone for whose acts Owner is responsible shall in any way be deemed to be a waiver of the
requirement for timely written Notice and a timely written Claim unless Owner and Contractor sign
an explicit, unequivocal written waiver. The fact that Owner and Contractor may consider,
discuss, or negotiate a Claim that has or may have been procedurally or substantively defective
or untimely under the Contract shall not constitute a waiver of the provisions of the Contract
Documents unless Owner and Contractor sign an explicit, unequivocal written waiver. Contractor
acknowledges and agrees that Contractor's failure to timely submit required Notices and/or timely
submit Claims has a substantial impact upon and prejudices Owner, including but not limited to its
inability to fully investigate or verify the Claim, mitigate damages, choose alternative options,
adjust the budget, delete or modify the impacted Work, and/or monitor time, cost and quantities.

B. **Claim must cover all costs and be documented:** A Claim shall be deemed to cover all changes in
cost and time (including direct, indirect, impact, and consequential) to which Contractor (and
Subcontractors) may be entitled and may not contain reservations of rights without Owner's
written approval; any such unapproved reservations of rights shall be without effect. Any
requests by Contractor for an adjustment in both the Contract Sum and Contract Time that arise
out of the same event(s) shall be submitted together. A Claim must be fully substantiated and
documented. At a minimum, a Claim shall contain the following information:
1. **Factual statement of Claim**: A detailed factual statement of the Claim for additional compensation and/or time, if any, providing all necessary dates, locations, and items of Work affected by the Claim, that confirms not only that Contractor suffered the damages claimed, but that the damages claimed were actually a result of the act, event, or condition complained of;

2. **Dates**: The date on which event(s) arose which gave rise to the Claim;

3. **Owner and A/E employee’s knowledgeable about Claim**: The name of each employee of Owner and/or A/E believed to be knowledgeable about the Claim;

4. **Support from Contract Documents**: The specific provisions of the Contract Documents that support the Claim;

5. **Identification of other supporting information**: The identification of any documents and the substance of any oral communications that support the Claim;

6. **Copies of supporting documentation**: Data and copies of any identified documents, other than the Contract Documents, that support the Claim, including without limitation a complete explanation as to why the relief sought is not within the scope of the Contract Documents;

7. **Details on Claim for Contract Time**: If an adjustment in the Contract Time is sought, the specific days and dates for which it is sought; the specific reasons Contractor believes an extension in the Contract Time should be granted, and Contractor's analysis of its Progress Schedule to demonstrate the reason for the extension in Contract Time showing cause and analysis of the resultant delay to the critical path and other information required by the Contract Documents and Section 01 32 13, Project Schedule;

8. **Details on Claim for adjustment of Contract Sum**: If an adjustment in the Contract Sum is sought, the exact amount sought and a breakdown of that amount into the categories and with the detail required by Section 7.02; and

9. **Statement certifying Claim**: A statement certifying, under penalty of perjury, that the Claim is made in good faith, that the supporting cost and pricing data are true and accurate to the best of Contractor's knowledge and belief, that the Claim is fully supported by the accompanying data, and that the amount requested accurately reflects the adjustment in the Contract Sum or Contract Time for which Contractor believes Owner is responsible.

C. False Claims: Contractor shall not make any negligent or fraudulent misrepresentations, concealments, errors, omissions, or inducements to Owner in the formation or performance of this Contract. If Contractor or a Subcontractor submits false or frivolous substantiation or a Claim to Owner, which for purposes of this Section 8.01C is defined as substantiation or a Claim based in whole or in part upon a materially incorrect fact, statement, representation, assertion, or record, Owner shall be entitled to collect from Contractor by offset or otherwise (without prejudice to any right or remedy of Owner) any and all costs and expenses, including investigation and consultant costs, incurred by Owner in investigating, responding to, and defending against such false or frivolous substantiation or Claim.

D. Notification of surety: Owner may, but is not obligated to, notify Contractor's surety, if any, of the nature and amount of any claim it may assert against Contractor. If the claim relates to a possibility of Contractor's default, Owner may, but is not obligated to, notify the surety and request the surety's assistance in resolving the controversy.
E. Liens: If a Claim relates to or is the subject of a lien, the party asserting such Claim may proceed in accordance with applicable law to comply with the lien notice and filing deadlines.

F. All Claims must be submitted for final resolution within the time period specified by applicable law: Owner and Contractor shall commence all Claims and causes of action, whether in contract, tort, breach of warranty or otherwise, against the other arising out of or related to the Contract in accordance with the requirements of this Part 8 and within the time period specified by applicable law.

G. Waiver of rights: Any Claim of Contractor against Owner shall be conclusively deemed to have been waived by Contractor unless made in accordance with the requirements of Part 8.

H. Owner may investigate: To assist in the review of a Claim, Owner may at any time visit the Project site, communicate directly with Subcontractors, or request additional information (including requesting an audit as authorized below) in order to fully evaluate the issues raised by the Claim.

I. Owner may audit Claims: All Claims filed against Owner shall be subject to audit at any time following the filing of the Claim. Failure of Contractor or Subcontractors of any tier to permit Owner access to the books and records of Contractor or Subcontractors of any tier, or to maintain and retain sufficient records to allow Owner to verify all or a portion of the Claim, shall constitute a waiver of the Claim and shall bar any recovery.

J. Contractor to make documents promptly available: In support of Owner’s audit of any Claim, Contractor and any Subcontractor shall, upon request, promptly make available to Owner within seven Days of Owner’s request, at the office of Contractor or any requested Subcontractor during normal business hours, at least the following documents and other documents requested by Owner; failure to fully comply with this requirement shall constitute a material breach of contract and waiver of any Claim:

1. Daily time sheets and supervisor’s daily reports;

2. Collective bargaining agreements;

3. Insurance, welfare, and benefits records;

4. Payroll registers;

5. Earnings records;

6. Payroll tax forms;

7. Material invoices, requisitions, and delivery confirmations;

8. Material cost distribution worksheet;

9. Equipment records (list of company equipment, rates, etc.);

11. Contracts between Contractor and each of its Subcontractors, and all lower-tier Subcontractor contracts and supplier contracts;

12. Subcontractors’ and agents’ payment certificates;
13. Cancelled checks (payroll and vendors);

14. Job cost reports, including job cost summary and job cost detail reports, related labor and equipment reports, and monthly totals;

15. Job payroll ledger;

16. Planned resource loading schedules and summaries;

17. General ledger;

18. Cash disbursements journal;

19. Financial statements for all years during performance of the Work. In addition, Owner may require, if it deems it appropriate, additional financial statements for 3 years preceding execution of the Work;

20. Depreciation records on all company equipment whether these records are maintained by the company involved, its accountant, or others;

21. If a source other than depreciation records is used to develop costs for Contractor’s internal purposes in establishing the actual cost of owning and operating equipment, all such other source documents;

22. All non-privileged documents which relate to each and every Claim together with all documents which support the amount of any adjustment in the Contract Sum or Contract Time sought by each Claim;

23. Work sheets or software used to prepare and establish the cost components for items of the Claim, including but not limited to labor, benefits and insurance, materials, equipment, Subcontractors, all documents that establish the time periods, individuals involved, the hours for the individuals, and the rates for the individuals;

24. Work sheets, software, and all other documents used by Contractor to prepare its bid;

25. The above items for its Subcontractors; and

26. Any other information in any form or media not expressly protected from discovery by applicable law.

K. Contractor to cooperate and provide facilities for audit: The audit may be performed by employees or representatives of Owner. Contractor and its Subcontractors shall provide adequate facilities acceptable to Owner for the audit during normal business hours. Contractor and all Subcontractors shall make a good faith effort to cooperate with Owner’s auditors.

L. Reciprocal RCW 42.56 rights: Contractor agrees, on behalf of itself and Subcontractors, that any invocation of RCW 42.56 at any time by Contractor or a Subcontractor, or their respective representatives, shall initiate an equivalent right to disclosures from Contractor and Subcontractors for the benefit of Owner. Failure to fully comply with these requirements shall constitute a material breach of the Contract and shall constitute a waiver of all Claims by Contractor and any Subcontractor that does not fully comply.
PART 9 - TERMINATION OF THE WORK

9.01 TERMINATION BY OWNER FOR CAUSE

A. 7 Day Notice to Terminate for Cause: Owner may, upon 7 Days written notice to Contractor and to its surety, terminate (without prejudice to any right or remedy of Owner) the Work, or any part of it, for cause upon the occurrence of any one or more of the following events:

1. Contractor fails to prosecute Work: Contractor fails to prosecute the Work or any portion thereof with sufficient diligence to ensure Substantial Completion of the Work within the Contract Time;

2. Contractor bankrupt: Contractor is adjudged bankrupt, makes a general assignment for the benefit of its creditors, or a receiver is appointed on account of its insolvency;

3. Contractor fails to correct Work: Contractor fails in a material way to replace or correct Work not in conformance with the Contract Documents;

4. Contractor fails to supply workers or materials: Contractor repeatedly fails to supply skilled workers or proper materials or equipment;

5. Contractor failure to pay Subcontractors or labor: Contractor repeatedly fails to make prompt payment due to Subcontractors or for labor;

6. Contractor violates laws: Contractor materially disregards or fails to comply with laws, ordinances, rules, regulations, or orders of any public authority having jurisdiction; or

7. Contractor in material breach of Contract: Contractor is otherwise in material breach of any provision of the Contract Documents.

B. Owner's actions upon termination: Upon termination, Owner may at its option:

1. Take possession of Project site: Take possession of the Project site and take possession of or use all materials, equipment, tools, and construction equipment and machinery therein owned by Contractor to maintain the orderly progress of, and to finish, the Work;

2. Accept assignment of Subcontracts: Accept assignment of subcontracts pursuant to Section 5.20; and

3. Finish the Work: Finish the Work by whatever other reasonable method it deems expedient.

C. Surety's role: Owner's rights and duties upon termination are subject to the prior rights and duties of the surety, if any, obligated under any bond provided in accordance with the Contract Documents.

D. Contractor's required actions: When Owner terminates the Work in accordance with this section, Contractor shall take the actions set forth in paragraph 9.02B, and shall not be entitled to receive further payment until the Work is accepted.

E. Contractor to pay for unfinished Work: Contractor shall not be entitled to receive further payment until the Work is finished. If the unpaid balance of the Contract Sum exceeds the cost of finishing the Work, including compensation for A/E's services and expenses made necessary thereby and any other extra costs or damages incurred by Owner in completing the Work, or as a result of
Contractor’s actions, such excess shall be paid to Contractor. If such costs exceed the unpaid balance, Contractor shall pay the difference to Owner. These obligations for payment shall survive termination.

F. Contractor and Surety still responsible for Work performed: Termination of the Work in accordance with this section shall not relieve Contractor or its surety of any responsibilities for Work performed.

G. Conversion of “Termination for Cause” to “Termination for Convenience”: If Owner terminates Contractor for cause and it is later determined that none of the circumstances set forth in paragraph 9.01A exist, then such termination shall be deemed a termination for convenience pursuant to Section 9.02.

9.02 TERMINATION BY OWNER FOR CONVENIENCE

A. Owner Notice of Termination for Convenience: Owner may, upon written notice, terminate (without prejudice to any right or remedy of Owner) the Work, or any part of it, for the convenience of Owner.

B. Contractor response to termination Notice: Unless Owner directs otherwise, after receipt of a written notice of termination for either cause or convenience, Contractor shall promptly:

1. Cease Work: Stop performing Work on the date and as specified in the notice of termination;

2. No further orders or Subcontracts: Place no further orders or subcontracts for materials, equipment, services or facilities, except as may be necessary for completion of such portion of the Work as is not terminated;

3. Cancel orders and Subcontracts: Cancel all orders and subcontracts, upon terms acceptable to Owner, to the extent that they relate to the performance of Work terminated;

4. Assign orders and Subcontracts to Owner: Assign to Owner all of the right, title, and interest of Contractor in all orders and subcontracts;

5. Take action to protect the Work: Take such action as may be necessary or as directed by Owner to preserve and protect the Work, Project site, and any other property related to this Project in the possession of Contractor in which Owner has an interest; and

6. Continue performance not terminated: Continue performance only to the extent not terminated.

C. Terms of adjustment in Contract Sum if Contract terminated: If Owner terminates the Work or any portion thereof for convenience, Contractor shall be entitled to make a request for an equitable adjustment for its reasonable direct costs incurred prior to the effective date of the termination, plus reasonable allowance for overhead and profit on Work performed prior to termination, plus the reasonable administrative costs of the termination, but shall not be entitled to any other costs or damages, whatsoever, provided however, the total sum payable upon termination shall not exceed the Contract Sum reduced by prior payments. Contractor shall be required to make its request in accordance with the provisions of Part 7.

D. Owner to determine whether to adjust Contract Time: If Owner terminates the Work or any portion thereof for convenience, the Contract Time shall be adjusted as determined by Owner.
9.03 TERMINATION BY CONTRACTOR FOR CAUSE

A. Contractor termination: Except as provided by RCW 60.28.080, Contractor may terminate the Contract for any of the following reasons:

1. Issuance of an order of a court or other public authority having jurisdiction that requires all Work to be stopped permanently;

2. An act of government, such as a declaration of national emergency, that requires all Work to be stopped permanently;

3. Because Owner has improperly not made payment of undisputed amounts within the time stated in the Contract Documents; or

4. The Work is stopped for a period of 60 consecutive Days through no act or fault of Contractor, a Subcontractor, or their agents or employees or any other persons or entities performing portions of the Work under direct or indirect contract with Contractor.

B. Contractor termination procedure: If one of these reasons exists, Contractor may, upon seven Days' written Notice to Owner (during which period Owner has the opportunity to cure), terminate the Contract and recover from Owner payment for Work executed in accordance with the Contract Documents, including reasonable overhead and profit on Work executed and costs incurred by reason of such termination. The total recovery of Contractor shall not exceed the unpaid balance of the Contract Sum.

PART 10 - MISCELLANEOUS PROVISIONS

10.01 GOVERNING LAW

Applicable law and venue: The Contract Documents and the rights of the parties herein shall be governed by the internal laws of the state of Washington, without regard to its choice-of-law provisions. Venue shall be in the county in which the Project is located, unless otherwise specified.

10.02 SUCCESSORS AND ASSIGNS

Bound to successors; Assignment of Contract: Owner and Contractor respectively bind themselves, their partners, successors, assigns, and legal representatives to the other party hereto and to the partners, successors, assigns, and legal representatives of such other party in respect to covenants, agreements, and obligations contained in the Contract Documents. Neither party shall assign the Contract without written consent of the other, except that Contractor may assign the Work for security purposes to a bank or lending institution authorized to do business in the state of Washington. If either party attempts to make an assignment without such consent, that party shall nevertheless remain legally responsible for all obligations set forth in the Contract Documents. If a majority of the ownership or the control of Contractor is acquired by a third party, and such acquisition reasonably imperils performance or creates a conflict of interest that Owner, in its sole discretion, cannot reasonably reconcile, then Owner may terminate this Contract at any time for cause under Section 9.01.

10.03 MEANING OF WORDS

Meaning of words used in Contract Documents: Unless otherwise stated in the Contract Documents, words that have well-known technical or construction industry meanings are used in the Contract Documents in accordance with such recognized meanings. Reference to standard Specifications, manuals, or codes of any technical society, organization, or association, or to the code of any governmental authority, whether such reference is specific or by implication, shall be to the latest
standard specification, manual, or code in effect on the date for submission of bids, except as may be otherwise specifically stated. Wherever in the Drawings and Specifications an article, device, or piece of equipment is referred to in the singular manner, such reference shall apply to as many such items as are shown on the Drawings, or required to complete the installation.

10.04 RIGHTS AND REMEDIES

A. No waiver of rights: Waiver of any provisions of the Contract Documents must be in writing and authorized by Owner. No other waiver is valid on behalf of Owner. No action, delay in acting, or failure to act by Owner or A/E shall constitute a waiver of a right or duty afforded under the Contract Documents, nor shall action, delay in acting, or failure to act constitute approval or an acquiescence in a breach therein, or otherwise prejudice the right of Owner to enforce a right or remedy at any subsequent time, except as may be specifically agreed in writing.

B. Rights under Contract do not limit other rights: Duties and obligations imposed by the Contract Documents and rights and remedies available thereunder shall be in addition to and not a limitation of duties, obligations, rights and remedies otherwise imposed or available by law.

C. If portion of Contract is void, remainder is enforceable: If any portion of this Contract is held to be void or unenforceable, the remainder of the Contract shall be enforceable without such portion.

10.05 CONTRACTOR REGISTRATION AND COMPLIANCE

A. Contractor must be registered and licensed: Pursuant to RCW 39.06, Contractor shall be registered and licensed as required by the laws of the State of Washington, including but not limited to RCW 18.27. Contractor shall also have a current state unified business identifier number; have industrial insurance coverage for Contractor’s employees working in Washington as required in Title 51 RCW; have an employment security department number as required in Title 50 RCW; have a state excise tax registration number as required in Title 82 RCW; and not be disqualified from bidding on any public works contract under RCW 39.06.010 (unregistered or unlicensed contractors) or RCW 39.12.065(3) (prevailing wage violations).

B. Employer contributions: Pursuant to RCW 50.24, "Contributions by Employers," in general and RCW 50.24.130 in particular, Contractor shall pay contributions for wages for personal services performed under this Contract or arrange for a bond acceptable to the Commissioner.

C. Apprenticeship requirements: If the Contract Sum for the Project exceeds one million dollars, Contractor shall comply with all applicable apprenticeship requirements.

10.06 TIME COMPUTATIONS

Computing time: When computing any period of time, the day of the event from which the period of time begins shall not be counted. The last day is counted unless it falls on a weekend or legal holiday, in which event the period runs until the end of the next day that is not a weekend or holiday. When the period of time allowed is less than 7 days, intermediate Saturdays, Sundays, and legal holidays are excluded from the computation.

10.07 RECORDS RETENTION

Six year records retention period: The wage, payroll, and cost records of Contractor, and its Subcontractors, and all records subject to audit in accordance with Section 8.03, shall be retained for a period of not less than 6 years after the date of Final Acceptance.
10.08 THIRD-PARTY AGREEMENTS

No third party relationships created: The Contract Documents shall not be construed to create a contractual relationship of any kind between: A/E and Contractor; Owner and any Subcontractor; or any persons other than Owner and Contractor.

10.09 ANTITRUST ASSIGNMENT

Contractor assigns overcharge amounts to Owner: Owner and Contractor recognize that in actual economic practice, overcharges resulting from antitrust violations are in fact usually borne by the purchaser. Therefore, Contractor hereby assigns to Owner any and all claims for such overcharges as to goods, materials, and equipment purchased in connection with the Work performed in accordance with the Contract Documents, except as to overcharges which result from antitrust violations commencing after the Contract Sum is established and which are not passed on to Owner under a Change Order. Contractor shall put a similar clause in its Subcontracts, and require a similar clause in its sub-Subcontracts, such that all claims for such overcharges on the Work are passed to Owner by Contractor.

10.10 HEADINGS AND CAPTIONS

Headings for convenience only: All headings and captions used in these General Conditions are only for convenience of reference, and shall not be used in any way in connection with the meaning, effect, interpretation, construction, or enforcement of the General Conditions, and do not define the limit or describe the scope or intent of any provision of these General Conditions.

10.11 INDEPENDENT CONTRACTOR

Contractor is independent contractor: Contractor shall be and operate as an independent contractor in the performance of the Work and shall have complete control over and responsibility for all personnel performing the Work. Contractor is not authorized to enter into any agreements or undertakings for or on behalf of Owner or to act as or be an agent or employee of Owner.

10.12 OWNER’S ROLE

Owner’s role is limited. Owner will not have control over, charge of, or responsibility for, the construction means, methods, techniques, sequences or procedures, or for the safety precautions and programs in connection with the Work, since these are solely Contractor’s responsibility under the Contract Documents. The presence of Owner at the Project site shall not in any manner be construed as assurance that the Work is being completed in compliance with the Contract Documents, nor as evidence that any requirement of the Contract Documents of any kind, including Notice, has been met or waived. Owner will not be responsible for Contractor’s failure to perform the Work in accordance with the requirements of the Contract Documents. Owner will not have control over or charge of and will not be responsible for acts or omissions of Contractor, Subcontractors, or their agents or employees, or any other persons or entities performing portions of the Work.

END OF SECTION 00 72 00
1. REMOVE ALL CONTROLS (ELECTRIC, PNEUMATIC) INCLUDING TUBING, DEVICES, ETC. ASSOCIATED WITH THE EQUIPMENT BEING REMOVED, INCLUDING BACK TO THE CONTROL PANEL IN THE POOL ROOM.

2. REMOVE ALL SUPPORTS ASSOCIATED WITH EQUIPMENT TO BE REMOVED.

GENERAL NOTES:

1. DEMO PNEUMATIC HVAC CONTROLS AND ENCLOSURE. COORDINATE WITH DIV 26.

2. DEMO EF-9 AND DUCTWORK. CAP BELOW FLOOR AND PATCH OPENING.

DEMO F-2 AND DUCTWORK (E) EF AND VTR TO REMAIN.

DEMO EF-1, DUCTWORK, AND CONCRETE PAD, PATCH FLOOR.

(E) ABANDONED ACCESS HATCH

(E) CHIMNEY

DEMO F-4, SUPPORTS, AND CONCRETE PAD. PATCH FLOOR.

DEMO F-3 AND DUCTWORK (E) ABSOLUTE FILTER HOUSING TO REMAIN.

SEE DETAIL 8/M-401 FOR ADDITIONAL DEMO.

STEAM COIL, SEE PIPING DEMO (E) TRANSITION TO REMAIN

(E) 36x36 4W. DIFF.

(E) EXHAUST GRILLE DUCTED FROM ROOF ABOVE, TYP 2

DEMO 24"Ø STACK BELOW ROOF MEZZANINE

DEMO T-STAT AND ALL PNEUMATIC TUBING.

ELECTRICAL GEAR, SEE DIV 26

RE-BID SET 8/1/23

RE-BID - DODGEN RESEARCH FACILITY (0074)
NUCLEAR SCIENCE CENTER HVAC RENwal

Note 1: Demolition of ductwork and fan units impacts ACM duct mastic and gasket/putty (reference Photo No. 10 in GFS photographic log). ACM caulking is present at interface with wall on security camera box as seen on photo to the right (reference Photo No. 11 in GFS photographic log).

Note 2: Demolition of ductwork and fan units impacts ACM duct mastic. Encapsulate exposed ACM roofing from cutouts. Reference Photo No. 3 from GFS photographic log.
DEMO SECTION OF EXHAUST DUCT DOWN THROUGH ROOF TO ACCOMODATE NEW WORK.

Note 3: Doesn't explicitly disturb ACM roofing on floor, but exposed roofing should be encapsulated to be prudent.

Note 4: Cut will require assessment. Coordinate exact size with engineer of record and existing conditions.
NEW CONTROL PANEL. SEE DETAIL M-301.

RE-BID - DODGEN RESEARCH FACILITY (0074)
NUCLEAR SCIENCE CENTER HVAC RENEWAL
1687-2022

Note 5 - New cutouts in the ACM roofing located on the floor to accommodate new fans and support anchors will require asbestos abatement.
Note 6 - Pipe penetrations through floor with ACM ceiling will require asbestos abatement
Note 7: Encapsulating the edges of exposed ACM roofing at penetration would be prudent.
ROOSTOP DUCT SUPPORT DETAIL

AIR HANDLING UNIT CONDENSATE DRAIN TRAP DETAIL

CONDENSATE TO SINK TRAP DETAIL

TYPICAL PIPE SUPPORT DETAILS

MECH ROOM FLOOR PENETRATION DETAIL

OPEN WEB JOIST DUCT PIPE & EQUIPMENT SUPPORT DETAIL

1. SUPPLY LAYOUT AND EXTERIOR INSULATION TO BE DETERMINED BY DODGEN.
2. INSULATED DUCTS TO BE SUPPORTED BY EXISTING STRUCTURAL MEMBERS OR SECONDARY DIAGONAL STRUCTURAL MEMBERS AS REQUIRED.
3. PROVIDE APPROVED TYPE PIPE OR CHANNEL MEMBERS TO SUPPORT HANGERS & SUPPORTING MEMBERS SUCH AS PIPES & UNISTRUT SHALL BE LOCATED AT PANEL POINTS OF JOIST & SHALL BE SUPPORTED BY EXISTING STRUCTURAL MEMBERS OR SECONDARY DIAGONAL STRUCTURAL MEMBERS AS REQUIRED.
4. WHERE POSSIBLE ALL HANGERS SHALL BE SUSPENDED FROM WF TYPICAL PIPE SUPPORT DETAILS
5. OPEN WEB JOIST DUCT, PIPE & EQUIPMENT SUPPORT DETAIL
6. PROVIDE 8# INSULATED SERVICE PIPING & EQUIPMENT SUPPORT MEMBERS & BELOW SUPPORT STANDS.

Note: Nine floor penetrations through ACM mouting require abatement.

Note: This rust removal requires abatement.

GALVANIZED PIPE

WASHER (SEE DETAIL "B")

AIR HANDLING UNIT CONDENSATE DRAIN TRAP DETAIL

CONDENSATE TO SINK TRAP DETAIL

TYPICAL PIPE SUPPORT DETAILS

MECH ROOM FLOOR PENETRATION DETAIL

OPEN WEB JOIST DUCT, PIPE & EQUIPMENT SUPPORT DETAIL

SUPPLY LAYOUT AND EXTERIOR INSULATION TO BE DETERMINED BY DODGEN.

INSULATED DUCTS TO BE SUPPORTED BY EXISTING STRUCTURAL MEMBERS OR SECONDARY DIAGONAL STRUCTURAL MEMBERS AS REQUIRED.

WHERE POSSIBLE ALL HANGERS SHALL BE SUSPENDED FROM WF TYPICAL PIPE SUPPORT DETAILS

OPEN WEB JOIST DUCT, PIPE & EQUIPMENT SUPPORT DETAIL

Note: Nine floor penetrations through ACM mouting require abatement.

Note: This rust removal requires abatement.
Good Faith Survey
Dodgen Research Facility (#0074)
Dodgen Storage Building (#0074A)
Washington State University
Pullman, Washington

June 8, 2018

Prepared by:
Matthew McKibbin
WSU Environmental Health and Safety
AHERA Building Inspector
TABLE OF CONTENTS

1 INTRODUCTION... 1
 1.1 LIMITATIONS OF THE ASSESSMENT ... 1

2 METHODOLOGY.. 1
 2.1 ASBESTOS BULK SAMPLING.. 1
 2.2 LIMITED LEAD PAINT/COATINGS SAMPLING ... 2

3 RESULTS.. 2
 3.1 VISUAL INSPECTION ... 2
 3.2 ASBESTOS .. 3
 Table 1 – ACMs and Assumed ACMs ... 3
 3.3 LEAD PAINTS AND COATINGS .. 4

4 CONCLUSIONS... 5
 4.1 ASBESTOS CONTAINING MATERIALS ... 5
 4.2 LEAD-CONTAINING PAINTS/COATINGS .. 5

FIGURES
Figure 1 – Basement Floor – ACM and Sample Locations
Figure 2 – Ground Floor – ACM and Sample Locations
Figure 3 – First Floor – ACM and Sample Locations
Figure 4 – Second Floor – ACM and Sample Locations
Figure 5 – Penthouse Roof Level – ACM and Sample Locations
Figure 6 – Dodgen Storage Building -- ACM and Sample Locations

APPENDICES
Appendix A – Photographic Log
Appendix B – Table Summary of Asbestos Sampling and Analytical Results
Appendix C – Table Summary of Homogeneous Material Sampling
Appendix D – Table Summary of Lead Paint Sampling
Appendix E – Asbestos and Lead Chain of Custody Forms and Laboratory Analytical Results
Appendix F – Laboratory Accreditations and Certificates
Appendix G – Building Inspector Training Certificates
1 INTRODUCTION

Washington State University (WSU) Environmental Health and Safety (EH&S) conducted a good faith asbestos and limited lead in painted coatings survey of the Dodgen Research Facility and adjacent Dodgen Storage Building in March of 2018. Dodgen Research Facility is a two-story building with basement level constructed in 1958 and later expanded in 1969. A separate metal framed storage building constructed in 1964 was also included in the survey. Both buildings are located at 2480 NE Roundtop Drive on the northeast portion of the WSU campus in Pullman, Washington. This survey was conducted to meet good faith survey requirements for construction, renovation, demolition, and maintenance projects at the Dodgen Research Facility with the following limitations.

1.1 Limitations of the Assessment

The conclusions herein are professional opinions based solely upon visual site observations and interpretations of analytical data as described in this report. The survey excluded areas of the building which were inaccessible or would have caused damage to the building if sampled. Locations where inspectors would have been exposed to hazards were not evaluated (e.g., operating HVAC or building mechanical systems). Typical construction techniques can render building portions inaccessible. As a result, additional asbestos-containing materials (ACM) may be present in inaccessible areas (e.g., wall cavities, within energized systems). Suspect regulated materials within inaccessible areas should be presumed to contain asbestos until characterized. The following specific areas were excluded from this survey:

- Nuclear reactor pool (room 201)
- Crawl space accessible from mechanical room 10
- Elevator pit and shaft

The opinions presented herein apply to the site conditions observed at the time of the investigation, and interpretation of current regulations pertaining to asbestos and lead. Opinions and recommendations provided herein may not apply to future site conditions. Regulatory requirements in effect at the time of the work should be verified prior to any work impacting regulated materials. This report represents the findings of this survey only, and is not intended to establish scope or contractual terms supporting regulated material abatement.

2 METHODOLOGY

This good faith survey was conducted by Matthew McKibbin with WSU EH&S, AHERA Building Inspector #BIR2017042-02 (expires April 27, 2018) in March of 2018. The asbestos survey was performed referencing the good faith survey requirements outlined in WAC 296-62-07721.

To identify suspect ACM, EH&S walked through accessible locations, noting building materials and construction. Not all concealed areas or sub-surface suspect materials may have been surveyed (see Limiting Conditions in Section 1.1). Approximate suspect material quantities were estimated based upon field observations, measurements, and scaled building drawings provided by WSU Facilities Services. Quantities given are intended for order of magnitude information only and must be field verified to support project bidding or estimates.

2.1 Asbestos Bulk Sampling

Suspect ACM was grouped into homogeneous sampling areas (HSA) and categorized according to 40 CFR 763, as thermal systems insulation (TSI), surfacing material, or miscellaneous material. The sampling plan included, at a minimum, the collection and analysis of samples as follows:
Thermal System Insulation
- In a distributive manner, a minimum of three samples of each HSA that was not presumed to contain asbestos.
- At least one bulk sample from each homogeneous area of patched TSI if the patch was less than 6 square feet.
- In a manner sufficient to determine whether the material is ACM, samples were collected from plaster/mudded pipe fitting insulation.

Surfacing Material
- In a distributive manner, a minimum of three samples collected from each homogeneous area that was 1,000 square feet or less.
- A minimum of five samples collected from each homogeneous area that was greater than 1,000 square feet but less than or equal to 5,000 square feet.
- A minimum of seven samples collected from each homogeneous area that was greater than 5,000 square feet.

Miscellaneous Material
- In a distributive manner as deemed sufficient by the Inspector. At least one sample was collected of each suspect miscellaneous material not presumed to contain asbestos.

Non-Suspect Materials
- Fiberglass, wood, metal, or other generally recognized non-ACM were not sampled.

Asbestos bulk samples and chain-of-custody forms were delivered to NVL Laboratories (NVL) in Seattle, Washington for analysis. Environmental Hazard Services, LLC (EHS) in Richmond, Virginia for analysis. Each sample was analyzed by Polarized Light Microscopy (PLM) with dispersion staining referencing EPA Method 600/R-93/116. The detection limit for this type of analysis is approximately one percent (by visual estimate). Materials containing more than one percent asbestos are considered ACM.

2.2 Limited Lead Paint/Coatings Sampling
This lead survey was performed to assist employers in efforts to comply with the Washington Labor and Industries (LNI) lead standard for the construction industry (WAC 296-155-176) during renovation/demolition activities. Paint evaluation was limited to large homogeneous surfaces. Paint chip samples were collected from painted surfaces throughout the building and sent with chain-of-custody forms to either NVL or Environmental Hazard Services, LLC (EHS) in Richmond, Virginia for analysis. Samples were analyzed by flame atomic absorption spectrophotometry (FAAS) referencing EPA Method SW846 7000B. Paint chip results are reported in parts per million. Any detection of lead in paint, above laboratory detection limits is reported as a lead-containing paint.

3 RESULTS
The following section details the results of asbestos sampling and lead in painted coatings sampling conducted by WSU EH&S. Asbestos and lead sample locations are identified on figures 1 through 6.

3.1 Visual Inspection
Dodgen Research Facility is an irregular rectangular shaped two-story concrete structure with several basement levels constructed in 1958. The building was expanded in approximately 1969 which appears to include the mechanical penthouse enclosure and appended offices on the southwest portion of the building.

The building is constructed with a concrete basement and pile foundation with steel reinforced concrete columns and reinforced concrete decking. Office and laboratory areas are generally finished with 9-inch or newer 12-inch vinyl floor tiles and gypsum wallboard partition walls. The concrete ceiling deck and utilities are exposed in most areas; except for the break room, offices and reactor control room which are finished with a hard-lid wallboard ceiling and acoustical ceiling tiles. The building exterior is mostly concrete with some decorative pebblecrete cladding. Roofing fields are flat with built-up asphaltic roofing
materials throughout. A newer rubber roofing membrane is installed on top of built-up roofing on the highest elevation roofing field.

3.2 Asbestos

Table 1 summarizes the ACMs identified (bold font) during the survey.

Photographs referenced in the tables are provided in Appendix A. Quantities are estimated for order of magnitude information only and not intended for bidding purposes or fee estimates for construction or renovation projects.

Table 1 – ACMs and Assumed ACMs

<table>
<thead>
<tr>
<th>Material</th>
<th>Location(s) of ACM</th>
<th>Photo #</th>
<th>Approximate Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I: Thermal Systems Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe insulation:</td>
<td>Main steam trunk lines in crawlspace and west portion of building (visible in rooms 3, 101, 151, 201 and 250C) (*see note below)</td>
<td>1</td>
<td>1,000 LF</td>
</tr>
<tr>
<td>Hard magnesia block insulation with mudded/plaster fittings (3 to 5-inch outside diameter)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe insulation: Fiberglass straight runs with mudded/plaster fittings (3-inch to 6-inch diameter)</td>
<td>Domestic water, heating distribution piping, and roof drain piping throughout the building</td>
<td>2 and 3</td>
<td>800 EA (fittings)</td>
</tr>
<tr>
<td>Class II: Miscellaneous Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built-up roofing system</td>
<td>Roofing throughout (including under newer rubber membrane roofing in areas)</td>
<td>4</td>
<td>8,000 SF</td>
</tr>
<tr>
<td>Note: Asphalt vapor barrier adhered to concrete deck does not contain asbestos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-inch tan or grey flecked vinyl composite floor tile with black mastic</td>
<td>1W, 2, 3, 4, 5, 50, 50A, 50B, 100E, 101, 122, 151, 200E, 212, 214, 221, 250, 250A, 250B, 250C</td>
<td>5</td>
<td>7,200 SF</td>
</tr>
<tr>
<td>Joint compound on gypsum wallboard systems</td>
<td>1st and 2nd floor corridor, office and laboratory partition walls. (see note below)</td>
<td>-</td>
<td>4,000 SF</td>
</tr>
<tr>
<td>Window glazing putty and frame caulk</td>
<td>Rooms 151, 250A, 250B, 250C and glass block windows in rooms 3 and 5</td>
<td>7</td>
<td>6 EA</td>
</tr>
<tr>
<td>Metal sink units with black undercoat</td>
<td>151, 201, 210, 212, 214, 215, 221</td>
<td>8</td>
<td>7 EA</td>
</tr>
<tr>
<td>Black laboratory countertop</td>
<td>Room 21 and 114</td>
<td>9</td>
<td>2 EA</td>
</tr>
<tr>
<td>Material</td>
<td>Location(s) of ACM</td>
<td>Photo #</td>
<td>Approximate Quantity</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Green HVAC duct gasket</td>
<td>Mechanical penthouse on metal ductwork</td>
<td>10</td>
<td>1 EA</td>
</tr>
<tr>
<td>Gray/brown caulk/duct mastic</td>
<td>All metal ductwork in Mechanical penthouse</td>
<td>11</td>
<td>40 LF</td>
</tr>
<tr>
<td>Cement asbestos board</td>
<td>Room 151 – break room countertop cutting board</td>
<td>12</td>
<td>1 EA</td>
</tr>
</tbody>
</table>

Appendix B details asbestos survey sample numbers, material descriptions, sample locations and laboratory analytical results. A summary of homogeneous building materials observed is provided in Appendix C. Specific observations concerning ACMs are discussed below.

* Note: Pipe insulation within the confines of mechanical room 10 was abated and reinsulated with fiberglass. ACM pipe insulation remains in the crawlspace tunnel, which is accessible through the mechanical room.

** Note: Walls in Dodgen are constructed of non-ACM plaster on metal lath and gypsum wallboard systems with an ACM joint compound applied to seams and nail heads. Gypsum wallboard was observed on walls throughout rooms 50, 50A, 50B and partition walls between hallways and laboratories throughout the 1st and 2nd floor. Plaster was observed on perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites.

3.3 Lead Paints and Coatings

Appendix D details lead paint coatings sample numbers, descriptions, and sample locations collected during the survey. With few exceptions noted in Appendix D, all painted surfaces contain detectable quantities of lead in Dodgen Research Facility.
4 CONCLUSIONS
A copy of this report must be provided to any entity bidding on or performing work in Dodgen Research Facility. A copy of this report must also be on site during any demolition, renovation and/or construction activities at the site.

4.1 Asbestos Containing Materials
Regulated ACMs are identified in Table 1. Construction, renovation and maintenance activities involving the disturbance or removal of ACM must be conducted in accordance with WAC 296-62-077. Asbestos abatement must be performed by a Washington State licensed asbestos abatement contractor.

Wall systems
A WSU approved and EPA accredited Building Inspector or asbestos competent person meeting the requirements of WAC 296-62-07728 must evaluate wall systems at Dodgen in order to classify work under WAC 296-62-07712 for specific construction, renovation or demolition activities. For wallboard/joint compound systems, also reference WISHA Regional Directive 23.30 – Asbestos-Containing Joint Compound in Wallboard Systems.

Contractors should use caution during construction even after asbestos abatement activities, as concealed ACM that has not previously been evaluated for asbestos may be encountered. Inaccessible concealed spaces (e.g., wall and ceiling spaces enclosed by wallboard, internal components of energized systems etc. that have not been surveyed for ACM, and should be presumed to contain asbestos until destructive sampling is performed in those areas.

4.2 Lead-containing Paints/Coatings
Materials that have been shown to contain detectable levels of lead are regulated due to the potential for occupational exposure to lead if these materials are disturbed. Projects that may disturb lead require employers to evaluate worker/project personnel exposure to lead and prevent exposure above the permissible exposure limit (PEL).
Figure 1
Basement Floor – ACM and Sample Locations

Legend

△ Crawlspace tunnel entrance: ACM Pipe insulation

PP##### = Asbestos bulk sample location
Figure 2
Ground Floor – ACM and Sample Locations

Legend
- Rooms with 12-inch vinyl floor tiles with residual ACM black mastic
- Window glazing and caulk
- Mechanical chase: ACM Pipe insulation

P##### = Asbestos bulk sample location

Other ACMs Not Shown:
1. Joint compound on gypsum wallboard systems in 50, 50A and 50B contains asbestos
2. Pipe insulation may be located in wall cavities and ceiling spaces throughout the building.
Legend
- Rooms with 12-inch VCT and residual ACM black mastic
- Rooms with 9-inch VAT or 12-inch VAT and black mastic
- Window glazing and caulk
- Mechanical chase: ACM Pipe insulation
- P##### = Asbestos bulk sample location

Other ACMs Not Shown:
1. Joint compound on gypsum wallboard systems contains asbestos. Gypsum wallboard is located on partition walls between laboratories and corridors.
2. Pipe insulation may be located in wall cavities and ceiling spaces throughout the building.
3. Room 151 – The metal sink unit has an ACM undercoating. In addition, a gray cement asbestos cutting board is adhered to the countertop.
4. An ACM black countertop is located in room 114.
Figure 4
Second Floor – ACM and Sample Locations

Legend
- Rooms with 12-inch VCT and residual ACM black mastic
- Rooms with 9-inch VAT or 12-inch VAT and black mastic
- Window glazing and caulk
- Mechanical chase: ACM Pipe insulation

P##### = Asbestos bulk sample location

Other ACMs Not Shown:
1. Joint compound on gypsum wallboard systems contains asbestos. Gypsum wallboard is located on partition walls between laboratories and corridors.
2. Pipe insulation may be located in wall cavities and ceiling spaces throughout the building.
3. Metal sink units with ACM black undercoating are located in rooms 201, 210, 212, 214, 215 and 221
Figure 5
Penthouse/Roof Level – ACM and Sample Locations

Legend
P##### = Asbestos bulk sample location

Other ACMs Not Shown:
1. All flat built-up roofing contains asbestos. Asphalitic vapor barrier adhered to the concrete deck does not contain asbestos.
2. ACM mud/plaster is located on roof drain bowls and elbows along the roof drain piping. Straight runs are insulated with fiberglass.
Legend

P##### = Asbestos bulk sample location
Pb-## = Lead paint chip sample location
APPENDIX A
Photographic Log
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Room 201 – Reactor control center</td>
</tr>
<tr>
<td></td>
<td>ACM magnesia block-type pipe insulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Room 214</td>
</tr>
<tr>
<td></td>
<td>Domestic water lines are insulated with fiberglass on straight runs and ACM mudded/plaster fittings on elbows and steam trap locations.</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location:</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>Mechanical penthouse</td>
</tr>
<tr>
<td>4</td>
<td>Roof</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location:</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>5</td>
<td>Room 5 – Men’s restroom</td>
</tr>
<tr>
<td>6</td>
<td>Location:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
</tr>
<tr>
<td>7</td>
<td>Restroom, 5</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location:</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>9</td>
<td>Room 114</td>
</tr>
<tr>
<td>10</td>
<td>Mechanical penthouse</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location:</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>11</td>
<td>Mechanical penthouse</td>
</tr>
<tr>
<td>12</td>
<td>Room 151 – break room</td>
</tr>
</tbody>
</table>
APPENDIX B
Table Summary of Asbestos Sampling and Analytical Results
TABLE SUMMARY OF ASBESTOS SAMPLING AND ANALYTICAL RESULTS
DODGEN RESEARCH FACILITY

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Building #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>P03062</td>
<td>Dodgen</td>
<td>0074</td>
<td>Lower Roof</td>
<td>Roofing</td>
<td>Layer 1: Black roofing felt with silver paint Layer 2: Brown perlite board Layer 3: Black vapor barrier adhered to concrete deck</td>
<td>Misc.</td>
<td>8,000 SF</td>
<td>-</td>
<td>Layer 1: 4% Chrysotile Layer 2: ND Layer 3: ND</td>
<td>Yes</td>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>P03063</td>
<td>Dodgen</td>
<td>0074</td>
<td>Inner penthouse roof</td>
<td>Roofing</td>
<td>Layer 1: Black roofing felt with silver paint Layer 2: Brown perlite board Layer 3: Black vapor barrier adhered to concrete deck</td>
<td>Misc.</td>
<td>8,000 SF</td>
<td>Inner penthouse roof</td>
<td>Layer 1: 3% Chrysotile Layer 2: ND Layer 3: ND</td>
<td>Yes</td>
<td>Roof</td>
<td></td>
</tr>
<tr>
<td>P04766</td>
<td>Dodgen</td>
<td>0074</td>
<td>5</td>
<td>Cove base</td>
<td>Layer 1: 5-inch black vinyl cove base Layer 2: Brown brittle mastic Layer 3: White mastic</td>
<td>Misc.</td>
<td>30 LF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND Layer 3: ND</td>
<td>No</td>
<td>5-inch cove base only found in restroom 5</td>
<td></td>
</tr>
<tr>
<td>P04767</td>
<td>Dodgen</td>
<td>0074</td>
<td>5</td>
<td>Plaster system</td>
<td>Sandy plaster base coat</td>
<td>Surf.</td>
<td>5,000 SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites</td>
<td></td>
</tr>
<tr>
<td>P04773</td>
<td>Dodgen</td>
<td>0074</td>
<td>3</td>
<td>Pipe insulation</td>
<td>Layer 1: Canvas pipe insulation wrap Layer 2: Magnesia-block type pipe insulation</td>
<td>TSI</td>
<td>1,000 TSI</td>
<td>-</td>
<td>Layer 1: ND Layer 2: 5% Asbestos</td>
<td>Yes</td>
<td>Main steam trunk lines in crawlspace and west portion of building (visible in rooms 3, 101, 151, 201 and 250C</td>
<td></td>
</tr>
<tr>
<td>P04774</td>
<td>Dodgen</td>
<td>0074</td>
<td>1W</td>
<td>Plaster system</td>
<td>Layer 1: Gray sandy plaster base coat Layer 2: White brittle plaster finish coat Layer 3: White patch joint compound material Layer 4: White plaster finish coat</td>
<td>Surf.</td>
<td>5,000 SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND Layer 3: ND Layer 4: ND</td>
<td>No</td>
<td>Perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites</td>
<td></td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Building #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM ?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>P04776</td>
<td>Dodgen</td>
<td>0074</td>
<td>1W</td>
<td>Ceramic flooring</td>
<td>Layer 1: 5-inch tan ceramic floor tile Layer 2: Gray mortar</td>
<td>Misc.</td>
<td>600</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Stairwells 100 and 200</td>
</tr>
<tr>
<td>P04777</td>
<td>Dodgen</td>
<td>0074</td>
<td>100</td>
<td>Ceramic flooring</td>
<td>Layer 1: 5-inch tan ceramic floor tile Layer 2: Gray mortar</td>
<td>Misc.</td>
<td>600</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Stairwells 100 and 200</td>
</tr>
<tr>
<td>P04779</td>
<td>Dodgen</td>
<td>0074</td>
<td>151</td>
<td>Cement panel</td>
<td>Cement asbestos board countertop panel</td>
<td>Misc.</td>
<td>1</td>
<td>EA</td>
<td>Glued-on countertop 60% Chrysotile</td>
<td>Yes</td>
<td>Room 151</td>
<td></td>
</tr>
<tr>
<td>P04780</td>
<td>Dodgen</td>
<td>0074</td>
<td>151</td>
<td>Sink</td>
<td>Black sink undercoat</td>
<td>Misc.</td>
<td>7</td>
<td>EA</td>
<td>-</td>
<td>4% Chrysotile</td>
<td>Yes</td>
<td>Rooms 151, 201, 210, 212, 214, 215, 221</td>
</tr>
<tr>
<td>P04781</td>
<td>Dodgen</td>
<td>0074</td>
<td>151</td>
<td>Plaster system</td>
<td>Layer 1: White brittle plaster finish coat Layer 2: Gray sand plaster base coat</td>
<td>Surf.</td>
<td>5,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Perimeter exterior facing walls, stairwells; rooms 3, 4, 5, 56P, and the 250E suites</td>
</tr>
<tr>
<td>P04782</td>
<td>Dodgen</td>
<td>0074</td>
<td>100</td>
<td>Plaster system</td>
<td>Layer 1: White brittle plaster finish coat Layer 2: Gray sand plaster base coat</td>
<td>Surf.</td>
<td>5,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Perimeter exterior facing walls, stairwells; rooms 3, 4, 5, 56P, and the 250E suites</td>
</tr>
<tr>
<td>P04783</td>
<td>Dodgen</td>
<td>0074</td>
<td>151</td>
<td>Pipe insulation</td>
<td>Layer 1: Canvas pipe insulation wrap Layer 2: Magnesia-block type pipe insulation</td>
<td>TSI</td>
<td>1,000</td>
<td>LF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: 8% Amosite</td>
<td>Yes</td>
<td>Main steam trunk lines in crawlspace and west portion of building (visible in rooms 3, 101, 151, 201 and 250C</td>
</tr>
<tr>
<td>P04784</td>
<td>Dodgen</td>
<td>0074</td>
<td>151</td>
<td>Ceiling tile</td>
<td>2x4' White fiberglass suspended ceiling tile with paint</td>
<td>Misc.</td>
<td>400</td>
<td>SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Room 151</td>
</tr>
<tr>
<td>P04785</td>
<td>Dodgen</td>
<td>0074</td>
<td>112</td>
<td>Wallboard system</td>
<td>Layer 1: Joint compound Layer 2: Gypsum wallboard</td>
<td>Misc.</td>
<td>4,000</td>
<td>SF</td>
<td>Other joint compound samples contain asbestos</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>Yes</td>
<td>1st and 2nd floor corridor, office and laboratory partition walls</td>
</tr>
<tr>
<td>P04787</td>
<td>Dodgen</td>
<td>0074</td>
<td>114</td>
<td>Sink</td>
<td>Black sink undercoat</td>
<td>Misc.</td>
<td>12</td>
<td>EA</td>
<td>Metal countertop</td>
<td>ND</td>
<td>No</td>
<td>Associated with newer metal countertops in laboratories</td>
</tr>
<tr>
<td>P04788</td>
<td>Dodgen</td>
<td>0074</td>
<td>114</td>
<td>Lab countertop</td>
<td>Black laboratory countertop</td>
<td>Misc.</td>
<td>2</td>
<td>EA</td>
<td>-</td>
<td>21% Chrysotile</td>
<td>Yes</td>
<td>Rooms 21 and 114</td>
</tr>
<tr>
<td>P04789</td>
<td>Dodgen</td>
<td>0074</td>
<td>114</td>
<td>Cove base</td>
<td>Layer 1: 4-inch black vinyl cove base Layer 2: Brown brittle mastic</td>
<td>Misc.</td>
<td>500</td>
<td>LF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Dominant cove base throughout</td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Building #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>---------------------------</td>
<td>------</td>
<td>----------</td>
<td>---------------------</td>
<td>--</td>
<td>----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>P04791</td>
<td>Dodgen</td>
<td>0074</td>
<td>117A</td>
<td>Wallboard system</td>
<td>Layer 1: Gypsum wallboard</td>
<td>Misc.</td>
<td>4,000</td>
<td>SF</td>
<td>Other joint compound samples contain asbestos</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>Layer 3: ND</td>
</tr>
<tr>
<td>P04793</td>
<td>Dodgen</td>
<td>0074</td>
<td>217</td>
<td>Wallboard system</td>
<td>Layer 1: Gypsum wallboard</td>
<td>Misc.</td>
<td>4,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: 2% Chrysotile</td>
<td>Yes</td>
</tr>
<tr>
<td>P04794</td>
<td>Dodgen</td>
<td>0074</td>
<td>217A</td>
<td>Cove base</td>
<td>Layer 1: 4-inch black vinyl cove base</td>
<td>Misc.</td>
<td>500</td>
<td>LF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>No</td>
</tr>
<tr>
<td>P04795</td>
<td>Dodgen</td>
<td>0074</td>
<td>215</td>
<td>Sink</td>
<td>Black sink undercoat</td>
<td>Misc.</td>
<td>7</td>
<td>EA</td>
<td>-</td>
<td>9% Chrysotile</td>
<td>Yes</td>
<td>Rooms 151, 201, 210, 212, 214, 215, 221</td>
</tr>
<tr>
<td>P04796</td>
<td>Dodgen</td>
<td>0074</td>
<td>250B</td>
<td>Plaster system</td>
<td>Layer 1: White brittle plaster finish coat</td>
<td>Surf.</td>
<td>5,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>No</td>
</tr>
<tr>
<td>P04797</td>
<td>Dodgen</td>
<td>0074</td>
<td>250C</td>
<td>Flooring</td>
<td>Layer 1: 12-inch gray flecked vinyl composite tile</td>
<td>Misc.</td>
<td>7,200</td>
<td>SF</td>
<td>Black mastic contains asbestos in other samples</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>Layer 3: No</td>
</tr>
<tr>
<td>P04798</td>
<td>Dodgen</td>
<td>0074</td>
<td>201A</td>
<td>Ceiling tile</td>
<td>Layer 1: 12-inch white drillhole pattern ceiling tile</td>
<td>Misc.</td>
<td>900</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>No</td>
</tr>
<tr>
<td>P04800</td>
<td>Dodgen</td>
<td>0074</td>
<td>201B</td>
<td>Ceiling tile</td>
<td>Layer 1: 12-inch white drillhole pattern ceiling tile</td>
<td>Misc.</td>
<td>900</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>No</td>
</tr>
<tr>
<td>P04801</td>
<td>Dodgen</td>
<td>0074</td>
<td>201A</td>
<td>Cove base</td>
<td>Layer 1: 4-inch brown vinyl cove base</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: No</td>
<td>No</td>
</tr>
<tr>
<td>P04802</td>
<td>Dodgen</td>
<td>0074</td>
<td>201A</td>
<td>Wallboard system</td>
<td>Layer 1: Brown brittle cove base mastic</td>
<td>Misc.</td>
<td>4,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: 2% Chrysotile</td>
<td>Yes</td>
</tr>
<tr>
<td>P04803</td>
<td>Dodgen</td>
<td>0074</td>
<td>114</td>
<td>Pipe insulation</td>
<td>Layer 1: Canvas pipe insulation wrap</td>
<td>TSI</td>
<td>800</td>
<td>EA</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: 6% Chrysotile</td>
<td>Yes</td>
</tr>
<tr>
<td>P04804</td>
<td>Dodgen</td>
<td>0074</td>
<td>117</td>
<td>Pipe insulation</td>
<td>Layer 1: Canvas pipe insulation wrap</td>
<td>TSI</td>
<td>800</td>
<td>EA</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>Layer 2: 7% Chrysotile</td>
<td>Yes</td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Building #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
<td>----------------</td>
<td>----------</td>
<td>---------------------------</td>
<td>------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
</tbody>
</table>
| P04805 | Dodgen | 0074 | 116 | Pipe insulation | Layer 1: Canvas pipe insulation wrap
Layer 2: Gray mudded/plaster pipe fitting insulation | TSI | 800 | EA | - | Layer 1: ND
Layer 2: 5% Chrysotile | Yes | Domestic water, heating distribution piping, and roof drain piping throughout the building |
| P04806 | Dodgen | 0074 | 122 | Wallboard system | Layer 1: Joint compound
Layer 2: Gypsum wallboard | Misc. | 4,000 | SF | - | Layer 1: 3% Chrysotile
Layer 2: ND
Layer 3: 3% Chrysotile | Yes | 1st and 2nd floor corridor, office and laboratory partition walls |
| P04807 | Dodgen | 0074 | 122 | Flooring | Layer 1: 12-inch gray flecked vinyl composite tile
Layer 2: Yellow mastic
Layer 3: Residual black flooring mastic | Misc. | 7,200 | SF | - | Layer 1: ND
Layer 2: ND
Layer 3: 3% Chrysotile | Yes | Domestic water, heating distribution piping, and roof drain piping throughout the building |
| P04808 | Dodgen | 0074 | 100E | Pipe insulation | Layer 1: Canvas pipe insulation wrap
Layer 2: Gray mudded/plaster pipe fitting insulation | TSI | 800 | EA | - | Layer 1: ND
Layer 2: 6% Chrysotile | Yes | Domestic water, heating distribution piping, and roof drain piping throughout the building |
| P04809 | Dodgen | 0074 | DN30 | Pipe insulation | Layer 1: Foil pipe insulation wrap
Layer 2: Back mastic on foil
Layer 3: Yellow fiberglass
Layer 4: Canvas pipe insulation wrap
Layer 5: Grey mudded/plaster pipe fitting insulation | TSI | 800 | EA | - | Layer 1: ND
Layer 2: ND
Layer 3: ND
Layer 4: ND
Layer 5: 5% Chrysotile | Yes | Domestic water, heating distribution piping, and roof drain piping throughout the building |
| P04810 | Dodgen | 0074 | 100E | Wallboard system | Joint compound | Misc. | 4,000 | SF | - | 2% Chrysotile | Yes | 1st and 2nd floor corridor, office and laboratory partition walls |
| P04811 | Dodgen | 0074 | 50B | Wallboard system | Layer 1: Joint compound
Layer 2: Gypsum wallboard | Misc. | 4,000 | SF | - | Layer 1: 3% Chrysotile
Layer 2: ND | Yes | 1st and 2nd floor corridor, office and laboratory partition walls |
| P04812 | Dodgen | 0074 | 200S | Plaster system | Layer 1: White brittle plaster finish coat
Layer 2: Grey sandy plaster base coat | Surf. | 5,000 | SF | - | Layer 1: ND
Layer 2: ND | No | Perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites |
| P04813 | Dodgen | 0074 | 105 | Plaster system | Layer 1: White brittle plaster finish coat
Layer 2: Grey sandy plaster base coat | Surf. | 5,000 | SF | - | Layer 1: ND
Layer 2: ND | No | Perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites |
| P04814 | Dodgen | 0074 | Penthouse mechanical | Pipe insulation | Mudded/plaster pipe fitting insulation | TSI | 800 | EA | Roof drain piping | 7% Chrysotile | Yes | Roof drain piping located in mechanical penthouse |
| P04815 | Dodgen | 0074 | Penthouse mechanical | Pipe insulation | Mudded/plaster roof drain piping | TSI | 800 | EA | Roof drain piping | 6% Chrysotile | Yes | Roof drain piping located in mechanical penthouse |
| P04816 | Dodgen | 0074 | Penthouse mechanical | HVAC caulk | Gray caulk | Misc. | 15 | LF | Interface with brick and metal ductwork | 8% Chrysotile | Yes | Mechanical penthouse on brick chimney and metal ductwork |
| P04817 | Dodgen | 0074 | Penthouse mechanical | Duct gasket | Layer 1: Green HVAC duct gasket
Layer 2: Mineral deposits | Misc. | 1 | EA | Located on one hood exhaust fan | Layer 1: 3% Chrysotile
Layer 2: ND | Yes | Mechanical penthouse |
| P04818 | Dodgen | 0074 | Penthouse mechanical | Duct insulation mastic | Layer 1: Yellow insulation seam mastic
Layer 2: Foil insulation wrap
Layer 3: Yellow fiberglass duct insulation | Misc. | - | - | - | Layer 1: ND
Layer 2: ND
Layer 3: ND | No | Applied to metal ductwork in mechanical penthouse |
| P04819 | Dodgen | 0074 | Penthouse mechanical | Duct insulation mastic | Layer 1: Yellow insulation seam mastic
Layer 2: Foil insulation wrap | Misc. | - | - | - | Layer 1: ND
Layer 2: ND | No | Applied to metal ductwork in mechanical penthouse |
<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Building #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>P04820</td>
<td>Dodgen</td>
<td>0074</td>
<td>Penthouse</td>
<td>Brick chimney</td>
<td>Layer 1: Gray brick Layer 2: Gray mortar</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Room 110, 210 and mechanical penthouse</td>
</tr>
<tr>
<td>P04821</td>
<td>Dodgen</td>
<td>0074</td>
<td>Penthouse</td>
<td>Brick chimney</td>
<td>Layer 1: Gray brick Layer 2: Gray mortar</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Room 110, 210 and mechanical penthouse</td>
</tr>
<tr>
<td>P04822</td>
<td>Dodgen</td>
<td>0074</td>
<td>Exterior 50</td>
<td>Pebblecrete cladding</td>
<td>Pebblecrete plaster cladding</td>
<td>Surf.</td>
<td>4,000 SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Exterior cladding</td>
<td></td>
</tr>
<tr>
<td>P04823</td>
<td>Dodgen</td>
<td>0074</td>
<td>Exterior 50A</td>
<td>Pebblecrete cladding</td>
<td>Pebblecrete plaster cladding</td>
<td>Surf.</td>
<td>4,000 SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Exterior cladding</td>
<td></td>
</tr>
<tr>
<td>P04824</td>
<td>Dodgen</td>
<td>0074</td>
<td>Penthouse</td>
<td>Pebblecrete cladding</td>
<td>Layer 1: Pebblecrete plaster cladding Layer 2: Black vapor barrier paper</td>
<td>Surf.</td>
<td>4,000 SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Exterior cladding</td>
<td></td>
</tr>
<tr>
<td>P04825</td>
<td>Dodgen</td>
<td>0074</td>
<td>Penthouse</td>
<td>Pebblecrete cladding</td>
<td>Layer 1: Pebblecrete plaster cladding Layer 2: Black vapor barrier paper</td>
<td>Surf.</td>
<td>4,000 SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Exterior cladding</td>
<td></td>
</tr>
<tr>
<td>P04826</td>
<td>Dodgen</td>
<td>0074</td>
<td>Penthouse</td>
<td>Pebblecrete cladding</td>
<td>Layer 1: Pebblecrete plaster cladding Layer 2: Black vapor barrier paper</td>
<td>Surf.</td>
<td>4,000 SF</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Exterior cladding</td>
<td></td>
</tr>
<tr>
<td>P04827</td>
<td>Dodgen</td>
<td>0074A</td>
<td>Storage Building</td>
<td>Metal roof</td>
<td>Roof coating</td>
<td>Layer 1: White roof coating Layer 2: Gray roof coating</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Coated throughout metal roof</td>
</tr>
<tr>
<td>P04828</td>
<td>Dodgen</td>
<td>0074A</td>
<td>Storage Building</td>
<td>Metal roof</td>
<td>Roof coating</td>
<td>Layer 1: White roof coating Layer 2: Gray roof coating</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Coated throughout metal roof</td>
</tr>
<tr>
<td>P04829</td>
<td>Dodgen</td>
<td>0074</td>
<td>Exterior to 50</td>
<td>Caulk</td>
<td>Gray building caulk</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Exterior caulk on concrete</td>
<td></td>
</tr>
<tr>
<td>P04830</td>
<td>Dodgen</td>
<td>0074</td>
<td>Exterior to 100E</td>
<td>Caulk</td>
<td>Layer 1: Gray building caulk Layer 2: Weathered gray building caulk</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>Layer 1: ND Layer 2: ND</td>
<td>No</td>
<td>Exterior caulk on concrete</td>
<td></td>
</tr>
<tr>
<td>P04831</td>
<td>Dodgen</td>
<td>0074</td>
<td>215</td>
<td>Laboratory countertop</td>
<td>Black wood fiber and resin laboratory countertop</td>
<td>Misc.</td>
<td>-</td>
<td>-</td>
<td>Used to verify wood content</td>
<td>ND</td>
<td>No</td>
<td>Laboratories throughout, except room 114 and 21</td>
</tr>
<tr>
<td>P04832</td>
<td>Dodgen</td>
<td>0074</td>
<td>50</td>
<td>Ceiling tile</td>
<td>2'x4' White suspended ceiling tile</td>
<td>Misc.</td>
<td>360 SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Room 50 suites</td>
<td></td>
</tr>
<tr>
<td>P04833</td>
<td>Dodgen</td>
<td>0074</td>
<td>50A</td>
<td>Ceiling tile</td>
<td>2'x4' White suspended ceiling tile</td>
<td>Misc.</td>
<td>360 SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>Room 50 suites</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ND = Asbestos was not detected in sample
- SF = Square feet
- EA = Each
- LF = Linear foot
- Misc. = Miscellaneous material
- Surf. = Surfacing material
- TSI = Thermal systems insulation
- ACM = Asbestos-containing material
- **Bold** = Sample contains asbestos
APPENDIX C
Table Summary of Homogeneous Sampling Areas
<table>
<thead>
<tr>
<th>HSA</th>
<th>Sample #’s</th>
<th>Homogenous Material Description</th>
<th>Homogeneous Material Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P04832</td>
<td>2’x4’ white suspended ceiling tiles</td>
<td>Room 50 suites</td>
</tr>
<tr>
<td></td>
<td>P04833</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P04798</td>
<td>12-inch white drillhole pattern ceiling tiles with glue dollop</td>
<td>201A, 201B, 201AA, 250, 250A, 250B, 250C</td>
</tr>
<tr>
<td></td>
<td>P04800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>P04784</td>
<td>2’x4’ white fiberglass ceiling tiles</td>
<td>151</td>
</tr>
</tbody>
</table>

Wall Finishes

<table>
<thead>
<tr>
<th>HSA</th>
<th>Sample #’s</th>
<th>Homogenous Material Description</th>
<th>Homogeneous Material Location(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>P04767</td>
<td>Plaster system (base coat and skim coat)</td>
<td>Perimeter exterior facing walls, stairwells; rooms 3, 4, 5 and 6; and the 250 suites</td>
</tr>
<tr>
<td></td>
<td>P04774</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04781</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04782</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04796</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04812</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04813</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P04785</td>
<td>Gypsum wallboard/joint compound system</td>
<td>1st and 2nd floor corridor, office and laboratory partition walls</td>
</tr>
<tr>
<td></td>
<td>P04791</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04793</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04802</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04806</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04810</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P04766</td>
<td>4-inch black vinyl cove base and associated brown and white mastics</td>
<td>Dominant cove base throughout building</td>
</tr>
<tr>
<td></td>
<td>P04772</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04775</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04786</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04789</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P04794</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P04801</td>
<td>4-inch brown vinyl cove base with brown brittle mastic</td>
<td>Replacement cove base in areas of 2nd floor</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSA</td>
<td>Sample #’s</td>
<td>Homogenous Material Description</td>
<td>Homogeneous Material Location(s)</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>P04822, P04823, P04824, P04825, P04826</td>
<td>Pebblecrete exterior plaster cladding</td>
<td>Mechanical penthouse enclosure and southwest exterior</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>P04768, P04770, P04778, P04797, P04807</td>
<td>12-inch gray and tan flecked vinyl composite floor tile and associated yellow, brown and residual black mastic (newer replacement tile)</td>
<td>1W, 2, 3, 4, 5, 50, 50A, 50B, 100E, 101, 122, 151, 200E, 212, 214, 221, 250, 250A, 250B, 250C</td>
</tr>
<tr>
<td>11</td>
<td>P04790, P04799</td>
<td>12-inch tan marbled pattern floor tile and associated black mastic</td>
<td>Color matched to 9-inch tile above</td>
</tr>
<tr>
<td>12</td>
<td>P04776, P04777</td>
<td>5-inch tan ceramic floor tile with grout</td>
<td>West stairwell</td>
</tr>
<tr>
<td>13</td>
<td>P04773, P04783</td>
<td>Pipe insulation: Magnesia block-type (3 to 5-inch outside diameter)</td>
<td>Main steam trunk lines in crawlspace and west portion of building (visible in rooms 3, 101, 151, 201 and 250C) (*see note below)</td>
</tr>
<tr>
<td>14</td>
<td>P04803, P04804, P04805, P04808, P04809, P04814, P04815</td>
<td>Pipe insulation: Fiberglass straight runs with asbestos-containing mudded/plaster elbows</td>
<td>Domestic water, heating distribution piping, and roof drain piping throughout the building</td>
</tr>
<tr>
<td>15</td>
<td>P04769, P04771</td>
<td>Gray window glazing and caulk</td>
<td>Rooms 151, 250A, 250B, 250C and glass block windows in rooms 3 and 5</td>
</tr>
<tr>
<td>16</td>
<td>P04788</td>
<td>Black laboratory countertop</td>
<td>114 and portable desk unit in 21</td>
</tr>
<tr>
<td>17</td>
<td>P04831</td>
<td>Black wood and resin laboratory countertop</td>
<td>Laboratories throughout, except room 114 and 21</td>
</tr>
<tr>
<td>18</td>
<td>P04780, P04795</td>
<td>Black sink undercoat (metal sinks with black countertops)</td>
<td>151, 201, 210, 212, 214, 215, 221</td>
</tr>
<tr>
<td>HSA</td>
<td>Sample #’s</td>
<td>Homogenous Material Description</td>
<td>Homogeneous Material Location(s)</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>19</td>
<td>P04787</td>
<td>Black sink undercoat (metal countertops)</td>
<td>110, 114, 119</td>
</tr>
<tr>
<td>20</td>
<td>P04827 P04828</td>
<td>Metal roof coating</td>
<td>Metal roof of Dodgen Storage Building (074A)</td>
</tr>
<tr>
<td>21</td>
<td>P04816</td>
<td>Gray caulk</td>
<td>Mechanical penthouse at metal ductwork and chimney</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>P04829 P04830</td>
<td>Gray caulk</td>
<td>Applied to exterior concrete expansion joints</td>
</tr>
<tr>
<td>23</td>
<td>P04817</td>
<td>Green HVAC duct gasket</td>
<td>Mechanical penthouse on metal ductwork</td>
</tr>
<tr>
<td>24</td>
<td>P04820 P04821</td>
<td>Brick and mortar chimney</td>
<td>Room 110, 210 and mechanical penthouse</td>
</tr>
</tbody>
</table>

Note: **Bold** type indicates sample/material that contains asbestos
APPENDIX D
Table Summary of Lead Paint Sampling
<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Building #</th>
<th>Sample Location (Room #)</th>
<th>Paint Color</th>
<th>Substrate</th>
<th>Component</th>
<th>Results (ppm)</th>
<th>Lead-containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>B12325</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>3</td>
<td>White</td>
<td>Plaster</td>
<td>Wall</td>
<td>390</td>
<td>Yes</td>
</tr>
<tr>
<td>B12326</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>50</td>
<td>White</td>
<td>Plaster</td>
<td>Wall</td>
<td>360</td>
<td>Yes</td>
</tr>
<tr>
<td>B12327</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>151</td>
<td>White/tan</td>
<td>Plaster</td>
<td>Wall</td>
<td>260</td>
<td>Yes</td>
</tr>
<tr>
<td>B12328</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>151</td>
<td>Green</td>
<td>Plaster</td>
<td>Wall</td>
<td>580</td>
<td>Yes</td>
</tr>
<tr>
<td>B12329</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>200</td>
<td>White</td>
<td>Plaster</td>
<td>Wall</td>
<td>150</td>
<td>Yes</td>
</tr>
<tr>
<td>B12330</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>250C</td>
<td>White</td>
<td>Plaster</td>
<td>Wall</td>
<td><56</td>
<td>No</td>
</tr>
<tr>
<td>B12331</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>2nd floor door</td>
<td>Gray/white</td>
<td>Metal</td>
<td>Door</td>
<td><89</td>
<td>No</td>
</tr>
<tr>
<td>B12332</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>1st floor door</td>
<td>Gray/white</td>
<td>Metal</td>
<td>Door</td>
<td><58</td>
<td>No</td>
</tr>
<tr>
<td>EXT-Pb-01</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>Southwest exterior</td>
<td>Tan</td>
<td>Concrete</td>
<td>Wall</td>
<td><49</td>
<td>No</td>
</tr>
<tr>
<td>EXT- Pb-02</td>
<td>Dodgen Research Facility</td>
<td>0074</td>
<td>South exterior</td>
<td>Tan</td>
<td>Concrete</td>
<td>Wall</td>
<td>120</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:

a) Results by EPA Method SW 846-3051 analysis are reported in parts per million lead
b) < indicates lead in sample was below method detection limit indicated
c) Bold type indicates samples that contain lead
APPENDIX E
Asbestos and Lead Chain of Custody Forms and Laboratory Analytical Results
February 3, 2016

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1602332.00

Client Project: 8476-2015
Location: Dodgen: roofing

Dear Mr. McKibbin,

Enclosed please find test results for the 3 sample(s) submitted to our laboratory for analysis on 1/26/2016.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Lori Tseng, PLM Analyst

Enc.: Sample Results
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen: roofing

Batch #: 1602332.00
Client Project #: 8476-2015
Date Received: 1/26/2016
Samples Received: 3
Samples Analyzed: 3
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Lab ID: 16169114
Client Sample #: P03062
Location: Dodgen: roofing
Comments: Sample was dried prior to analysis.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 3</td>
<td>Black asphaltic material with silver paint</td>
<td>Asphalt/Binder, Fine particles, Metallic paint</td>
<td>Cellulose 6%</td>
<td>Chrysotile 4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Synthetic fibers</td>
<td>13%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Tan fibrous material</th>
<th>Non-Fibrous Materials: Binder/Filler, Fine particles, Perlite</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellulose 78%</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description: Black asphaltic material</th>
<th>Non-Fibrous Materials: Asphalt/Binder, Fine particles</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellulose 7%</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 16169115
Client Sample #: P03063
Location: Dodgen: roofing

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description: Built-up black asphaltic material with silver paint</th>
<th>Non-Fibrous Materials: Asphalt/Binder, Fine particles, Metallic paint</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 3</td>
<td></td>
<td></td>
<td>Cellulose 5%</td>
<td>Chrysotile 3%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Tan fibrous material</th>
<th>Non-Fibrous Materials: Binder/Filler, Fine particles, Wood flakes</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellulose 76%</td>
<td>None Detected ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wood fibers</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description: Black asphaltic material</th>
<th>Non-Fibrous Materials: Asphalt/Binder, Fine particles</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cellulose 9%</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Lori Tseng
Date: 02/02/2016
Date: 02/03/2016

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Page 2 of 6
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172
Attention: Mr. Matt McKibbin
Project Location: Dodgen: roofing

Lab ID: 16169116
Client Sample #: P03064
Location: Dodgen: roofing

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials (%)</th>
<th>Asbestos Type (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yellow foamy material</td>
<td>Styrofoam, Binder/Filler</td>
<td>None Detected ND</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Built-up black asphaltic material with silver paint</td>
<td>Asphalt/Binder, Fine particles, Metallic paint</td>
<td>Cellulose 5% Synthetic fibers 10%</td>
<td>Chrysotile 3%</td>
</tr>
<tr>
<td>3</td>
<td>Tan fibrous material</td>
<td>Binder/Filler, Fine particles, Wood flakes</td>
<td>Cellulose 78% Wood fibers 6%</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Black asphaltic material</td>
<td>Asphalt/Binder, Fine particles</td>
<td>Cellulose 6%</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Black tar</td>
<td>Asphalt/Binder</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Lori Tseng
Date: 02/02/2016
Date: 02/03/2016
Lori Tseng, PLM Analyst

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Company: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311

NVL Batch Number: 1602332.00
TAT: 5 Days
AH: No
Rush TAT: No
Due Date: 2/2/2016
Time: 10:00 AM

Email: mmckibbin@wsu.edu
Fax: (509) 335-4442

Project Name/Number: 8476-2015
Project Location: Dodgen: roofing

Subcategory: PLM Bulk
Item Code: ASB-02
**EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 3
Rush Samples: No

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16169114</td>
<td>P03062</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>16169115</td>
<td>P03063</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>16169116</td>
<td>P03064</td>
<td>A</td>
</tr>
</tbody>
</table>

Print Name: Justin Shearer
Signature:
Company:
Date: 1/26/16
Time: 1000

Sampled by: Client
Relinquished by: Federal Express

Print Name: Justin Shearer
Signature:
Company: NVL
Date: 1/26/16
Time: 1000

Received by: Justin Shearer
Signature:
Company: NVL
Date: 1/26/16
Time: 1000

Analyzed by: Welly Hsieh
Signature:
Company: NVL
Date: 2/2/16
Time: 8:26 AM

Results Called by: NVL

Fax:
Emailed:

Special Instructions:

Date: 1/26/2016
Time: 2:25 PM
Entered By: Justin Shearer
ASBESTOS
CHAIN OF CUSTODY

Company
Washington St. University EH&S

Address
PO Box 641172
Pullman, WA 99164

Phone
509-335-5604

Project Manager
Matt McKibbin

Cell
509-730-5548

Email
mmckibbin@wsu.edu, stephan.gilley@wsu.edu

Project Name/Number
8476-2015

Project Location
Dodgen: roofing

- [] PCM Air (NIOSH 7400)
- [] TEM (NIOSH 7402)
- [] TEM (AHERA)
- [] TEM (EPA Level II Modified)
- [] PLM (EPA 600/R-93-116)
- [] EPA 400 Points (600/R-93-116)
- [] Asbestos in Vermiculite (EPA 600/R-04/004)
- [] Asbestos in Sediment (EPA 1900 Points)
- [] Asbestos Friable/Non-Friable (EPA 600/R-93/116)
- [] Other

Reporting Instructions
- [] Call
- [] Fax
- [] Email

Total Number of Samples

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P03062-P03064</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Print Name
- Stephan Gilley

Signature

Company
- WSU EH&S
- WSU EH&S

Date
- 1-27-16
- 1-25-16

Time
- 12:40
- 08:22

Office Use Only

Print Name
- J. Shearer

Signature

Company
- NVL

Date
- 1-26-16

Time
- 10:00 Fed Ex
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Material Type</th>
<th>Sample Location</th>
<th>Condition</th>
<th>Friable</th>
<th>Est. Quantity</th>
<th>Lab Results (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P03062</td>
<td>Silver coat w/ asphaltic roofing felts Layer 1, Perlite board Layer 2, Black asphaltic vapor barrier on deck Layer 3,</td>
<td>Built-up roof wet</td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03063</td>
<td>Silver coat w/ asphaltic roofing felts Layer 1, Perlite/Particle wood board Layer 2, Black asphaltic vapor barrier on deck</td>
<td>Inner penthouse roof</td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03064</td>
<td>Yellow poly-150 foam insulation Layer 1, Silver coat & built-up roofing felts Layer 2, Perlite/Particle wood board Layer 3, Black asphaltic vapor barrier on deck</td>
<td>Under rubber roof upper roof</td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Black asphaltic vapor barrier on deck</td>
<td>Layer 2, Layer 3,</td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
<tr>
<td>P03</td>
<td>Layer 1, Layer 2, Layer 3,</td>
<td></td>
<td>GOOD</td>
<td>NO</td>
<td>SF</td>
<td></td>
</tr>
</tbody>
</table>
March 30, 2018

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1805452.00

Client Project: 2018-015454
Location: Dodgen Research Facility

Dear Mr. McKibbin,

Enclosed please find test results for the 30 sample(s) submitted to our laboratory for analysis on 3/22/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results
Lab ID: 18029335 Client Sample #: P04766

Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description: Black rubbery material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder</td>
<td>None Detected</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Brown brittle mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mastic/Binder, Organic debris, Paint</td>
<td>Cellulose 3%</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wollastonite 5%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description: White soft mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mastic/Binder</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029336 Client Sample #: P04767

Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description: White compacted powdery material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Binder/Filler, Mica, Calcareous particles</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029337 Client Sample #: P04768

Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description: Tan vinyl tile</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder, Fine grains</td>
<td>None Detected</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Brown brittle mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mastic/Binder</td>
<td>Cellulose 3%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Client Project #: 2018-015454
Samples Received: 30
Samples Analyzed: 30

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Mastic/Binder, Fine particles</th>
<th>Cellulose</th>
<th>Hair</th>
<th>Synthetic fibers</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Black brittle mastic</td>
<td>Other Fibrous Materials:%</td>
<td>3%</td>
<td><1%</td>
<td><1%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

| Lab ID: 18029338 | **Client Sample #:** P04769
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Mastic/Binder, Fine particles</th>
<th>Cellulose</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gray brittle material with paint</td>
<td>Other Fibrous Materials:%</td>
<td>2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Mastic/Binder, Fine particles</th>
<th>Cellulose</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Gray brittle sandy material</td>
<td>Other Fibrous Materials:%</td>
<td>2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Mastic/Binder, Fine particles</th>
<th>Cellulose</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Gray soft putty material</td>
<td>Other Fibrous Materials:%</td>
<td>3%</td>
<td>Chrysotile 2%</td>
</tr>
</tbody>
</table>

| Lab ID: 18029339 | **Client Sample #:** P04770
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Mastic/Binder, Fine particles</th>
<th>Cellulose</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gray vinyl tile</td>
<td>Other Fibrous Materials:%</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Date: 03/30/2018
Signature: Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Page: page 3 of 19
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00

Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yellow soft mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mastic/Binder</td>
<td></td>
<td>Cellulose</td>
<td>2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black soft asphaltic mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asphalt/Binder</td>
<td></td>
<td>Cellulose</td>
<td>3%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029340
Client Sample #: P04771
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray brittle material with paint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Calcareous particles, Paint</td>
<td></td>
<td>None Detected</td>
<td>ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray brittle sandy material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Mineral grains, Sand Quartz, Calcareous particles</td>
<td></td>
<td>Cellulose</td>
<td>2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray soft putty material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Fine grains</td>
<td></td>
<td>Cellulose</td>
<td>3%</td>
<td>Chrysotile 4%</td>
</tr>
</tbody>
</table>

Lab ID: 18029341
Client Sample #: P04772
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black rubbery material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl/Binder</td>
<td></td>
<td>None Detected</td>
<td>ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Date: 03/30/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Page 4 of 19
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172
Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 2 of 2
Description: White soft mastic with paint
- **Non-Fibrous Materials:** Vinyl/Binder, Paint
- **Other Fibrous Materials:** Cellulose 2%
- **Asbestos Type:** None Detected ND

Layer 1 of 2
Description: White woven fibrous material with paint
- **Non-Fibrous Materials:** Binder/Filler, Paint, Calcareous particles
- **Other Fibrous Materials:** Cellulose 55%
- **Asbestos Type:** None Detected ND

Layer 2 of 2
Description: White powdery material with fibers
- **Non-Fibrous Materials:** Calcareous particles
- **Other Fibrous Materials:** Cellulose 2%
- **Asbestos Type:** Amosite 5%

Layer 1 of 4
Description: Gray brittle sandy material
- **Non-Fibrous Materials:** Binder/Filler, Mineral grains, Sand
- **Other Fibrous Materials:** Cellulose 2%
- **Asbestos Type:** None Detected ND

Layer 2 of 4
Description: White brittle material
- **Non-Fibrous Materials:** Binder/Filler, Fine grains
- **Other Fibrous Materials:** Cellulose 2%
- **Asbestos Type:** None Detected ND

Layer 3 of 4
Description: Tan compacted powdery material
- **Non-Fibrous Materials:** Binder/Filler, Calcareous particles
- **Other Fibrous Materials:** Cellulose 4%
- **Asbestos Type:** None Detected ND

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Date: 03/30/2018
Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 4 of 4
Description: White compacted powdery material
Non-Fibrous Materials: Binder/Filler, Fine particles
Other Fibrous Materials: None Detected
Asbestos Type: ND

Lab ID: 18029344
Client Sample #: P04775
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 4</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black rubbery material</td>
<td>Vinyl/Binder</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White soft mastic</td>
<td>Mastic/Binder</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brown brittle mastic</td>
<td>Mastic/Binder</td>
<td>Wollastonite</td>
<td>6%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>White compacted powdery material</td>
<td>Binder/Filler, Calcareous particles</td>
<td>Cellulose</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

Layer 4 of 4
Description: White compacted powdery material
Non-Fibrous Materials:
Other Fibrous Materials: Cellulose | 4% |
Asbestos Type: ND

Lab ID: 18029345
Client Sample #: P04776
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tan ceramic tile</td>
<td>Ceramic/Binder, Fine grains, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Reviewed Date: 03/30/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Bound/Filler, Fine grains, Sand</th>
<th>Cellulose</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 2</td>
<td>Gray brittle sandy material</td>
<td>Binder/Filler, Fine grains, Sand</td>
<td>Cellulose</td>
<td><1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz, Calcareous particles</td>
<td></td>
<td>None Detected ND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029346
Client Sample #: P04777
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Ceramic/Binder, Fine grains, Fine particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 2</td>
<td>Tan ceramic tile</td>
<td></td>
<td></td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Gray brittle sandy material</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 2</td>
<td></td>
<td>Binder/Filler, Fine grains, Sand</td>
<td>Cellulose</td>
<td><1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quartz, Calcareous particles</td>
<td></td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029347
Client Sample #: P04778
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Vinyl/Binder, Fine particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 3</td>
<td>Gray vinyl tile</td>
<td></td>
<td></td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Mastic/Binder, Fine particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 of 3</td>
<td>Brown soft mastic</td>
<td></td>
<td></td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Black soft asphaltic mastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 of 3</td>
<td></td>
<td>Asphalt/Binder</td>
<td>Cellulose</td>
<td>4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly

Date: 03/28/2018
Date: 03/30/2018
Nick Ly, Technical Director
Client Sample #: P04779

Layer 1 of 1
Description: Gray fibrous material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles</td>
<td>Cellulose 22%</td>
<td>Chrysotile 60%</td>
</tr>
</tbody>
</table>

Lab ID: 18029348
Location: Dodgen Research Facility

Client Sample #: P04780

Layer 1 of 1
Description: Black loose flakey material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler</td>
<td>Cellulose 3%</td>
<td>Chrysotile 4%</td>
</tr>
</tbody>
</table>

Lab ID: 18029349
Location: Dodgen Research Facility

Client Sample #: P04781

Layer 1 of 2
Description: White compacted powdery material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 2 of 2
Description: Gray brittle sandy material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Mineral grains, Sand, Quartz, Calcareous particles</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029350
Location: Dodgen Research Facility

Client Sample #: P04782

Layer 1 of 2
Description: White compacted powdery material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029351
Location: Dodgen Research Facility

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 1 of 2
Description: White compacted powdery material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Calcareous particles, Paint None Detected ND

Layer 2 of 2
Description: Gray brittle sandy material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Calcareous particles, Paint, Sand Cellulose 2%
Mineral grains, Quartz

Asbestos Type: %
None Detected ND

Lab ID: 18029352
Client Sample #: P04783
Location: Dodgen Research Facility
Comments: Sample was dried prior to analysis.

Layer 1 of 2
Description: White woven fibrous material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Paint, Calcareous particles Cellulose 55%

Layer 2 of 2
Description: White fibrous material
Non-Fibrous Materials: Other Fibrous Materials:%
Calcareous binder, Calcareous particles Cellulose 4%

Asbestos Type: %
None Detected ND

Lab ID: 18029353
Client Sample #: P04784
Location: Dodgen Research Facility
Layer 1 of 1
Description: Yellow fibrous material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Adhesive/Binder, Paint Glass fibers 94%

Asbestos Type: %
None Detected ND

Layer 1 of 1
Description: Yellow fibrous material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Adhesive/Binder, Paint Glass fibers 94%

Asbestos Type: %
None Detected ND

Lab ID: 18029354
Client Sample #: P04785
Location: Dodgen Research Facility

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
 Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 1 of 2 Description: Off-white compacted powdery material
Non-Fibrous Materials: Other Fibrous Materials:%
Calcereous binder, Calcareous particles Cellulose 2%

Asbestos Type: %
None Detected ND

Layer 2 of 2 Description: White chalky material with paper
Non-Fibrous Materials: Other Fibrous Materials:%
Gypsum/Binder, Fine particles Cellulose 27%
Glass fibers 6%

Asbestos Type: %
None Detected ND

Lab ID: 18029355 Client Sample #: P04786
Location: Dodgen Research Facility

Layer 1 of 2 Description: Black rubbery material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Vinyl/Binder, Paint None Detected ND

Asbestos Type: %
None Detected ND

Layer 2 of 2 Description: Brown brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder, Fine particles, Plastic Cellulose 4%
Wollastonite 4%

Asbestos Type: %
None Detected ND

Lab ID: 18029356 Client Sample #: P04787
Location: Dodgen Research Facility

Layer 1 of 1 Description: Black brittle asphaltic material
Non-Fibrous Materials: Other Fibrous Materials:%
Asphalt/Binder Cellulose 2%

Asbestos Type: %
None Detected ND

Lab ID: 18029357 Client Sample #: P04788
Location: Dodgen Research Facility

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description: Black brittle material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Binder/Filler</td>
<td>Cellulose 3%</td>
<td>Chrysotile 21%</td>
</tr>
</tbody>
</table>

Lab ID: 18029358
Client Sample #: P04789
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: Black rubbery material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: Brown brittle mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mastic/Binder, Fine particles</td>
<td>Cellulose 4%</td>
<td>Wollastonite 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029359
Client Sample #: P04790
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description: Tan marbled vinyl tile</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder</td>
<td>Cellulose 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Tan vinyl tile with pink coating</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder</td>
<td>Cellulose 4%</td>
<td>Chrysotile 3%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description: Black soft asphaltic mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Asphalt/Binder, Fine particles</td>
<td>Cellulose 3%</td>
<td>Chrysotile 2%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description:</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Synthetic fibers <1%</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Date: 03/30/2018
Nick Ly, Technical Director

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Lab ID: 18029360
Client Sample #: P04791

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 3</td>
<td>White chalky material with paper</td>
<td>Gypsum/Binder, Fine grains</td>
<td>Cellulose 32%</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Glass fibers 7%</td>
<td></td>
</tr>
<tr>
<td>2 of 3</td>
<td>White compacted powdery material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 of 3</td>
<td>Brown brittle mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029361
Client Sample #: P04792

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 2</td>
<td>Tan vinyl tile</td>
<td></td>
<td></td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vinyl/Binder</td>
<td>None Detected</td>
<td></td>
</tr>
<tr>
<td>2 of 2</td>
<td>Black soft asphaltic mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029362
Client Sample #: P04793

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: William Minor
Reviewed by: Nick Ly
Date: 03/28/2018
Date: 03/30/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805452.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 30
Samples Analyzed: 30
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: White chalky material with paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials: %</td>
</tr>
<tr>
<td>Gypsum/Binder, Fine particles</td>
<td>Cellulose 29%</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>%</td>
</tr>
<tr>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: White compacted powdery material with paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials: %</td>
</tr>
<tr>
<td>Calcareous binder, Calcareous particles, Paint</td>
<td>Cellulose 2%</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>%</td>
</tr>
<tr>
<td>Chrysotile 2%</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029363 Client Sample #: P04794
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: Black rubbery material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials: %</td>
</tr>
<tr>
<td>Vinyl/Binder</td>
<td>None Detected ND</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>%</td>
</tr>
<tr>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: Brown brittle mastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials: %</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>Cellulose 2%</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>%</td>
</tr>
<tr>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 18029364 Client Sample #: P04795
Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description: Black flakey loose material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials: %</td>
</tr>
<tr>
<td>Asphalt/Binder</td>
<td>Cellulose</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>%</td>
</tr>
<tr>
<td>Chrysotile 9%</td>
<td></td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Company: Washington State University EH&S
Address: PO Box 641172
 Pullman, WA 99164-1172
Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311

NVL Batch Number: 1805452.00
TAT: 5 Days
AH: No
Due Date: 3/29/2018
Time: 8:50 AM
Email: mmckibbin@wsu.edu
Fax: (509) 730-5548

Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

Subcategory: PLM Bulk
Item Code: ASB-02
EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 30

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18029335</td>
<td>P04766</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>18029336</td>
<td>P04767</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>18029337</td>
<td>P04768</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>18029338</td>
<td>P04769</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>18029339</td>
<td>P04770</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>18029340</td>
<td>P04771</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>18029341</td>
<td>P04772</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>18029342</td>
<td>P04773</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>18029343</td>
<td>P04774</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>18029344</td>
<td>P04775</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>18029345</td>
<td>P04776</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>18029346</td>
<td>P04777</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>18029347</td>
<td>P04778</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>18029348</td>
<td>P04779</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>18029349</td>
<td>P04780</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>18029350</td>
<td>P04781</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>18029351</td>
<td>P04782</td>
<td>A</td>
</tr>
<tr>
<td>18</td>
<td>18029352</td>
<td>P04783</td>
<td>A</td>
</tr>
</tbody>
</table>

Print Name: Office Use Only
Signature: Client
Company: Federal Express
Date: 3/22/18
Time: 850

Received by: Nicholas Dossegger
Company: NVL
Date: 3/22/18
Time: 850

Analyzed by: William Minor
Company: NVL
Date: 3/28/18

Results Called by: NVL
Fax: 0
Emailed: 0

Special Instructions:
ASBESTOS LABORATORY SERVICES

Company Washington State University EH&S
Address PO Box 641172
Pullman, WA 99164-1172

Project Manager Mr. Matt McKibbin
Phone (509) 335-3041
Direct (509) 335-5311
Email mrmckibbin@wsu.edu
Fax (509) 730-5548

NVL Batch Number 1805452.00
TAT 5 Days
Due Date 3/29/2018
Time 8:50 AM
Fax (509) 730-5548
Email mrmckibbin@wsu.edu

Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

Subcategory PLM Bulk
Item Code ASB-02
EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples 30
Rush Samples

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>18029353</td>
<td>P04784</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>18029354</td>
<td>P04785</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>18029355</td>
<td>P04786</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>18029356</td>
<td>P04787</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>18029357</td>
<td>P04788</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>18029358</td>
<td>P04789</td>
<td>A</td>
</tr>
<tr>
<td>25</td>
<td>18029359</td>
<td>P04790</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>18029360</td>
<td>P04791</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>18029361</td>
<td>P04792</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>18029362</td>
<td>P04793</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>18029363</td>
<td>P04794</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>18029364</td>
<td>P04795</td>
<td>A</td>
</tr>
</tbody>
</table>

Sampled by Federal Express
Relinquished by Client

Office Use Only

<table>
<thead>
<tr>
<th>Received by</th>
<th>Signature</th>
<th>Company</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicholas Dossegger</td>
<td></td>
<td>NVL</td>
<td>3/22/18</td>
<td>850</td>
</tr>
<tr>
<td>Analyzed by</td>
<td>Signature</td>
<td>Company</td>
<td>Date</td>
<td>Time</td>
</tr>
<tr>
<td>William Minor</td>
<td></td>
<td>NVL</td>
<td>3/28/18</td>
<td></td>
</tr>
</tbody>
</table>

Fax []
Emailed []

Special Instructions:

Date: 3/22/2018
Time: 10:49 AM
Entered By: Soumeya Benzina
ASBESTOS
CHAIN OF CUSTODY

Company: Washington St. University EH&S
Address: PO Box 641172
Pullman, WA 99164
Phone: 509-335-3041
Project Manager: Matthew McKibbin
Cell: (509) 730-5548
Email: mrmckibbin@wsu.edu

<table>
<thead>
<tr>
<th>Project Name/Number</th>
<th>Project Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-015454</td>
<td>Dodgen Research Facility</td>
</tr>
<tr>
<td>PCM Air (NIOSH 7400)</td>
<td>TEM (NIOSH 7402)</td>
</tr>
<tr>
<td>PLM (EPA 600/R-93-116)</td>
<td>TEM (AHERA)</td>
</tr>
<tr>
<td>PLM Gravimetry (600/R-93-116)</td>
<td>TEM (EPA Level II Modified)</td>
</tr>
<tr>
<td>Asbestos in Vermiculite (EPA 600/R-04/004)</td>
<td>EPA 1000 Points (600/R-93-116)</td>
</tr>
<tr>
<td>Asbestos Friable/Non-Friable (EPA 600/R-93/116)</td>
<td>Asbestos in Sediment (EPA 1900 Points)</td>
</tr>
</tbody>
</table>

Reporting Instructions: email
- Call ()
- Fax ()
- Email ()

Total Number of Samples: 68

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P04766</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>P04639</td>
<td></td>
</tr>
</tbody>
</table>

Samples 7100-95

Sampled by: Matthew McKibbin
Signature: [Signature]
Company: WSU EH&S
Date: 3/20/2018
Time: 1600

Relinquish by: Matthew McKibbin
Signature: [Signature]
Company: WSU EH&S
Date: 3/21/2018
Time: 1200

Office Use Only

- **Received by**: [Name]
- **Signature**: [Signature]
- **Company**: [Name]
- **Date**: 3/22/18
- **Time**: 8:50 AM

4708 Aurora Ave N, Seattle, WA 98103
P 206.547.0100
F 206.634.1936
www.nvllabs.com

page 16 of 19
March 27, 2018

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 1805455.00

Client Project: 2018-015454
Location: Dodgen Research Facility

Dear Mr. McKibbin,

Enclosed please find test results for the 38 sample(s) submitted to our laboratory for analysis on 3/22/2018.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Nick Ly, Technical Director

Enc.: Sample Results
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Batch #: 1805455.00

Client Project #: 2018-015454

Samples Received: 38

Samples Analyzed: 38

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029371</td>
<td>P04796</td>
<td>White brittle material with layered paint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Layer 1 of 2 | | Non-Fibrous Materials:
Binder/Filler, Paint | None Detected | ND | ND |
| Layer 2 of 2 | | Non-Fibrous Materials:
Sand, Fine particles, Mica | Other Fibrous Materials: | Cellulose | <1% |

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029372</td>
<td>P04797</td>
<td>Gray vinyl tile</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Layer 1 of 4 | | Non-Fibrous Materials:
Vinyl/Binder, Calcareous particles | Other Fibrous Materials: | None Detected | ND |
| Layer 2 of 4 | | Non-Fibrous Materials:
Mastic/Binder | Other Fibrous Materials: | Synthetic fibers | 4% |
| Layer 3 of 4 | | Non-Fibrous Materials:
Asphalt/Binder, Mastic/Binder | Other Fibrous Materials: | Cellulose | <1% |
| Layer 4 of 4 | | Non-Fibrous Materials:
Binder/Filler, Fine particles | Other Fibrous Materials: | Cellulose | 2% |

Sampled by: Client
Analysed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Client: Welly Hsieh
Reviewed by: Nick Ly, Technical Director
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Layer 1 of 2
Description: Tan fibrous material with paint
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Binder/Filler, Paint: Cellulose 87%
- **Asbestos Type:** None Detected ND

Layer 2 of 2
Description: Brown brittle mastic
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Mastic/Binder: Talc fibers 5%
- **Asbestos Type:** None Detected ND

Layer 1 of 4
Description: Light gray vinyl tile
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Vinyl/Binder, Calcareous particles: None Detected ND
- **Asbestos Type:** Chrysotile 2%

Layer 2 of 4
Description: Black asphalitic mastic
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Asphalt/Binder, Mastic/Binder: None Detected ND
- **Asbestos Type:** None Detected ND

Layer 3 of 4
Description: Tan tile
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Vinyl/Binder, Calcareous particles: None Detected ND
- **Asbestos Type:** Chrysotile 5%

Layer 4 of 4
Description: Black asphalitic mastic
- **Non-Fibrous Materials:** Other Fibrous Materials:%
 - Asphalt/Binder, Mastic/Binder: Cellulose <1%
- **Asbestos Type:** None Detected ND

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172, Pullman, WA 99164-1172
Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 2 of 2

Description: Brown brittle mastic
Non-Fibrous Materials: Mastic/Binder
Other Fibrous Materials: Talc fibers 6%
Asbestos Type: None Detected ND

Lab ID: 18029376
Client Sample #: P04801
Location: Dodgen Research Facility

Layer 1 of 2

Description: Brown rubbery material
Non-Fibrous Materials: Rubber/Binder
Other Fibrous Materials: None Detected ND

Layer 2 of 2

Description: Brown brittle mastic
Non-Fibrous Materials: Mastic/Binder, Fine particles
Other Fibrous Materials: Cellulose <1%

Layer 3 of 3

Description: White chalky material with paper
Non-Fibrous Materials: Gypsum/Binder, Binder/Filler
Other Fibrous Materials: Cellulose 20%

Lab ID: 18029377
Client Sample #: P04802
Location: Dodgen Research Facility

Layer 1 of 3

Description: Brown brittle mastic
Non-Fibrous Materials: Mastic/Binder
Other Fibrous Materials: None Detected ND

Layer 2 of 3

Description: White compacted powdery material with paint
Non-Fibrous Materials: Calcareous binder, Paint
Other Fibrous Materials: None Detected ND

Layer 3 of 3

Description: White chalky material with paper
Non-Fibrous Materials: Gypsum/Binder, Binder/Filler
Other Fibrous Materials: Cellulose 20%

Lab ID: 18029378
Client Sample #: P04803
Location: Dodgen Research Facility

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Batch #: 1805455.00

<table>
<thead>
<tr>
<th>Client Project #: 2018-015454</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client: Washington State University EH&S</td>
</tr>
<tr>
<td>Address: PO Box 641172</td>
</tr>
<tr>
<td>Pullman, WA 99164-1172</td>
</tr>
<tr>
<td>Attention: Mr. Matt McKibbin</td>
</tr>
<tr>
<td>Project Location: Dodgen Research Facility</td>
</tr>
</tbody>
</table>

Samples Received: 38

By Polarized Light Microscopy

Bulk Asbestos Fibers Analysis

Washington State University EH&S

PO Box 641172

Pullman, WA 99164-1172

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Samples Analyzed: 38

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off-white woven fibrous material with paint</td>
<td>Binder/Filler, Paint</td>
<td>Cellulose 80%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray lumpy material</td>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers 14%</td>
<td>Chrysotile 6%</td>
</tr>
</tbody>
</table>

Lab ID: 18029385
Client Sample #: P04804

<table>
<thead>
<tr>
<th>Location: Dodgen Research Facility</th>
</tr>
</thead>
</table>

Layer 1 of 2 | Description | Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off-white woven fibrous material with paint</td>
<td>Binder/Filler, Paint</td>
<td>Cellulose 84%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 2 of 2 | Description | Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray lumpy material</td>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers 19%</td>
<td>Chrysotile 7%</td>
</tr>
</tbody>
</table>

Lab ID: 18029386
Client Sample #: P04805

<table>
<thead>
<tr>
<th>Location: Dodgen Research Facility</th>
</tr>
</thead>
</table>

Layer 1 of 2 | Description | Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off-white woven fibrous material with paint</td>
<td>Binder/Filler, Paint</td>
<td>Cellulose 83%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 2 of 2 | Description | Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray lumpy material</td>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers 18%</td>
<td>Chrysotile 5%</td>
</tr>
</tbody>
</table>

Lab ID: 18029387
Client Sample #: P04806

<table>
<thead>
<tr>
<th>Location: Dodgen Research Facility</th>
</tr>
</thead>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Batch #: 1805455.00

Client Project #: 2018-015454

Date Received: 3/22/2018

Samples Received: 38

Samples Analyzed: 38

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 1 of 2

Description: White compacted powdery material

- **Non-Fibrous Materials:**
 - Calcareous binder
 - Other Fibrous Materials:
 - None Detected

Asbestos Type: Chrysotile 3%

Layer 2 of 2

Description: White chalky material with paper

- **Non-Fibrous Materials:**
 - Gypsum/Binder, Binder/Filler
 - Other Fibrous Materials:
 - Cellulose 25%
 - Glass fibers 2%

Asbestos Type: None Detected

Lab ID: 18029388

Client Sample #: P04807

Location: Dodgen Research Facility

Layer 1 of 3

Description: Gray vinyl tile

- **Non-Fibrous Materials:**
 - Vinyl/Binder, Calcareous particles
 - Other Fibrous Materials:
 - None Detected

Asbestos Type: None Detected

Layer 2 of 3

Description: Yellow brittle mastic

- **Non-Fibrous Materials:**
 - Mastic/Binder
 - Other Fibrous Materials:
 - Cellulose <1%

Asbestos Type: None Detected

Layer 3 of 3

Description: Black asphaltic mastic

- **Non-Fibrous Materials:**
 - Asphalt/Binder, Mastic/Binder
 - Other Fibrous Materials:
 - Cellulose 2%

Asbestos Type: Chrysotile 3%

Lab ID: 18029389

Client Sample #: P04808

Location: Dodgen Research Facility

Layer 1 of 2

Description: Off-white woven fibrous material with paint

- **Non-Fibrous Materials:**
 - Binder/Filler, Paint
 - Other Fibrous Materials:
 - Cellulose 78%

Asbestos Type: None Detected

Sampled by: Client

Analyzed by: Welly Hsieh

Reviewed by: Nick Ly

Date: 03/26/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and EPA/600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Layer 2 of 2

Description: Gray lumpy material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers 20%</td>
<td>Chrysotile 6%</td>
</tr>
</tbody>
</table>

Lab ID: 18029390
Client Sample #: P04809
Location: Dodgen Research Facility
Comments: Unsure of correct layer sequence.

Layer 1 of 5

Description: Layered tan woven fibrous material with asphaltic mastic, paint, and metal foil

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Asphalt/Binder, Mastic/Binder Metal foil, Paint</td>
<td>Cellulose 48%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 2 of 5

Description: Black asphaltic mastic

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt/Binder, Mastic/Binder</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 3 of 5

Description: Yellow fibrous material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler</td>
<td>Glass fibers 95%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 4 of 5

Description: Off-white woven fibrous material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Paint</td>
<td>Cellulose 73%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Layer 5 of 5

Description: Gray lumpy material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers 19%</td>
<td>Chrysotile 5%</td>
</tr>
</tbody>
</table>

Lab ID: 18029391
Client Sample #: P04810
Location: Dodgen Research Facility

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description: White textured powdery material with paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Calcareous binder, Paint</td>
<td>None Detected</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>2%</td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile

Lab ID: 18029392 **Client Sample #:** P04811

Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: Off-white compacted powdery material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Calcareous binder</td>
<td>None Detected</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>3%</td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: White chalky material with paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Gypsum/Binder, Binder/Filler</td>
<td>Cellulose</td>
</tr>
<tr>
<td>Glass fibers</td>
<td>4%</td>
</tr>
</tbody>
</table>

Lab ID: 18029393 **Client Sample #:** P04812

Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: White brittle material with paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>ND</td>
</tr>
</tbody>
</table>

Asbestos Type: None Detected

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: Off-white brittle material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Binder/Filler, Fine particles, Perlite</td>
<td>Glass fibers</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>ND</td>
</tr>
</tbody>
</table>

Asbestos Type: None Detected

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: White brittle material with paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>ND</td>
</tr>
</tbody>
</table>

Asbestos Type: None Detected

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Batch #: 1805455.00
- Client Project #: 2018-015454
- Date Received: 3/22/2018
- Samples Received: 38
- Samples Analyzed: 38
- Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172
Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Layer 2 of 2

Description: Gray sandy brittle material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand, Fine particles, Paint</td>
<td>Cellulose</td>
<td>2%</td>
</tr>
</tbody>
</table>

Lab ID: 18029395
Client Sample #: P04814
Location: Dodgen Research Facility

Layer 1 of 1

Description: Gray lumpy material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers</td>
<td>16%</td>
</tr>
</tbody>
</table>

Lab ID: 18029396
Client Sample #: P04815
Location: Dodgen Research Facility

Layer 1 of 1

Description: Gray lumpy material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Glass beads</td>
<td>Glass fibers</td>
<td>25%</td>
</tr>
</tbody>
</table>

Lab ID: 18029397
Client Sample #: P04816
Location: Dodgen Research Facility

Layer 1 of 1

Description: Off-white soft material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulking compound, Paint</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Lab ID: 18029398
Client Sample #: P04817
Location: Dodgen Research Facility

Layer 1 of 2

Description: Green flaky material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 2 of 2
Description: White powdery material
Non-Fibrous Materials: Other Fibrous Materials:%
Fine particles & Cellulose <1% & None Detected ND

Lab ID: 18029399
Client Sample #: P04818
Location: Dodgen Research Facility

Layer 1 of 3
Description: Yellow brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder & None Detected ND

Layer 2 of 3
Description: Off-white woven fibrous material with mastic, paper, and metal foil
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Mastic/Binder, Metal foil & Glass fibers 24%
Cellulose 41%

Layer 3 of 3
Description: Beige fibrous material with tan mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder, Binder/Filler & Glass fibers 63%

Lab ID: 18029400
Client Sample #: P04819
Location: Dodgen Research Facility

Layer 1 of 2
Description: Yellow brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder & None Detected ND

Layer 2 of 2
Description: Off-white woven fibrous material with mastic, paper, and metal foil
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Mastic/Binder, Metal foil & Glass fibers 20%
Cellulose 45%

Sampled by: Client
 Analyzed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #:</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029401</td>
<td>P04820</td>
<td>Layer 1 of 2 Gray brittle material</td>
<td>Mineral grains, Fine particles, Rocks</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layer 2 of 2 Gray sandy brittle material</td>
<td>Sand, Fine particles, Mica</td>
<td>Spider silk 2%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #:</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029402</td>
<td>P04821</td>
<td>Layer 1 of 2 Light gray brittle material</td>
<td>Mineral grains, Fine particles, Rocks</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Layer 2 of 2 Gray brittle material</td>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mineral grains, Fine particles</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #:</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029403</td>
<td>P04822</td>
<td>Layer 1 of 1 Light gray sandy brittle material with paint</td>
<td>Sand, Fine particles, Rocks</td>
<td>Spider silk 2%</td>
<td>None Detected ND</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Paint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #:</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029404</td>
<td>P04823</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials</th>
<th>Asbestos Type</th>
<th>%</th>
<th>Analyzed by:</th>
<th>Reviewed by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Light gray sandy brittle material with paint</td>
<td>Sand, Fine particles, Rocks</td>
<td>Cellulose</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Gray brittle material</td>
<td>Mineral grains, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Black asphalitic fibrous felt</td>
<td>Asphalt/Binder, Binder/Filler</td>
<td>Cellulose</td>
<td>79%</td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Gray brittle material</td>
<td>Mineral grains, Fine particles, Mica</td>
<td>Cellulose</td>
<td>2%</td>
<td>None Detected ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Page 12 of 23
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black asphaltic fibrous felt</td>
<td>Asphalt/Binder, Binder/Filler</td>
<td>Cellulose</td>
<td>78%</td>
</tr>
</tbody>
</table>

| Layer ID: 18029408 | Client Sample #: P04827
Location: Dodgen Research Facility
Layer 1 of 2 | Description: White soft material
Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulking compound, Calcareous particles</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

| Layer ID: 18029409 | Client Sample #: P04828
Location: Dodgen Research Facility
Layer 1 of 2 | Description: White soft material
Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caulking compound, Calcareous particles</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

| Layer ID: 18029410 | Client Sample #: P04829
Location: Dodgen Research Facility
Layer 1 of 1 | Description: Gray brittle material with paint
Non-Fibrous Materials: | Other Fibrous Materials: | Asbestos Type: |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral grains, Fine particles, Paint</td>
<td>Spider silk</td>
<td>2%</td>
</tr>
</tbody>
</table>

Note:
If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Client Project #: 2018-015454

Samples Received: 38

By Polarized Light Microscopy

Bulk Asbestos Fibers Analysis

Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Samples Analyzed: 38

Date Received: 3/22/2018

Lab ID: 18029411
Client Sample #: P04830
Location: Dodgen Research Facility

Layer 1 of 2 Description: Gray soft material with paint

Non-Fibrous Materials: Other Fibrous Materials:%
Caulking compound, Paint None Detected ND

Asbestos Type: % None Detected ND

Layer 2 of 2 Description: Gray brittle material

Non-Fibrous Materials: Other Fibrous Materials:%
Mineral grains, Fine particles None Detected ND

Asbestos Type: % None Detected ND

Lab ID: 18029412
Client Sample #: P04831
Location: Dodgen Research Facility

Layer 1 of 1 Description: Brown compressed hard material with black surface

Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler Cellulose 82%

Asbestos Type: % None Detected ND

Lab ID: 18029413
Client Sample #: P04832
Location: Dodgen Research Facility

Layer 1 of 1 Description: Gray compressed fibrous material

Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine particles, Glass beads Cellulose 42%
Perlite Glass fibers 36%

Asbestos Type: % None Detected ND

Lab ID: 18029414
Client Sample #: P04833
Location: Dodgen Research Facility

Layer 1 of 1 Description: Gray compressed fibrous material with mastic, metal foil, and vinyl surface

Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine particles, Glass beads Glass fibers 40%

Asbestos Type: % None Detected ND

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Nick Ly, Technical Director

Date: 03/26/2018
Date: 03/27/2018

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

Batch #: 1805455.00
Client Project #: 2018-015454
Date Received: 3/22/2018
Samples Received: 38
Samples Analyzed: 38
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal foil, Vinyl/Binder</td>
<td></td>
</tr>
<tr>
<td>Cellulose</td>
<td>35%</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Welly Hsieh
Reviewed by: Nick Ly
Date: 03/26/2018
Date: 03/27/2018
Date: 03/27/2018

Nick Ly, Technical Director
Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

Subcategory: PLM Bulk
Item Code: ASB-02
EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 38
Rush Samples: No

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18029371</td>
<td>P04796</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>18029372</td>
<td>P04797</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>18029373</td>
<td>P04798</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>18029374</td>
<td>P04799</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>18029375</td>
<td>P04800</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>18029376</td>
<td>P04801</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>18029377</td>
<td>P04802</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>18029378</td>
<td>P04803</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>18029385</td>
<td>P04804</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>18029386</td>
<td>P04805</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>18029387</td>
<td>P04806</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>18029388</td>
<td>P04807</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>18029389</td>
<td>P04808</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>18029390</td>
<td>P04809</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>18029391</td>
<td>P04810</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>18029392</td>
<td>P04811</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>18029393</td>
<td>P04812</td>
<td>A</td>
</tr>
<tr>
<td>18</td>
<td>18029394</td>
<td>P04813</td>
<td>A</td>
</tr>
</tbody>
</table>

Print Name: Nicholas Dossegger
Signature: NVL
Company: NVL
Date: 3/22/18
Time: 8:50 AM

Received by: Nicholas Dossegger
Analysis: NVL
Results Called by: Welly Hsieh
Print Name: Soumeya Benzina
Date: 3/22/2018
Time: 11:19 AM
Entered By: Soumeya Benzina
Company: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311

NVL Batch Number: 1805455.00
TAT: 5 Days
AH: No
Due Date: 3/29/2018
Time: 8:50 AM
Email: mrmckibbin@wsu.edu
Fax: (509) 730-5548

Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

Subcategory: PLM Bulk
Item Code: ASB-02
**EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 38
Rush Samples: _____

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 18029395</td>
<td>P04814</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>20 18029396</td>
<td>P04815</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>21 18029397</td>
<td>P04816</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>22 18029398</td>
<td>P04817</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>23 18029399</td>
<td>P04818</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>24 18029400</td>
<td>P04819</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>25 18029401</td>
<td>P04820</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>26 18029402</td>
<td>P04821</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>27 18029403</td>
<td>P04822</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>28 18029404</td>
<td>P04823</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>29 18029405</td>
<td>P04824</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>30 18029406</td>
<td>P04825</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>31 18029407</td>
<td>P04826</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>32 18029408</td>
<td>P04827</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>33 18029409</td>
<td>P04828</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>34 18029410</td>
<td>P04829</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>35 18029411</td>
<td>P04830</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>36 18029412</td>
<td>P04831</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Print Name
Signature
Company
Date
Time

<table>
<thead>
<tr>
<th>Sampled by</th>
<th>Client</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Relinquished by</td>
<td>Federal Express</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Office Use Only
Print Name
Signature
Company
Date
Time

<table>
<thead>
<tr>
<th>Received by</th>
<th>Nicholas Dossegger</th>
<th>NVL</th>
<th>3/22/18</th>
<th>850</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzed by</td>
<td>Welly Hsieh</td>
<td>NVL</td>
<td>3/26/18</td>
<td></td>
</tr>
</tbody>
</table>

Results Called by
Fax
Emailed

Special Instructions:

Date: 3/22/2018
Time: 11:19 AM
Entered By: Soumeya Benzina
Company: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311

NVL Batch Number: 1805455.00
TAT: 5 Days
AH: No
Rush TAT: No
Due Date: 3/29/2018
Time: 8:50 AM
Email: mrmckibbin@wsu.edu
Fax: (509) 730-5548

Project Location: Dodgen Research Facility

Subcategory: PLM Bulk
Item Code: ASB-02
EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 38
Rush Samples: No

Sample ID	Description	A/R
18029413 | P04832 | A
18029414 | P04833 | A

Print Name: Nicholas Dossegger
Signature: NVL
Date: 3/22/18
Time: 850

Print Name: Welly Hsieh
Signature: NVL
Date: 3/26/18
Time:

Special Instructions:

Date: 3/22/2018
Time: 11:19 AM
Entered By: Soumeya Benzina
March 28, 2018

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Metals Analysis; NVL Batch # 1805467.00

Dear Mr. McKibbin,

Enclosed please find the test results for samples submitted to our laboratory for analysis. Preparation of these samples was conducted following protocol outlined in EPA Method SW 846-3051 unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with U.S. EPA, NIOSH, OSHA and other ASTM methods.

For matrix materials submitted as paint, dust wipe, soil or TCLP samples, analysis for the presence of total metals is conducted using published U.S. EPA Methods. Paint and soil results are usually expressed in mg/Kg which is equivalent to parts per million (ppm). Lead (Pb) in paint is usually expressed in mg/Kg (ppm), Percent (%) or mg/cm² by area. Dust wipe sample results are usually expressed in ug/wipe and ug/ft². TCLP samples are reported in mg/L (ppm). For air filter samples, analyses are conducted using NIOSH and OSHA Methods. Results are expressed in ug/filter and ug/m³. Other matrix materials are analyzed accordingly using published methods or specified by client. The reported test results pertain only to items tested and are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more details.

This report is considered highly confidential and will not be released without your approval. Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. if you need further assistance please feel free to call us at 206-547-0100 or 1-888-NVLLABS.

Sincerely,

Shalini Patel, Laboratory Analyst
Analysis Report

Total Lead (Pb)

Batch #: 1805467.00

- **Matrix:** Paint
- **Method:** EPA 3051/7000B
- **Client Project #:** 2018-015454
- **Date Received:** 3/22/2018
- **Samples Received:** 2
- **Samples Analyzed:** 2

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #</th>
<th>Sample Weight (g)</th>
<th>RL in mg/Kg</th>
<th>Results in mg/Kg</th>
<th>Results in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>18029463</td>
<td>EXT-Pb-01</td>
<td>0.2051</td>
<td>49</td>
<td>< 49</td>
<td><0.0049</td>
</tr>
<tr>
<td>18029464</td>
<td>EXT-Pb-02</td>
<td>0.1964</td>
<td>51</td>
<td>120</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Aaron Brown
Reviewed by: Shalini Patel
Date Analyzed: 03/28/2018
Date Issued: 03/28/2018

Shalini Patel, Laboratory Analyst

mg/ Kg = Milligrams per kilogram
RL = Reporting Limit
'<' = Below the reporting Limit
Percent = Milligrams per kilogram / 10000
Note: Method QC results are acceptable unless stated otherwise.
Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.
Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

Subcategory: Flame AA (FAA)
Item Code: FAA-02
EPA 7000B Lead by FAA <paint>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18029463</td>
<td>EXT-Pb-01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>18029464</td>
<td>EXT-Pb-02</td>
<td></td>
</tr>
</tbody>
</table>

Total Number of Samples: 2
Rush Samples:

Print Name
Signature
Company
Date
Time

Sampled by
Relinquished by

Received by
Signature
Company
Date
Time

Analyzed by
Company
Date

Results Called by

Fax
Email

Special Instructions:

Date: 3/22/2018
Time: 1:37 PM
Entered By: Michael Jenkins

NVL Laboratories, Inc.
4708 Aurora Ave N, Seattle, WA 98103

Company
Washington State University EH&S

Address
PO Box 641172
Pullman, WA 99164-1172

Project Manager
Mr. Matt McKibbin

Phone
(509) 335-3041

Direct
(509) 335-5311

NVL Batch Number
1805467.00
TAT
5 Days
AH
No
Due Date
3/29/2018
Time
8:50 AM
Fax
(509) 730-5548
Email
mrmckibbin@wsu.edu

PO Box 641172
Pullman, WA 99164-1172
METALS CHAIN OF CUSTODY

Company: Washington St. University EH&S
Address: PO Box 641172
Pullman, WA 99164
Phone: 509-335-3041

Project Manager: Matthew McKibbin
Cell: 509-730-5548
Email: mrmckibbin@wsu.edu

Project Name/Number: 2018-015454
Project Location: Dodgen Research Facility

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EXT-Pb-01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>EXP-Pb-02</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Matthew McKibbin
Relinquish by: Matthew McKibbin

Office Use Only

<table>
<thead>
<tr>
<th>Received by</th>
<th>Analyzed by</th>
<th>Called by</th>
<th>Faxed/Email by</th>
</tr>
</thead>
</table>

Print Name: Nick D
Signature:
Company: NVL
Date: 3/22/2018
Time: 8:30 FedEx

Turn Around Time
- ☑ 2 Hour
- ☐ 4 Hours
- ☐ 24 Hours
- ☒ 5 Days
- ☐ 3 Days
- ☐ 4 Days
- ☐ 6-10 Days
Please call for TAT less than 24 Hours
Laboratory Results

<table>
<thead>
<tr>
<th>Lab Sample Number</th>
<th>Client Sample Number</th>
<th>Collection Location</th>
<th>Pb (ug/g) ppm</th>
<th>% Pb by Wt.</th>
<th>Narrative ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-01-00733-001</td>
<td>B12325</td>
<td>DODGEN RM 3</td>
<td>390</td>
<td>0.039</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-002</td>
<td>B12326</td>
<td>DODGEN RM 50</td>
<td>360</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-003</td>
<td>B12327</td>
<td>DODGEN RM 151</td>
<td>260</td>
<td>0.026</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-004</td>
<td>B12328</td>
<td>DODGEN RM 151</td>
<td>580</td>
<td>0.058</td>
<td>L03</td>
</tr>
<tr>
<td>18-01-00733-005</td>
<td>B12329</td>
<td>DODGEN RM 200</td>
<td>150</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-006</td>
<td>B12330</td>
<td>DODGEN RM 250C</td>
<td><56</td>
<td><0.0056</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-007</td>
<td>B12331</td>
<td>DODGEN 2ND FLOOR DOOR</td>
<td><89</td>
<td><0.0089</td>
<td></td>
</tr>
<tr>
<td>18-01-00733-008</td>
<td>B12332</td>
<td>DODGEN 1ST FLOOR DOOR</td>
<td><58</td>
<td><0.0058</td>
<td></td>
</tr>
</tbody>
</table>
The HUD lead guidelines for lead paint chips are 0.50% by Weight, 5000 ppm, or 1.0 mg/cm². The Reporting Limit (RL) for samples prepared by ASTM E-1979-12 is 10.0 ug Total Pb. The RL for samples prepared by EPA SW846 3050B is 25.0 ug Total Pb. Paint chip area and results are calculated based on area measurements determined by the client. All internal quality control requirements associated with this batch were met, unless otherwise noted.

The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report. Results represent the analysis of samples submitted by the client. Sample location, description, area, etc., was provided by the client. Results reported above in mg/cm³ are calculated based on area supplied by client. This report shall not be reproduced except in full, without the written consent of the Environmental Hazards Service, L.L.C.

ELLAP Accreditation through AIHA-LAP, LLC (100420), NY ELAP #11714.

LEGEND

<table>
<thead>
<tr>
<th>Pb= lead</th>
<th>ug = microgram</th>
<th>ppm = parts per million</th>
</tr>
</thead>
<tbody>
<tr>
<td>ug/g = micrograms per gram</td>
<td>Wt. = weight</td>
<td></td>
</tr>
</tbody>
</table>

This laboratory is accredited in accordance with the recognized international standard ISO/IEC 17025:2005.

Asbestos Fiber Analysis

Listed on the Scope of Accreditation for:
NVLAP Laboratories, Inc.

NVLAP LAB CODE: 102063-0

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP
National Institute of Standards and Technology
United States Department of Commerce
SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

NVL Laboratories, Inc.
4708 Aurora Avenue N.
Seattle, WA 98103
Mr. Nghiep Vi Ly
Phone: 206-547-0100 Fax: 206-634-1936
Email: nick.l@nvllabs.com
http://www.nvllabs.com

ASBESTOS FIBER ANALYSIS

Bulk Asbestos Analysis

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/A01</td>
<td>EPA — Appendix E to Subpart E of Part 763 — Interim Method of the Determination of Asbestos in Bulk Insulation Samples</td>
</tr>
<tr>
<td>18/A03</td>
<td>EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials</td>
</tr>
</tbody>
</table>

NVLAP LAB CODE 102063-0

For the National Voluntary Laboratory Accreditation Program

Effective 2017-10-01 through 2018-09-30
AIHA Laboratory Accreditation Programs, LLC

acknowledges that

NVL Laboratories, Inc.
4708 Aurora Avenue N., Seattle, WA 98103
Laboratory ID: 101861

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2005 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

✓ INDUSTRIAL HYGIENE
✓ ENVIRONMENTAL LEAD
✓ ENVIRONMENTAL MICROBIOLOGY
✓ UNIQUE SCOPES

Accreditation Expires: June 01, 2019

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2005 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

William Walsh, CIH
Chairperson, Analytical Accreditation Board

Revision 15: 03/30/2016

Cheryl O. Morton
Managing Director, AIHA Laboratory Accreditation Programs, LLC

Date Issued: 05/31/2017
Scope of Accreditation

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory's current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazards Reduction Act of 1992. The program includes paint, soil, and dust wipe analysis, and composited wipes analyses are not included as part of the ELLAP.

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org

Field of Testing (FoT) Technology sub-type / Detector Method Method Description

<table>
<thead>
<tr>
<th>Field of Testing (FoT)</th>
<th>Technology sub-type</th>
<th>Detector Method</th>
<th>Method Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 3051</td>
<td>NIOSH 7082</td>
</tr>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Settled Dust by Wipe</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td>Settled Dust by Wipe</td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Airborne Dust</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td>Airborne Dust</td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
</tbody>
</table>

Initial Accreditation Date: 02/07/1997

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazards Reduction Act of 1992.

The laboratory is approved for those specific field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The laboratory is approved for those specific field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

AIHA Laboratory Accreditation Programs, LLC

4708 Aurora Avenue N., Seattle, WA 98103

NVI Laboratory, Inc.

Laboratory ID: 101861
APPENDIX G
Building Inspector Training Certificate
Certificate of Completion

Matthew McKibbin

has successfully completed

4-Hr AHERA Certified Building Inspector Refresher Training

In compliance with TSCA Title II AHERA 40 CFR Part 763
US EPA Region 10 RGA Accreditation #792
Date of Training: April 27, 2017 in Pullman, WA
Certificate #BIR20170427-02

Expires: 04/27/2018

Tim Brady, Instructor
PART 1 GENERAL

1.01 SUMMARY

A. Contractor shall perform the entire Work in accordance with the Contract Documents.

B. Without limiting the requirements of the Contract Documents, the Work of the Contract can be summarized as follows:

1. This project at the Dodgen Research Facility will renew HVAC and electrical components serving the pool and beam rooms. Demolition and new construction will take place throughout the facility with most occurring in the mechanical penthouse. General scope includes, replacing aging HVAC fans, ductwork, dampers, heating coil, controls, and an obsolete motor control center. Project must be substantially complete by March 29, 2024.

1.02 SCHEDULE OF ALTERNATES – NOT USED

1.03 SCHEDULE OF ALLOWANCES – NOT USED

1.04 SCHEDULE OF UNIT PRICES – NOT USED

1.05 GENERAL INFORMATION

A. Owner and Owner's Designated Representative:

1. Owner: Board of Regents
Washington State University
Pullman, WA 99164-1045

2. Owner’s Designated Representative:

 a. All Owner capital projects are administered by the Department of Facilities Services, Capital. Project specific designated representatives are listed within the Agreement.

3. Consulting Services: Owner has retained an Architect/Engineer to design the entire Project. The Architect/Engineer is identified below, as are others involved as members of the Owner team working on the Project:

 a. Mechanical Engineer: MSI Engineers, Spokane, WA

 b. Electrical Engineer: MSI Engineers, Spokane, WA

1.06 SPECIAL CONDITIONS

A. Site Access:

 1. Site access will be from E. Grimes Way.
 2. Lay-down area available at lower ramp on the east side of the facility or at flat area on the southwest corner of the facility.
3. Coordinate exact haul route and lay-down specifics with WSU Construction Manager.
4. Contractor to provide site logistics plan with pre-con submittals.

B. Schedule and Phasing:

1. On-site work scheduling must be coordinated with the WSU Construction Manager and NSC staff. General work that does not require a shutdown or interfere with facility operation can be done during regular business hours (8am to 5pm M-F) throughout the year.
2. Work that does require a shutdown or will interfere with facility operation must be done during facility down-time (approximately December to March).

C. Owner Occupancy: Owner will be occupying this facility during construction. Reference 01 31 23, section 1.05.A for all access and security protocols.

D. Hazardous Material: The Dodgen Research Facility has radiological and chemical hazards present at the facility in the form of radioactive materials and chemicals securely stored onsite. The Dodgen Facility will provide contractors with free release documentation for any areas and/or equipment in restricted areas. Free release documentation provides assurance that the area and/or equipment is free of radiological and chemical hazards prior to interaction with the equipment and/or area. Area and/or equipment will be determined for free release by established procedures and documentation including radiological surveys and swipe samples. (00 72 00 General Conditions; Attachment A: Good Faith Hazardous Material Survey)

E. Owner-Furnished Contractor-Installed Equipment: Air-handling Unit (F-4) and Condensing Unit (CU-4) as shown in the design drawings will be owner-furnished and contractor installed. Each unit is expected to be delivered according to the following schedule:
1. F-4 in mid-January, 2024
2. CU-4 in mid-December, 2023
3. Reference design drawings for further clarification and unit specifications

END OF SECTION 01 11 00
PART 1 GENERAL

1.01 SUMMARY

A. This Section includes the administrative and procedural requirements for executing changes in the Work. This Section is subject to and governed by the Agreement and General Conditions. In the event of any conflict, the Agreement and General Conditions will have a higher precedence as established in the General Conditions.

1.02 SUBMITTALS

A. Contractor shall submit a breakdown of its actual wage rates prior to commencement of construction activities. The breakdown must show:

1. Basic wage rate (Based on L&I Intent to Pay Prevailing Wages);
2. Fringe Package (Based on L&I Intent to Pay Prevailing Wages);
3. FUI (Federal Unemployment Insurance);
4. FICA (Federal Insurance Compensation Act);
5. SUI (State Unemployment Compensation Act);
6. Medicare; and
7. WC (Workers Compensation).

B. Contractor shall submit detailed supporting documentation to verify the above rates, if requested by Owner. All such rates shall be subject to audit.

C. Contractor shall submit prior to commencement of construction activities a list of all equipment that it anticipates will be used on the Project and the actual operating cost of each piece of equipment. The General Conditions describe allowable equipment charges. All costs shall be subject to audit.

1.03 CONTRACT CHANGE PROPOSAL PROCEDURES

A. Contractor shall maintain an Issues Log/ CCP Log as described in the General Conditions:

1. The action status shall indicate which party is currently responsible and when it is appropriate to submit a CCP to Owner. Contractor shall submit a Contract Change Proposal (CCP) with Substantiating Documentation, as described in subsection C below, to Owner within 7 Days of this action status change.

2. Upon final agreement and authorization by Owner a CCP may be incorporated into the Contract via Change Order and shall be reflected on the Issues Log.
B. Direction to perform Work:

1. Owner may directly order Work by a written Work Directive (WD). WDs may be unilateral or bilateral as described in the General Conditions and may be issued on a fixed price or on a "cost-not-to-exceed" basis. The WD may include the following:

 a. A detailed description of the proposed change, products, and location of modification to the Work;
 b. Supplementary or revised Drawings and/or Specifications; and
 c. Projected time for making the change and a statement as to whether overtime work is, or is not, acceptable.

C. Substantiating Documentation required with all CCPs:

1. Contractor shall provide back-up documentation required to substantiate any proposed change in the following format:

 a. CCP narrative, including:

 1) Description of proposed change. In order to allow for efficient review of a change proposal Contractor shall provide enough narrative to the line item breakdown to allow Owner to properly assess that the change is fair and reasonable;

 2) Cause of or reason for making change with a statement of why proposed change is not covered by Contract Documents

 3) Both credited and additive elements relating to a change in Contract Sum and/or Contract Time;

 4) A specific period of time during which Contractor's pricing will be considered valid;

 5) Any schedule considerations that may trigger further impact to the Contract Time if acceptance of the proposed change if delayed beyond a specific date; and

 6) Date change Work is to be completed.

 b. Owner supplied Change Proposal Submittal Form.

 c. CCP Cost Estimate Detail Sheet(s), or other form acceptable to Owner, including:

 1) Line-item estimate detailing material, labor, equipment, Subcontractor, and supplier costs and quantities; and

 2) Subcontractor and supplier proposals with supporting line-item estimates.

 d. CCP Progress Schedule with Contemporaneous Period Analysis detailing if any impact to the planned progress of the Work and
e. Other supporting documentation, as appropriate.

D. Correlation with Contractor's Submittals:

1. Application for Payment forms shall record each Unilateral and Bilateral Change Order as a separate item of Work.

2. The Progress Schedule shall be revised to reflect changes in the Contract Time.

3. Project Record shall incorporate all changed Work.

END OF SECTION 01 26 00
PART 1 GENERAL

1.01 SUMMARY

A. This Section includes procedures for preparation and submittal of Applications for Payment.

1.02 SUBMITTALS

A. Prior to submitting its first Application for Payment, Contractor shall:

1. Submit a preliminary Progress Schedule per Section 01 32 13 – Progress Schedule.

2. If requested, submit a projected monthly cash-flow analysis for the duration of the Project.

3. Submit an approved Intent to Pay Prevailing Wages form prior to commencing the Work. An approved Intent to Pay Prevailing Wages form must be on file with Owner for each classification of laborers, workers, or mechanics employed by Contractor or Subcontractors whose Work is included in an Application for Payment.

4. “Washington State Prevailing Wage Rates for Public Works Contracts/Whitman County” are made a part of the Contract Documents and are included at the end of this Section. It is Contractor’s responsibility to verify with the Washington State Department of Labor and Industries the most current and applicable prevailing wage rates for this Project.

5. Submit and receive approval of the Schedule of Values per Section 01 29 73 – Schedule of Values, and the General Conditions. All Applications for Payment shall be in the same format.

6. Submit a list of all Subcontractors with points of contact and other contact information, including phone number, email address, and mailing address.

7. Submit a list of all major material suppliers with points of contact and other contact information, including phone number, email address, and mailing address.

8. Submit Retainage Option Form to Owner for the disposition of retainage funds.

 a. In accordance with Chapter 60.28 of the Revised Code of Washington (RCW), Owner shall reserve retainage not to exceed 5% of the monies earned by Contractor as a trust fund for the protection and payment of:

 1) The claims of any person and/or Owner arising out of or relating to Work performed on the Project; and

 2) The State with respect to taxes, fees, or penalties that may
be imposed and due from Contractor (see General Conditions).

b. Retainage will be released per Section 01 70 00 - Project Close-Out.

c. At the option of Contractor, the moneys reserved by Owner shall be:

1) Retained in a fund by Owner;
2) Bonded for all of the retainage using a bond form acceptable to Owner;
3) Placed in escrow with a bank or trust company by Owner.

a) Escrow: If the retained funds are to be placed in escrow, Contractor will select the escrow agent, subject to approval by Owner. The selected agent must be a bank or trust company in the State of Washington.

b) Escrow Agent: If Contractor elects the escrow option, an escrow agreement shall be executed by Contractor, Owner, and bank or trust company. Three copies of the agreement should be completed and executed by Contractor and returned to Owner for execution; Owner will forward copies to the bank or trust company for receipt, acceptance, and execution. The bank or trust company will retain one copy and return one copy each to Contractor and Owner. A completed and signed escrow agreement must be on file with Owner before Contractor’s first Application for Payment is processed.

c) Escrow Investments: The bank or trust company may invest the retained funds in bonds and other securities selected by Contractor, except stocks, subject to the written approval of Owner.

d) The investments selected must mature on or prior to the date 45 Days following Final Acceptance of the Work. Interest on such investments may be paid to Contractor as it accrues.

e) Escrow Costs and Fees: All escrow costs and fees shall be paid by Contractor.

f) Release of Escrow Investments to Contractor: Retainage will be released per Section 01 70 00 - Project Close-Out. Once Contractor has fully complied with the Contract Documents and statute, Owner shall issue written instructions to the bank or trust company to release to Contractor the investment held in escrow.
B. Draft Application for Payment:

1. Contractor shall submit a draft, itemized Application for Payment within the last 7 Days of the month.

2. The draft application does not constitute a payment request and shall not be signed.

3. Contractor shall carefully check all extensions, totals, and required information for accuracy before submittal.

4. Contractor and Owner may meet to confer regarding the current progress of the Work and the amount of payment to which Contractor is entitled. Owner may request that Contractor provide supporting documentation substantiating its right to payment. Contractor is not entitled to make a final payment request, nor is any payment due Contractor, until such data is furnished. Contractor may include in its Application for Payment projected costs to the end of the month.

 a. Fill in the following information within Owner’s Application for Payment form:

 1) Percentage of Work completed based upon the approved schedule of values.

 2) List Change Orders approved by Owner prior to submission date. Use Owner’s designations. Do not bill for changed Work until a fully executed Change Order has been received.

 3) Certification of Participation WBE and MBEs, all certification types acceptable, supply this regardless of having firms to report upon.

 4) List all Subcontractors that have performed Work at the site during the pay period.

 5) If applicable, Apprentice/Journeyman Participation.

5. Contractor shall submit or make available for review the following prior to the draft Application for Payment:

 a. Project Record; (see Section 01 78 39 – Project Record)

 b. Updated Progress Schedule in native format (see section 01 32 13 – Progress Schedule);

 c. Contractor Quality Control Reports (see Section 01 45 00 - Quality Control); and

 d. Stored Materials: Requests for payment of stored materials may only be made for materials properly stored on or off-site and in full compliance with the General Conditions.

C. Application for Payment:
1. Contractor may not submit the approved Application for Payment (or payment will be withheld) until all requirements of the draft application for payment are met.

2. Upon approval of the Draft Application for Payment, contractor will be authorized to submit the agreed upon Application for Payment for processing and payment. This application for payment shall be signed by hand by a responsible officer of the Contractor and may be submitted in scanned format electronically.

3. Formal submittal must include all parts of the Application for Payment form.

4. Owner shall make progress payments in such amounts as it determines are properly due within 30 Days of receipt of a properly executed Application for Payment.

5. Owner shall notify Contractor in accordance with Chapter 39.76 RCW if the Application for Payment does not comply with the requirements of the Contract Documents.

D. Disputed Amounts: If Contractor believes it is entitled to payment for Work performed during the prior calendar month in addition to the agreed-upon amount, Contractor may, also within the same period, submit to Owner along with the approved Application for Payment a separate, written payment request specifying the exact additional amount claimed due, the category in the Schedule of Values in which the payment is claimed due, the specific Work for which the additional amount is due, and why the additional payment is due. Furthermore, for the submittal to be considered, Contractor and all Subcontractors shall file with Owner by the same date certified copies of all payroll records relating to the additional amount due, pursuant to WAC 296-127-320.

E. Payments to Subcontractors: Contractor shall pay each Subcontractor no later than 10 Days after receipt of payment from Owner the amount to which the Subcontractor is entitled. Contractor shall, by appropriate agreement with each Subcontractor, require each Subcontractor to make payments to lower-tier Subcontractors in a similar manner.

1. Applications for Payment shall not request payment for portions of the Work that Contractor does not intend to pay a Subcontractor, unless such Work has been performed by others whom Contractor intends to pay.

2. If, after making an Application for Payment but before paying a Subcontractor for its performance covered by the Application, Contractor discovers that part or all of the payment otherwise due to the Subcontractor is subject to withholding from the Subcontractor under the Subcontract (such as for unsatisfactory performance or non-payment of lower-tier Subcontractors), Contractor may withhold the amount as allowed under the Subcontract, but it shall:
 a. Give the Subcontractor and Owner written notice of the withholding as soon as practicable once Contractor determines
the cause for the withholding but before the due date of the Subcontractor payment;

b. Include the reasons for the withholding and the actions the Subcontractor must take to release the payment; and

c. Once Subcontractor has taken the required remedial actions, pay Subcontractor within 8 Days.

3. Owner may, at its sole option, issue joint checks to Contractor and to any Subcontractor. If Owner makes payments by joint check, such value shall be reflected on the next Application for Payment.

F. Subcontractor Payment Reporting: Contractor and all tiers of subcontractors will utilize Access Equity accessed at the Office of Minority and Women’s Business Enterprises (OMWBE) at https://omwbe.diversitycompliance.com/ to report subcontractor payment information. The Contractor shall:

1. Complete the OMWBE user training.
2. Register and enter all required Subcontractor information into Access Equity upon Owner creation of the contract record.
3. Monitor and report amount and date of all payments:
 a. Received from Owner;
4. Made to Subcontractor(s); Resolve any discrepancies between reported and received payments.
5. Require each Subcontractor to:
 a. Register in Access Equity and complete the user training.
 b. Verify amounts and date of receipt of payments from Prime Contractor or higher tier Subcontractor.
 c. Report any payments made to a lower tier Subcontractor.
 d. Resolve any discrepancies between reported and received payments.

G. Application for Final Payment:

1. Application for Final Payment will be accepted for processing only after Contractor has completed the requirements of Final Completion as described in Section 01 70 00 – Project Close-Out.

H. Release of Retainage:

1. Retainage will be released per Section 01 70 00 - Project Close-Out.

END OF SECTION 01 29 00
Washington State Prevailing Wage

The PREVAILING WAGES listed here include both the hourly wage rate and the hourly rate of fringe benefits. On public works projects, worker's wage and benefit rates must add to not less than this total. A brief description of overtime calculation requirements are provided on the Benefit Code Key.

<table>
<thead>
<tr>
<th>County</th>
<th>Trade</th>
<th>Job Classification</th>
<th>Wage</th>
<th>Holiday</th>
<th>Overtime</th>
<th>Note</th>
<th>*Risk Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whitman</td>
<td>Asbestos Abatement Workers</td>
<td>Journey Level</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Boilermakers</td>
<td>Journey Level</td>
<td>$74.29</td>
<td>5N</td>
<td>1C</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Brick Mason</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Building Service Employees</td>
<td>Janitor</td>
<td>$15.74</td>
<td></td>
<td>1</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Building Service Employees</td>
<td>Shampooer</td>
<td>$15.74</td>
<td></td>
<td>1</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Building Service Employees</td>
<td>Waxter</td>
<td>$15.74</td>
<td></td>
<td>1</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Building Service Employees</td>
<td>Window Cleaner</td>
<td>$15.74</td>
<td></td>
<td>1</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Cabinet Makers (In Shop)</td>
<td>Journey Level</td>
<td>$15.74</td>
<td></td>
<td>1</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Acoustical Worker</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Bridge, Dock & Wharf Carpenter</td>
<td>$61.94</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Floor Layer & Floor Finisher</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Form Builder</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>General Carpenter</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Heavy Construction Carpenter</td>
<td>$59.87</td>
<td>7E</td>
<td>4X</td>
<td>9E</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Carpenters</td>
<td>Scaffold/Shoring Erecting & Dismantling</td>
<td>$59.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Cement Masons</td>
<td>Journey Level</td>
<td>$54.94</td>
<td>7B</td>
<td>1N</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Assistant Tender</td>
<td>$62.89</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Bell/Vehicle or Submersible Operator Not Under Pressure</td>
<td>$66.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Dive Supervisors</td>
<td>$119.70</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Diver</td>
<td>$118.20</td>
<td>7E</td>
<td>4X</td>
<td>8V</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Diver on Standby</td>
<td>$67.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Diver Tender</td>
<td>$66.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Diving Master</td>
<td>$78.86</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Manifold Operator</td>
<td>$66.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Manifold Operator Mixed Gas</td>
<td>$70.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Remote Operated Vehicle Operator</td>
<td>$66.15</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Divers & Tenders</td>
<td>Remote Operated Vehicle Tender/Technician</td>
<td>$62.94</td>
<td>7E</td>
<td>4X</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Assistant Engineer</td>
<td>$79.62</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Assistant Mate (Deckhand)</td>
<td>$79.01</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Boatmen</td>
<td>$79.62</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Engineer Welder</td>
<td>$81.15</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Levee Man, Hydraulic</td>
<td>$82.77</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Mates</td>
<td>$79.62</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Dredge Workers</td>
<td>Oiler</td>
<td>$79.01</td>
<td>5D</td>
<td>3F</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Drywall Applicator</td>
<td>Journey Level</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Drywall Tapers</td>
<td>Journey Level</td>
<td>$51.18</td>
<td>7E</td>
<td>1P</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electrical Fixtures Maintenance Workers</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Inside</td>
<td>Journeyman</td>
<td>$63.92</td>
<td>7G</td>
<td>1E</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Motor Shop</td>
<td>Craftsman</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Motor Shop</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Cable Splicer</td>
<td>$93.00</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Certified Line Welder</td>
<td>$85.42</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Groundperson</td>
<td>$55.27</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Heavy Line Equipment Operator</td>
<td>$85.42</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Journey Level Lineperson</td>
<td>$85.42</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Line Equipment Operator</td>
<td>$73.35</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Meter Installer</td>
<td>$55.27</td>
<td>5A</td>
<td>4D</td>
<td>8W</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Pole Sprayer</td>
<td>$85.42</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electricians - Powerline Construction</td>
<td>Powderperson</td>
<td>$63.50</td>
<td>5A</td>
<td>4D</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Electronic Technicians</td>
<td>Journey Level</td>
<td>$53.27</td>
<td>5I</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Elevator Constructors</td>
<td>Mechanic</td>
<td>$107.49</td>
<td>7D</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Elevator Constructors</td>
<td>Mechanic In Charge</td>
<td>$116.13</td>
<td>7D</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Fabricated Precast Concrete Products</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Fabricated Precast Concrete Products</td>
<td>Journey Level - In-Factory Work Only</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Fence Erectors</td>
<td>Fence Erector</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Flaggers</td>
<td>Journey Level</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Glaziers</td>
<td>Journey Level</td>
<td>$42.20</td>
<td>7L</td>
<td>4L</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Heat & Frost Insulators And Asbestos Workers</td>
<td>Journey Level</td>
<td>$59.24</td>
<td>5K</td>
<td>1U</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Heating Equipment Mechanics</td>
<td>Journey Level</td>
<td>$69.36</td>
<td>6Z</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Hod Carriers & Mason Tenders</td>
<td>Journey Level</td>
<td>$51.11</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Industrial Power Vacuum Cleaner</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inland Boatmen</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>---</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inspection/Cleaning/Sealing Of Sewer & Water Systems By Remote Control</td>
<td>Cleaner Operator, Foamer Operator</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inspection/Cleaning/Sealing Of Sewer & Water Systems By Remote Control</td>
<td>Grout Truck Operator</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inspection/Cleaning/Sealing Of Sewer & Water Systems By Remote Control</td>
<td>Head Operator</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inspection/Cleaning/Sealing Of Sewer & Water Systems By Remote Control</td>
<td>Technician</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Inspection/Cleaning/Sealing Of Sewer & Water Systems By Remote Control</td>
<td>Tv Truck Operator</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Insulation Applicators</td>
<td>Journey Level</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Ironworkers</td>
<td>Journeyman</td>
<td>$70.17</td>
<td>15K</td>
<td>11N</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Air And Hydraulic Track Drill</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Asphalt Raker</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Asphalt Roller, Walking</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Brick Pavers</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Brush Hog Feeder</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Brush Machine</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Caisson Worker, Free Air</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Carpenter Tender</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Cement Finisher Tender</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Cement Handler</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Chain Saw Operator & Faller</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Clean-up Laborer</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Compaction Equipment</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Concrete Crewman</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Concrete Saw, Walking</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Concrete Signalman</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Concrete Stack</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Confined Space Attendant</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Construction Specialist</td>
<td>$50.33</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Crusher Feeder</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Demolition</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Demolition Torch</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Dope Pot Fireman, Non-mechanical</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Driller Helper (when Required To Move & Position Machine)</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Drills With Dual Masts</td>
<td>$50.44</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Dry Stack Walls</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Dumpman</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Erosion Control Laborer</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Firewatch</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Form Cleaning Machine Feeder, Stacker</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------</td>
<td>---------------------------------------</td>
<td>--------</td>
<td>-----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Form Setter, Paving</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>General Laborer</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Grade Checker</td>
<td>$52.34</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Grout Machine Header Tender</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Guard Rail</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Gunite</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Hazardous Waste Worker (level A)</td>
<td>$50.44</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Hazardous Waste Worker (level B)</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Hazardous Waste Worker (level C)</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Hazardous Waste Worker (level D)</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Hdpe Or Similar Liner Installer</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>High Scaler</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Industrial Technician</td>
<td>$67.55</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Jackhammer Operator Miner, Class “b”</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Laser Beam Operator</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Miner, Class “a”</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Miner, Class “c”</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Miner, Class “d”</td>
<td>$50.44</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Monitor Operator, Air Track Or Similar Mounting</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Mortar Mixer</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Nipper</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Nozzleman</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Nozzleman, Water (to Include Fire Hose), Air Or Steam</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pavement Breaker, 90 Lbs. & Over</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pavement Breaker, Under 90 Lbs.</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pilot Car</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pipelayer</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pipelayer, Corrugated Metal Culvert And Multi-Plate</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pipewrapper</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Plasterer Tenders</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Pot Tender</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Powderman</td>
<td>$51.97</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Powderman Helper</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Power Buggy Operator</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Power Tool Operator, Gas, Electric, Pneumatic</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Laborers</td>
<td>Rad-Con Technician</td>
<td>$67.55</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Railroad Equipment, Power Driven, Except Dual Mobile</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Railroad Power Spiker Or Puller, Dual Mobile</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Remote Equipment Operator</td>
<td>$50.44</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Remote Equipment Operator (i.e. Compaction And Demolition)</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Rigger/signal Person</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Riprap Person</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Rodder & Spreader</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Sand Hogs Under Compressed Air Conditions</td>
<td>$282.20</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Sandblast Tailhoseman</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Scaffold Erector, Wood Or Steel</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Scaleman</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Stake Jumper</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Structural Mover</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Tailhoseman (water Nozzle)</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Timber Bucker & Faller (by Hand)</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Track Laborer (rr)</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Traffic Control Laborer</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Traffic Control Supervisor</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Trencher, Shawnee</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Trenchless Technology Technician</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Truck Loader</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Truck Mounted Attenuator</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Tugger Operator</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Vibrators, All</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Wagon Drills</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Water Pipe Liner</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Welder, Electrical, Manual Or Automatic (hdpe Or Similar Pipe And Liner)</td>
<td>$50.44</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Well-point Person</td>
<td>$49.52</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Wheelbarrow, Power Driven</td>
<td>$49.83</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers</td>
<td>Window Washer, Cleaner</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers - Underground Sewer & Water</td>
<td>General Laborer & Topman</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Laborers - Underground Sewer & Water</td>
<td>Pipe Layer</td>
<td>$50.13</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Landscape Construction</td>
<td>Landscape Laborer</td>
<td>$46.68</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Landscape Construction</td>
<td>Landscape Operator</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Landscape Maintenance</td>
<td>Groundskeeper</td>
<td>$15.74</td>
<td>7B</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Lathers</td>
<td>Journey Level</td>
<td>$55.87</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Marble Setters</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>8Z</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Metal Fabrication (In Shop)</td>
<td>Fitter</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Metal Fabrication (In Shop)</td>
<td>Laborer</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Metal Fabrication (In Shop)</td>
<td>Machine Operator</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Metal Fabrication (In Shop)</td>
<td>Painter</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Metal Fabrication (In Shop)</td>
<td>Welder</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Millwright</td>
<td>Journey Level</td>
<td>$76.28</td>
<td>5A</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Modular Buildings</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Painters</td>
<td>Commercial Painter</td>
<td>$51.18</td>
<td>6Z</td>
<td>1W</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Painters</td>
<td>Industrial Painter</td>
<td>$52.42</td>
<td>6Z</td>
<td>1W</td>
<td>9D</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Pile Driver</td>
<td>Journey Level</td>
<td>$61.94</td>
<td>7E</td>
<td>4X</td>
<td>8N</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Plasterers</td>
<td>Journey Level</td>
<td>$54.62</td>
<td>7K</td>
<td>1N</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Playground & Park Equipment Installers</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Plumbers & Pipefitters</td>
<td>Journey Level</td>
<td>$92.81</td>
<td>6Z</td>
<td>1Q</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>A-frame Truck (2 Or More Drums)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>A-frame Truck (single Drum)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>All Tower Cranes</td>
<td>$61.92</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Asphalt Plant Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Assistant Plant Operator, Fireman Or Pugmixer (asphalt)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Assistant Refrigeration Plant & Chiller Operator (over 1000 Ton)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Assistant Refrigeration Plant (under 1000 Ton)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Automatic Subgrader (ditches & Trimmers)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backfillers (cleveland & Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoe & Hoe Ram (under 3/4 Yd.)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoe (45,000 Gw & Under)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoe (45,000 Gw To 110,000 Gw)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoe (over 110,000 Gw)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoes & Hoe Ram (3 Yds & Over)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Backhoes & Hoe Ram (3/4 Yd. To 3 Yd.)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Bagley Or Stationary Scraper</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Batch & Wet Mix Operator (multiple Units, 2 & Incl. 4)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Batch Plant & Wet Mix Operator, Single Unit (concrete)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Batch Plant (over 4 Units)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Belt Finishing Machine</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Belt Loader (kocal Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Belt-crete Conveyors With Power Pack Or Similar</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Bending Machine</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Bit Grinders</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Blade (finish & Blueterop), Automatic, Cmi, Abc, Finish Athey & Huber & Similar When Used As Automatic</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Blade Operator (motor Patrol & Attachments)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Blower Operator (cement)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Boat Operator</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Bob Cat (skid Steer)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Bolt Threading Machine</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Boom Cats (side)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Boring Machine (earth)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Boring Machine (Rock Under 8 inch Bit - Quarry Master, Joy Or Similar)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Bump Cutter (wayne, Saginau Or Similar)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Cableway Controller (dispatcher)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Cableway Operators</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Canal Lining Machine (concrete)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Carrydeck & Boom Truck (under 25 Tons)</td>
<td>$57.80</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Cement Hog</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Chipper (without Crane) Cleaning & Doping Machine (pipeline)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Clamshell, Dragline</td>
<td>$60.22</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Compactor (self-propelled With Blade)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Compressor (2000 Cfm Or Over, 2 Or More, Gas Diesel Or Electric Power)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Compressors (under 2000 Cfm, Gas, Diesel Or Electric Power)</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Concrete Cleaning / Decontamination Machine Operator</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Concrete Pump Boon Truck</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Concrete Pumps (squeeze-crete, Flow-crete, Whitman & Similar)</td>
<td>$57.61</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Concrete Saw (multiple Cut)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Concrete Slip Form Paver</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Conveyor Aggregate Delivery Systems (c.a.d.)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Crane Oiler & Cable Tender, Mucking Machine</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Crane Oiler - Driver (cdl Required)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (100 to 299 Tons) All Attachments</td>
<td>$61.12</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (25 Tons & Under), All Attachments Incl. Clamshell, Dragline</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (25 Tons To And Including 44 Tons), All Attachments Incl. Clamshell, Dragline</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (300 Tons and Over) All Attachments</td>
<td>$61.92</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (45 Tons To 55 Tons), All Attachments Incl. Clamshell And Dragline</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Cranes (56 to 99 tons) and overhead, rail and Quick Tower. All attachment incl. Clamshell, Dragline</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Crusher Feeder</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Crusher, Grizzle & Screening Plant Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Curb Extruder (asphalt Or Concrete)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Deck Engineer</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Deck Hand</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Derricks & Stifflegs (65 Tons & Over)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Derricks & Stifflegs (under 65 Tons)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Distributor Leverman</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Ditch Witch Or Similar</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Dope Pots (power Agitated</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Driller Licensed</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Drillers Helper</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Drilling Equipment (8 inch Bit & Over - Robbins, Reverse Circulation & Similar)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Drills (churn, Core, Calyx Or Diamond)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Elevating Belt (holland Type)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Elevating Belt-type Loader (euclid, Barber Green &</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Elevating Grader-type Loader (dumor, Adams Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Elevator Hoisting Materials</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Equipment Serviceman, Greaser & Oiler</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Fireman & Heater Tender</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Fork Lift Or Lumber Stacker, Hydra-life & Similar</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Generator Plant Engineers (diesel Or Electric)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Gin Trucks (pipeline)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Grade Checker</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Gunite Combination Mixer & Compressor</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>H.d. Mechanic</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>H.d. Welder</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Heavy Equipment Robotics Operator</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Helicopter Pilot</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Helper, Mechanic Or Welder, H.D</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Hoe Ram</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Hoist (2 Or More Drums Or Tower Hoist)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Hoist, Single Drum</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Hydraulic Platform Trailers (goldhofer, Shaurerly And Similar)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Hydro-seeder, Mulcher, Nozzelman</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Lime Batch Tank Operator (recycle Train)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Lime Brain Operator (recycle Train)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loader (360 Degrees Revolving Koehring Scooper Or Similar)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loader Operator (front-end & Overhead, 4 Yds. Incl. 8 Yds.)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loaders (bucket Elevators And Conveyors)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loaders (overhead & Front-end, Over 8 Yds.)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loaders (overhead & Front-end, Under 4 Yds.. R/t)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Loaders (overhead And Front-end, 10 Yds. & Over)</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Locomotive Engineer</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Longitudinal Float</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Master Environmental Maintenance Technician</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Mixer (portable - Concrete)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Mixermobile</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Mobile Crusher Operator (recycle Train)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Mucking Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Multiple Dozer Units With Single Blade</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Pavement Breaker, Hydraulic & Similar</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Paving (dual Drum)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Paving Machine (asphalt And Concrete)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Piledriving Engineers</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Plant Oiler</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Posthole Auger Or Punch</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Power Broom</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Pump (grout Or Jet)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Pumpman</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Quad-track Or Similar Equipment</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Railroad Ballast Regulation Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Railroad Power Tamper Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Railroad Tamper Jack Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Railroad Track Liner Operator (self-propelled)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Refrigeration Plant Engineer (1000 Tons & Over)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Refrigeration Plant Engineer (under 1000 Ton)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Rollerman (finishing Asphalt Pavement)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Rollers, All Types On Subgrade, Including Seal And Chip Coating (farm Type, Case, John Deere And Similar, or Compacting Vibrator), Except When Pulled B</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Roto Mill (pavement Grinder)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Rotomill Groundsman</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Rubber-tired Scrapers (multiple Engine With Three Or More Scrapers)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Rubber-tired Skidders (r/t With Or Without Attachments)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Scrapers, All, Rubber-tired</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Screed Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Shovels (3 Yds. & Over)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators</td>
<td>Shovels (under 3 Yds.)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Role</td>
<td>Title</td>
<td>Rate</td>
<td>Code</td>
<td>Area</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Signalman (whirleys, Highline, Hammerheads Or Similar)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Soil Stabilizer (p & H Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Spray Curing Machine (concrete)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Spreader Box (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Spreader Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Steam Cleaner</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Straddle Buggy (ross & Similar On Construction Job Only)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Surface Heater & Planer Machine</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Tractor (farm Type R/t With Attachments, Except Backhoe)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Traverse Finish Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Trenching Machines (7 Ft. Depth & Over)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Trenching Machines (under 7 Ft. Depth Capacity)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Tug Boat Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Tugger Operator</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Turnhead (with Re-screening)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Turnhead Operator</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Ultra High Pressure Waterjet Cutting Tool System Operator, (30,000 Psi)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Vactor Guzzler, Super Sucker</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Vacuum Blasting Machine Operator</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Vacuum Drill (reverse Circulation Drill Under 8 Inch Bit)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Welding Machine</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators</td>
<td>Whirleys & Hammerheads, All</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>A-frame Truck (2 Or More Drums)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>A-frame Truck (single Drum)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>All Tower Cranes</td>
<td>$61.92</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>Asphalt Plant Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>Assistant Plant Operator, Fireman Or Pugmixer (asphalt)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>Assistant Refrigeration Plant & Chiller Operator (over 1000 Ton)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>Assistant Refrigeration Plant (under 1000 Ton)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman Power Equipment Operators - Underground Sewer & Water</td>
<td>Automatic Subgrader (ditches)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>& Trimmers)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backfillers (cleveland & Similar)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoe & Hoe Ram (under 3/4 Yd.)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoe (45,000 Gw & Under)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoe (45,000 Gw To 110,000 Gw)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoe (over 110,000 Gw)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoes & Hoe Ram (3 Yds & Over)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Backhoes & Hoe Ram (3/4 Yd. To 3 Yd.)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Bagley Or Stationary Scraper</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Batch & Wet Mix Operator (multiple Units, 2 & Incl. 4)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Batch Plant & Wet Mix Operator, Single Unit (concrete)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Batch Plant (over 4 Units)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Belt Finishing Machine</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Belt Loader (kocal Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Belt-crete Conveyors With Power Pack Or Similar</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Bending Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Bit Grinders</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Blade (finish & Bluetop), Automatic, Cmi, Abc, Finish Athey & Huber & Similar When Used As Automatic</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Blade Operator (motor Patrol & Attachments)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Blower Operator (cement)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Boat Operator</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Bob Cat (skid Steer)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Bolt Threading Machine</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Boom Cats (side)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-</td>
<td>Underground Sewer & Water</td>
<td>Boring Machine (earth)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Boring Machine (Rock Under 8 inch Bit - Quarry Master, Joy Or Similar)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Bump Cutter (wayne, Saginau Or Similar)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cableway Controller (dispatcher)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cableway Operators</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Canal Lining Machine (concrete)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Carrydeck & Boom Truck (under 25 Tons)</td>
<td>$57.80</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cement Hog</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Chipper (without Crane) Cleaning & Doping Machine (pipeline)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Clamshell, Dragline</td>
<td>$60.22</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Compactor (self-propelled With Blade)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Compressor (2000 Cfm Or Over, 2 Or More, Gas Diesel Or Electric Power)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Compressors (under 2000 Cfm, Gas, Diesel Or Electric Power)</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Concrete Pump Boon Truck</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Concrete Pumps (squeeze-crete, Flow-crete, Whitman & Similar)</td>
<td>$57.61</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Concrete Saw (multiple Cut)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Concrete Slip Form Paver</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Conveyor Aggregate Delivery Systems (c.a.d.)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Crane Oiler & Cable Tender, Mucking Machine</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Crane Oiler - Driver (cdl Required)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cranes (100 to 299 Tons) All Attachments</td>
<td>$61.12</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cranes (25 Tons & Under), All Attachments Incl. Clamshell, Dragline</td>
<td>$57.80</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators - Underground Sewer & Water</td>
<td>Cranes (25 Tons To And Including 44 Tons), All Attachments Incl. Clamshell, Dragline</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Cranes (300 Tons and Over) All Attachments</td>
<td>$61.92</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Cranes (45 Tons To 55 Tons), All Attachments Incl. Clamshell And Dragline</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Cranes (56 to 99 tons) and overhead, rail and Quick Tower. All attachment incl. Clamshell, Dragline</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Crusher Feeder</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Crusher, Grizzle & Screening Plant Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Curb Extruder (asphalt Or Concrete)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Deck Engineer</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Deck Hand</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Derricks & Stiflegs (65 Tons & Over)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Derricks & Stiflegs (under 65 Tons)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Distributor Leverman</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Ditch Witch Or Similar</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Dope Pots (power Agitated)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Dozer / Tractor (up to D-6 Or Equivalent) And Traxcavator</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Dozer / Tractors (d-6 & Equivalent & Over)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Dozer, 834 R/t & Similar</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Drill Doctor</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Driller Licensed</td>
<td>$60.22</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Drillers Helper</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Drilling Equipment (8 inch Bit & Over - Robbins, Reverse Circulation & Similar)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Drills (churn, Core, Calyx Or Diamond)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Elevating Belt (holland Type)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Elevating Belt-type Loader (euclid, Barber Green & Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Elevating Grader-type Loader (dumor, Adams Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Elevator Hoisting Materials</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Equipment Serviceman, Greaser & Oiler</td>
<td>$57.61</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Fireman & Heater Tender</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Fork Lift Or Lumber Stacker, Hydra-life & Similar</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Generator Plant Engineers (diesel Or Electric)</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Gin Trucks (pipeline)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Grade Checker</td>
<td>$57.80</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Gunite Combination Mixer & Compressor</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>H.d. Mechanic</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>H.d. Welder</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Heavy Equipment Robotics Operator</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Helicopter Pilot</td>
<td>$60.22</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Helper, Mechanic Or Welder, H.D</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Hoe Ram</td>
<td>$57.80</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Hoist (2 Or More Drums Or Tower Hoist)</td>
<td>$57.61</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Hoist, Single Drum</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Hydraulic Platform Trailers (goldhofer, Shaurerly And Similar)</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Hydro-seeder, Mulcher, Nozzleman</td>
<td>$56.39</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Lime Batch Tank Operator (recycle Train)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Lime Brain Operator (recycle Train)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Loader (360 Degrees Revolving Koehring Scooper Or Similar)</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Loader Operator (front-end & Overhead, 4 Yds. Incl. 8 Yds.)</td>
<td>$58.11</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Loaders (bucket Elevators And Conveyors)</td>
<td>$56.74</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Loaders (overhead & Front-end, Over 8 Yds.)</td>
<td>$58.42</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Loaders (overhead & Front-end, Under 4 Yds.. R/t)</td>
<td>$57.61</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Locomotive Engineer</td>
<td>$57.43</td>
<td>ZZ</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Longitudinal Float</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Master Environmental Maintenance Technician</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Mixer (portable - Concrete)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Mixermobile</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Mobile Crusher Operator (recycle Train)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Mucking Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Multiple Dozer Units With Single Blade</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Pavement Breaker, Hammer & Similar</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Paving (dual Drum)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Paving Machine (asphalt And Concrete)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Piledriving Engineers</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Plant Oiler</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Posthole Auger Or Punch</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Power Broom</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Pump (grout Or Jet)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Pumpman</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Quad-track Or Similar Equipment</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Railroad Ballast Regulation Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Railroad Power Tamper Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Railroad Tamper Jack Operator (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Railroad Track Liner Operator (self-propelled)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Refrigeration Plant Engineer (1000 Tons & Over)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Refrigeration Plant Engineer (under 1000 Ton)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Rollerman (finishing Asphalt Pavement)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Rollers, All Types On Subgrade, Including Seal And Chip Coating (farm Type, Case, John Deere And Similar)</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Compacting Vibrator), Except When Pulled B</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Roto Mill (pavement Grinder)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Rotomill Groundsman</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Rubber-tired Skidders (r/t With Or Without Attachments)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Scrapers, All, Rubber-tired</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Screed Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Shovels (3 Yds. & Over)</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Shovels (under 3 Yds.)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Signalman (whirleys, Highline, Hammerheads Or Similar)</td>
<td>$57.80</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Soil Stabilizer (p & H Or Similar)</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Spray Curing Machine (concrete)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Spreader Box (self-propelled)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Spreader Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Steam Cleaner</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Straddle Buggy (ross & Similar On Construction Job Only)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Surface Heater & Planer Machine</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Tractor (farm Type R/t With Attachments, Except Backhoe)</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Traverse Finish Machine</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Trenching Machines (7 Ft. Depth & Over)</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Trenching Machines (under 7 Ft. Depth Capacity)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Tug Boat Operator</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Tugger Operator</td>
<td>$56.74</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Turnhead (with Re-screening)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Turnhead Operator</td>
<td>$57.43</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Vactor Guzzler, Super Sucker</td>
<td>$58.11</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Vacuum Drill (reverse Circulation Drill Under 8 Inch Bit)</td>
<td>$57.61</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Welding Machine</td>
<td>$56.39</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Equipment Operators-Underground Sewer & Water</td>
<td>Whirleys & Hammerheads, All</td>
<td>$58.42</td>
<td>7Z</td>
<td>4S</td>
<td>9A</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Line Clearance Tree Trimmers</td>
<td>Journey Level In Charge</td>
<td>$57.22</td>
<td>5A</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Line Clearance Tree Trimmers</td>
<td>Spray Person</td>
<td>$54.32</td>
<td>5A</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Line Clearance Tree Trimmers</td>
<td>Tree Equipment Operator</td>
<td>$57.22</td>
<td>5A</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Line Clearance Tree Trimmers</td>
<td>Tree Trimmer</td>
<td>$51.18</td>
<td>5A</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Power Line Clearance Tree Trimmers</td>
<td>Tree Trimmer Groundperson</td>
<td>$38.99</td>
<td>5A</td>
<td>4A</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Refrigeration & Air Conditioning Mechanics</td>
<td>Journey Level</td>
<td>$92.81</td>
<td>6Z</td>
<td>1Q</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Brick Mason</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Carpenters</td>
<td>Journey Level</td>
<td>$25.00</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Cement Masons</td>
<td>Journey Level</td>
<td>$16.24</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Drywall Applicators</td>
<td>Journey Level</td>
<td>$25.64</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Drywall Tapers</td>
<td>Journey Level</td>
<td>$51.18</td>
<td>7E</td>
<td>1P</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Electricians</td>
<td>Journey Level</td>
<td>$31.82</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Glaziers</td>
<td>Journey Level</td>
<td>$20.72</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Insulation Applicators</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Laborers</td>
<td>Journey Level</td>
<td>$22.44</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Marble Setters</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Painters</td>
<td>Journey Level</td>
<td>$25.08</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Plumbers & Pipefitters</td>
<td>Journey Level</td>
<td>$21.92</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Refrigeration & Air Conditioning Mechanics</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Sheet Metal Workers</td>
<td>Journey Level (Field or Shop)</td>
<td>$69.36</td>
<td>5I</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Soft Floor Layers</td>
<td>Journey Level</td>
<td>$17.62</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Sprinkler Fitters (Fire Protection)</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Stone Masons</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Terrazzo Workers</td>
<td>Journey Level</td>
<td>$20.61</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Terrazzo/Tile Finishers</td>
<td>Journey Level</td>
<td>$17.92</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Residential Tile Setters</td>
<td>Journey Level</td>
<td>$20.61</td>
<td>1</td>
<td>View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Roofers</td>
<td>Journey Level</td>
<td>$46.79</td>
<td>5I</td>
<td>1R</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Company</td>
<td>Job Title</td>
<td>Level</td>
<td>Hourly Rate</td>
<td>Code</td>
<td>Shift</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>---------------------------</td>
<td>-------------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Roofers Using Irritable Bituminous Materials</td>
<td>Journey Level</td>
<td>$48.79</td>
<td>5I</td>
<td>1R</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Sheet Metal Workers Journey Level (Field or Shop)</td>
<td>Journey Level</td>
<td>$77.36</td>
<td>6Z</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Sign Makers & Installers (Electrical) Journey Level</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Sign Makers & Installers (Non-Electrical) Journey Level</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Soft Floor Layers Journey Level</td>
<td>Journey Level</td>
<td>$57.11</td>
<td>5A</td>
<td>3J</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Solar Controls For Windows Journey Level</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Sprinkler Fitters (Fire Protection) Journey Level</td>
<td>Journey Level</td>
<td>$66.83</td>
<td>7J</td>
<td>1R</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Stage Rigging Mechanics (Non Structural) Journey Level</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Stone Masons Journey Level</td>
<td>Journey Level</td>
<td>$57.54</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Street And Parking Lot Sweeper Workers Journey Level</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Surveyors Chain Person</td>
<td></td>
<td>$15.74</td>
<td>0</td>
<td>1</td>
<td>9H</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Surveyors Instrument Person</td>
<td></td>
<td>$15.74</td>
<td>0</td>
<td>1</td>
<td>9H</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Surveyors Party Chief</td>
<td></td>
<td>$15.74</td>
<td>0</td>
<td>1</td>
<td>9H</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Telecommunication Technicians Journey Level</td>
<td></td>
<td>$53.27</td>
<td>5I</td>
<td>1B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Telephone Line Construction - Outside Cable Splicer</td>
<td>Journey Level</td>
<td>$40.11</td>
<td>5A</td>
<td>2B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Telephone Line Construction - Outside Hole Digger/Ground Person</td>
<td>Journey Level</td>
<td>$26.67</td>
<td>5A</td>
<td>2B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Telephone Line Construction - Outside Telephone Equipment Operator (Light)</td>
<td>Journey Level</td>
<td>$33.49</td>
<td>5A</td>
<td>2B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Telephone Line Construction - Outside Telephone Lineperson</td>
<td>Journey Level</td>
<td>$37.90</td>
<td>5A</td>
<td>2B</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Terrazzo Workers Journey Level</td>
<td>Journey Level</td>
<td>$43.81</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Tile Setters Journey Level</td>
<td>Journey Level</td>
<td>$43.81</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Tile, Marble & Terrazzo Finishers Journey Level</td>
<td>Journey Level</td>
<td>$35.93</td>
<td>5A</td>
<td>1M</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Traffic Control Stripers Journey Level</td>
<td>Journey Level</td>
<td>$89.54</td>
<td>15L</td>
<td>1K</td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers Asphalt Mix Over 20 Yards</td>
<td></td>
<td>$55.90</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers Asphalt Mix To 20 Yards</td>
<td></td>
<td>$55.70</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers Dump Truck</td>
<td></td>
<td>$55.70</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers Dump Truck & Trailer</td>
<td></td>
<td>$55.90</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers Other Trucks</td>
<td></td>
<td>$55.59</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers - Ready Mix Transit Mixers 20 yards and under</td>
<td>Journey Level</td>
<td>$55.90</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Truck Drivers - Ready Mix Transit Mixers over 20 yards</td>
<td>Journey Level</td>
<td>$56.24</td>
<td>5D</td>
<td>1V</td>
<td>8M</td>
<td>View</td>
</tr>
<tr>
<td>Whitman</td>
<td>Well Drillers & Irrigation Pump Installers Irrigation Pump Installer</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Well Drillers & Irrigation Pump Installers Oiler</td>
<td>Journey Level</td>
<td>$15.74</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
<tr>
<td>Whitman</td>
<td>Well Drillers & Irrigation Pump Installers Well Driller</td>
<td>Journey Level</td>
<td>$18.00</td>
<td>1</td>
<td></td>
<td>View</td>
<td></td>
</tr>
</tbody>
</table>
Overtime Codes

Overtime calculations are based on the hourly rate actually paid to the worker. On public works projects, the hourly rate must be not less than the prevailing rate of wage minus the hourly rate of the cost of fringe benefits actually provided for the worker.

1. ALL HOURS WORKED IN EXCESS OF EIGHT (8) HOURS PER DAY OR FORTY (40) HOURS PER WEEK SHALL BE PAID AT ONE AND ONE-HALF TIMES THE HOURLY RATE OF WAGE.

B. All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

C. The first two (2) hours after eight (8) regular hours Monday through Friday and the first ten (10) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other overtime hours and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

D. The first two (2) hours before or after a five-eight (8) hour workweek day or a four-ten (10) hour workweek day and the first eight (8) hours worked the next day after either workweek shall be paid at one and one-half times the hourly rate of wage. All additional hours worked and all worked on Sundays and holidays shall be paid at double the hourly rate of wage.

E. The first two (2) hours after eight (8) regular hours Monday through Friday and the first eight (8) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other hours worked Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

F. The first two (2) hours after eight (8) regular hours Monday through Friday and the first ten (10) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other overtime hours worked, except Labor Day, shall be paid at double the hourly rate of wage. All hours worked on Labor Day shall be paid at three times the hourly rate of wage.

G. The first ten (10) hours worked on Saturdays and the first ten (10) hours worked on a fifth calendar weekday in a four-ten hour schedule, shall be paid at one and one-half times the hourly rate of wage. All hours worked in excess of ten (10) hours per day Monday through Saturday and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

H. All hours worked on Saturdays (except makeup days if work is lost due to inclement weather conditions or equipment breakdown) shall be paid at one and one-half times the hourly rate of wage. All hours worked Monday through Saturday over twelve (12) hours and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

I. All hours worked on Sundays and holidays shall also be paid at double the hourly rate of wage.

J. The first two (2) hours after eight (8) regular hours Monday through Friday and the first ten (10) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked over ten (10) hours Monday through Saturday, Sundays and holidays shall be paid at double the hourly rate of wage.

K. All hours worked on Saturdays and Sundays shall be paid at one and one-half times the hourly rate of wage. All hours worked on holidays shall be paid at double the hourly rate of wage.

M. All hours worked on Saturdays (except makeup days if work is lost due to inclement weather conditions) shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

N. All hours worked on Saturdays (except makeup days) shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.
Overtime Codes Continued

1. O. The first ten (10) hours worked on Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays, holidays and after twelve (12) hours, Monday through Friday and after ten (10) hours on Saturday shall be paid at double the hourly rate of wage.

P. All hours worked on Saturdays (except makeup days if circumstances warrant) and Sundays shall be paid at one and one-half times the hourly rate of wage. All hours worked on holidays shall be paid at double the hourly rate of wage.

Q. The first two (2) hours after eight (8) regular hours Monday through Friday and up to ten (10) hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked in excess of ten (10) hours per day Monday through Saturday and all hours worked on Sundays and holidays (except Christmas day) shall be paid at double the hourly rate of wage. All hours worked on Christmas day shall be paid at two and one-half times the hourly rate of wage.

R. All hours worked on Sundays and holidays shall be paid at two times the hourly rate of wage.

U. All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays (except Labor Day) shall be paid at two times the hourly rate of wage. All hours worked on Labor Day shall be paid at three times the hourly rate of wage.

V. All hours worked on Sundays and holidays (except Thanksgiving Day and Christmas day) shall be paid at one and one-half times the hourly rate of wage. All hours worked on Thanksgiving Day and Christmas day shall be paid at double the hourly rate of wage.

W. All hours worked on Saturdays and Sundays (except make-up days due to conditions beyond the control of the employer) shall be paid at one and one-half times the hourly rate of wage. All hours worked on holidays shall be paid at double the hourly rate of wage.

X. The first four (4) hours after eight (8) regular hours Monday through Friday and the first twelve (12) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked over twelve (12) hours Monday through Saturday, Sundays and holidays shall be paid at double the hourly rate of wage. When holiday falls on Saturday or Sunday, the day before Saturday, Friday, and the day after Sunday, Monday, shall be considered the holiday and all work performed shall be paid at double the hourly rate of wage.

Y. All hours worked outside the hours of 5:00 am and 5:00 pm (or such other hours as may be agreed upon by any employer and the employee) and all hours worked in excess of eight (8) hours per day (10 hours per day for a 4 x 10 workweek) and on Saturdays and holidays (except labor day) shall be paid at one and one-half times the hourly rate of wage. (except for employees who are absent from work without prior approval on a scheduled workday during the workweek shall be paid at the straight-time rate until they have worked 8 hours in a day (10 in a 4 x 10 workweek) or 40 hours during that workweek.) All hours worked Monday through Saturday over twelve (12) hours and all hours worked on Sundays and Labor Day shall be paid at double the hourly rate of wage.

Z. All hours worked on Saturdays and Sundays shall be paid at one and one-half times the hourly rate of wage. All hours worked on holidays shall be paid the straight time rate of pay in addition to holiday pay.
2. ALL HOURS WORKED IN EXCESS OF EIGHT (8) HOURS PER DAY OR FORTY (40) HOURS PER WEEK SHALL BE PAID AT ONE AND ONE-HALF TIMES THE HOURLY RATE OF WAGE.

B. All hours worked on holidays shall be paid at one and one-half times the hourly rate of wage.

F. The first eight (8) hours worked on holidays shall be paid at the straight hourly rate of wage in addition to the holiday pay. All hours worked in excess of eight (8) hours on holidays shall be paid at double the hourly rate of wage.

M. This code appears to be missing. All hours worked on Saturdays, Sundays and holidays shall be paid at double the hourly rate of wage.

R. All hours worked on Sundays and holidays and all hours worked over sixty (60) in one week shall be paid at double the hourly rate of wage.

U. All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked over 12 hours in a day or on Sundays and holidays shall be paid at double the hourly rate of wage.

3. ALL HOURS WORKED IN EXCESS OF EIGHT (8) HOURS PER DAY OR FORTY (40) HOURS PER WEEK SHALL BE PAID AT ONE AND ONE-HALF TIMES THE HOURLY RATE OF WAGE.

F. All hours worked on Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sunday shall be paid at two times the hourly rate of wage. All hours worked on paid holidays shall be paid at two and one-half times the regular rate of pay including holiday pay.

H. All work performed on Sundays between March 16th and October 14th and all Holidays shall be compensated for at two (2) times the regular rate of pay. Work performed on Sundays between October 15th and March 15th shall be compensated at one and one half (1-1/2) times the regular rate of pay.

J. All hours worked between the hours of 10:00 pm and 5:00 am, Monday through Friday, and all hours worked on Saturdays shall be paid at a one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

K. Work performed in excess of eight (8) hours of straight time per day, or ten (10) hours of straight time per day when four ten (10) hour shifts are established, or forty (40) hours of straight time per week, Monday through Friday, or outside the normal 5 am to 6pm shift, and all work on Saturdays shall be paid at one and one-half times the hourly rate of wage. All work performed after 6:00 pm Saturday to 5:00 am Monday and Holidays, and all hours worked in excess of twelve (12) hours in a single shift shall be paid at double the hourly rate of wage.

After an employee has worked eight (8) hours at an applicable overtime rate, all additional hours shall be at the applicable overtime rate until such time as the employee has had a break of eight (8) hours or more. When an employee returns to work without at least eight (8) hours time off since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until he/she shall have the eight (8) hours rest period.
Overtime Codes Continued

4. ALL HOURS WORKED IN EXCESS OF EIGHT (8) HOURS PER DAY OR FORTY (40) HOURS PER WEEK SHALL BE PAID AT ONE AND ONE-HALF TIMES THE HOURLY RATE OF WAGE.

A. All hours worked in excess of eight (8) hours per day or forty (40) hours per week shall be paid at double the hourly rate of wage. All hours worked on Saturdays, Sundays and holidays shall be paid at double the hourly rate of wage.

C. On Monday through Friday, the first four (4) hours of overtime after eight (8) hours of straight time work shall be paid at one and one half (1-1/2) times the straight time rate of pay, unless a four (4) day ten (10) hour workweek has been established. On a four (4) day ten (10) hour workweek scheduled Monday through Thursday, or Tuesday through Friday, the first two (2) hours of overtime after ten (10) hours of straight time work shall be paid at one and one half (1-1/2) times the straight time rate of pay. On Saturday, the first twelve (12) hours of work shall be paid at one and one half (1-1/2) times the straight time rate of pay, except that if the job is down on Monday through Friday due to weather conditions or other conditions outside the control of the employer, the first ten (10) hours on Saturday may be worked at the straight time rate of pay. All hours worked over twelve (12) hours in a day and all hours worked on Sunday and Holidays shall be paid at two (2) times the straight time rate of pay.

D. All hours worked in excess of eight (8) hours per day or forty (40) hours per week shall be paid at double the hourly rate of wage. All hours worked on Saturday, Sundays and holidays shall be paid at double the hourly rate of pay. Rates include all members of the assigned crew.

EXCEPTION:
On all multipole structures and steel transmission lines, switching stations, regulating, capacitor stations, generating plants, industrial plants, associated installations and substations, except those substations whose primary function is to feed a distribution system, will be paid overtime under the following rates:

The first two (2) hours after eight (8) regular hours Monday through Friday of overtime on a regular workday, shall be paid at one and one-half times the hourly rate of wage. All hours in excess of ten (10) hours will be at two (2) times the hourly rate of wage. The first eight (8) hours worked on Saturday will be paid at one and one-half (1-1/2) times the hourly rate of wage. All hours worked in excess of eight (8) hours on Saturday, and all hours worked on Sundays and holidays will be at the double the hourly rate of wage.

All overtime eligible hours performed on the above described work that is energized, shall be paid at the double the hourly rate of wage.

E. The first two (2) hours after eight (8) regular hours Monday through Friday and the first eight (8) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other hours worked Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

On a four-day, ten-hour weekly schedule, either Monday thru Thursday or Tuesday thru Friday schedule, all hours worked after ten shall be paid at double the hourly rate of wage. The Monday or Friday not utilized in the normal four-day, ten hour work week, and Saturday shall be paid at one and one half (1½) times the regular shift rate for the first eight (8) hours. All other hours worked Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

G. All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked Monday through Saturday over twelve (12) hours and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

I. The First eight (8) hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked in excess of eight (8) per day on Saturdays shall be paid at double the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.
4. J. The first eight (8) hours worked on a Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked in excess of eight (8) hours on a Saturday shall be paid at double the hourly rate of wage. All hours worked over twelve (12) in a day, and all hours worked on Sundays and Holidays shall be paid at double the hourly rate of wage.

K. All hours worked on a Saturday shall be paid at one and one-half times the hourly rate of wage, so long as Saturday is the sixth consecutive day worked. All hours worked over twelve (12) in a day Monday through Saturday, and all hours worked on Sundays and Holidays shall be paid at double the hourly rate of wage.

L. The first twelve (12) hours worked on a Saturday shall be paid at one and one-half times the hourly rate of wage. All hours worked on a Saturday in excess of twelve (12) hours shall be paid at double the hourly rate of pay. All hours worked over twelve (12) in a day Monday through Friday, and all hours worked on Sundays shall be paid at double the hourly rate of wage. All hours worked on a holiday shall be paid at one and one-half times the hourly rate of wage, except that all hours worked on Labor Day shall be paid at double the hourly rate of pay.

S. On a four (4) day ten (10) hour workweek scheduled Monday through Thursday, or Tuesday through Friday, work performed in excess of (10) hours shall be paid at one and one-half (1-1/2) times the hourly rate of pay. On Monday through Friday, work performed outside the normal work hours of 6:00 a.m. and 6:00 p.m. shall be paid at one and one-half (1-1/2) times the straight time rate, (except for special shifts or multiple shift operations).

All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All work performed on Sundays and holidays shall be paid at double the hourly rate of wage. When an employee returns to work without at least eight (8) hours time off since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours.

Multiple Shift Operations: When the first shift of a multiple shift (a two or three shift) operation is started at the basic straight time rate or at a specific overtime rate, all shifts of that day's operation shall be completed at that rate. Special Shifts: The Special Shift Premium is the basic hourly rate of pay plus $2.00 an hour. When due to conditions beyond the control of the employer or when an owner (not acting as the contractor), a government agency or the contract specifications require more than four (4) hours of a special shift can only be performed outside the normal 6am to 6pm shift then the special shift premium will be applied to the basic straight time for the entire shift. When an employee works on a special shift, they shall be paid the special shift premium for each hour worked unless they are in overtime or double-time status. (For example, the special shift premium does not waive the overtime requirements for work performed on Saturday or Sunday).

U. The first four (4) hours after eight (8) regular hours Monday through Friday and the first twelve (12) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. (Except on makeup days if work is lost due to inclement weather, then the first eight (8) hours on Saturday may be paid the regular rate.) All hours worked over twelve (12) hours Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.
Overtime Codes Continued

4. **V.** Work performed in excess of ten (10) hours of straight time per day when four ten (10) hour shifts are established or outside the normal shift (5 am to 6pm), and all work on Saturdays, except for make-up days shall be paid at time and one-half (1 ½) the straight time rate.

 In the event the job is down due to weather conditions, then Saturday may, be worked as a voluntary make-up day at the straight time rate. However, Saturday shall not be utilized as a make-up day when a holiday falls on Friday. All work performed on Sundays and holidays and work in excess of twelve (12) hours per day shall be paid at double (2x) the straight time rate of pay.

 After an employee has worked eight (8) hours at an applicable overtime rate, all additional hours shall be at the applicable overtime rate until such time as the employee has had a break of eight (8) hours.

 When an employee returns to work without a break of eight (8) hours since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours.

 X. All hours worked on Saturdays shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays and holidays shall be paid at double the hourly rate of wage. Work performed outside the normal shift of 6 am to 6pm shall be paid at one and one-half the straight time rate, (except for special shifts or three shift operations). All work performed on Sundays and holidays shall be paid at double the hourly rate of wage. Shifts may be established when considered necessary by the Employer.

 The Employer may establish shifts consisting of eight (8) or ten (10) hours of work (subject to WAC 296-127-022), that shall constitute a normal forty (40) hour work week. The Employer can change from a 5-eight to a 4-ten hour schedule or back to the other. All hours of work on these shifts shall be paid for at the straight time hourly rate. Work performed in excess of eight hours (or ten hours per day (subject to WAC 296-127-022) shall be paid at one and one-half the straight time rate.

 When due to conditions beyond the control of the Employer, or when contract specifications require that work can only be performed outside the regular day shift, then by mutual agreement a special shift may be worked at the straight time rate, eight (8) hours work for eight (8) hours pay. The starting time shall be arranged to fit such conditions of work.

 When an employee returns to work without a break of eight (8) hours since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours.

11. **ALL HOURS WORKED IN EXCESS OF EIGHT (8) HOURS PER DAY OR FORTY (40) HOURS PER WEEK SHALL BE PAID AT ONE AND ONE-HALF TIMES THE HOURLY RATE OF WAGE.**

 B After an employee has worked eight (8) hours, all additional hours worked shall be paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours or more.

 C The first two (2) hours after eight (8) regular hours Monday through Friday and the first eight (8) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other overtime hours worked, except Labor Day, and all hours on Sunday shall be paid at double the hourly rate of wage. All hours worked on Labor Day shall be paid at three times the hourly rate of wage. All non-overtime and non-holiday hours worked between 4:00 pm and 5:00 am, Monday through Friday, shall be paid at a premium rate of 15% over the hourly rate of wage.
Overtime Codes Continued

11. D. All hours worked on Saturdays and holidays shall be paid at one and one-half times the hourly rate of wage. All hours worked on Sundays shall be paid at double the hourly rate of wage.

After an employee has worked eight (8) hours, all additional hours worked shall be paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours or more.

E. The first two (2) hours after eight (8) regular hours Monday through Friday, the first ten (10) hours on Saturday, and the first ten (10) hours worked on Holidays shall be paid at one and one-half times the hourly rate of wage. All hours worked over ten (10) hours Monday through Saturday, and Sundays shall be paid at double the hourly rate of wage.

After an employee has worked eight (8) hours, all additional hours worked shall be paid at the applicable overtime rate until such time as the employee has had a break of eight (8) hours or more.

F. The first two (2) hours after eight (8) regular hours Monday through Friday and the first eight (8) hours on Saturday shall be paid at one and one-half times the hourly rate of wage. All other hours worked Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

On a four-day, ten-hour weekly schedule, either Monday thru Thursday or Tuesday thru Friday schedule, all hours worked after ten shall be paid at double the hourly rate of wage. The Monday or Friday not utilized in the normal four-day, ten hour work week, and Saturday shall be paid at one-half times the hourly rate of wage for the first eight (8) hours. All other hours worked Monday through Saturday, and all hours worked on Sundays and holidays shall be paid at double the hourly rate of wage.

G. Work performed in excess of eight (8) hours of straight time per day, or ten (10) hours of straight time per day when four ten (10) hour shifts are established, or forty (40) hours of straight time per week, Monday through Friday, or outside the normal 5 am to 6pm shift, and all work on Saturdays shall be paid at one and one-half times the hourly rate of wage.

All work performed after 6:00 pm Saturday to 5:00 am Monday and Holidays, and all hours worked in excess of twelve (12) hours in a single shift shall be paid at double the hourly rate of wage.

After an employee has worked eight (8) hours at an applicable overtime rate, all additional hours shall be at the applicable overtime rate until such time as the employee has had a break of nine (9) hours or more. When an employee returns to work without at least nine (9) hours time off since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until he/she shall have the nine (9) hours rest period.

H. Work performed in excess of eight (8) hours of straight time per day, or ten (10) hours of straight time per day when four ten (10) hour shifts are established, or forty (40) hours of straight time per week, Monday through Friday, or outside the normal 5 am to 6pm shift, and all work on Saturdays shall be paid at one and one-half times the hourly rate of wage.

All work performed after 6:00 pm Saturday to 5:00 am Monday and Holidays, and all hours worked in excess of twelve (12) hours in a single shift shall be paid at double the hourly rate of wage.

After an employee has worked eight (8) hours at an applicable overtime rate, all additional hours shall be at the applicable overtime rate until such time as the employee has had a break of ten (10) hours or more. When an employee returns to work without at least ten (10) hours time off since their previous shift, all such time shall be a continuation of shift and paid at the applicable overtime rate until he/she shall have the ten (10) hours rest period.
11. **J.** All hours worked on holidays shall be paid at double the hourly rate of wage.

K. On Monday through Friday hours worked outside 4:00 am and 5:00 pm, and the first two (2) hours after eight (8) hours worked shall be paid at one and one-half times the hourly rate. All hours worked over 10 hours per day Monday through Friday, and all hours worked on Saturdays, Sundays, and Holidays worked shall be paid at double the hourly rate of wage.

L. An employee working outside 5:00 am and 5:00 pm shall receive an additional two dollar ($2.00) per hour for all hours worked that shift. All hours worked on holidays shall be paid at one and one-half times the hourly rate of wage. All hours worked on holidays shall be paid at one and one-half times the hourly rate of wage.

M. On Monday through Friday, the first four (4) hours of overtime after eight (8) hours of straight time work shall be paid at one and one-half (1-1/2) times the straight time rate of pay, unless a four (4) day ten (10) hour workweek has been established. On a four (4) day ten (10) hour workweek scheduled Monday through Thursday, or Tuesday through Friday, the first two (2) hours of overtime after ten (10) hours of straight time work shall be paid at one and one-half (1-1/2) times the straight time rate of pay.

Work performed outside the normal work hours of 5:00 a.m. and 6:00 p.m. shall be paid at one and one-half (1-1/2) times the straight time rate, (except for special shifts or multiple shift operations). When the first shift of a multiple shift (a two or three shift) operation is started at the basic straight time rate or at a specific overtime rate, all shifts of that day's operation shall be completed at that rate. When due to conditions beyond the control of the Employer or when contract specifications require that work can only be performed outside the regular day shift of 5:00 am to 6:00 pm, then a special shift may be worked at the straight time rate, plus the shift pay premium when applicable. The starting time of work will be arranged to fit such conditions of work. Such shift shall consist of eight (8) hours work for eight (8) hours pay or ten (10) hours work for ten (10) hours pay for four ten shifts.

On Saturday, the first twelve (12) hours of work shall be paid at one and one half (1-1/2) times the straight time rate of pay. All work performed after 6:00 pm Saturday to 5:00 am Monday, all work performed over twelve (12) hours, and all work performed on holidays shall be paid at double the straight time rate of pay.

Shift Pay Premium: In an addition to any overtime already required, all hours worked between the hours of 6:00 pm and 5:00 am shall receive an additional two dollars ($2.00) per hour.

N. All work performed over twelve hours in a shift and all work performed on Sundays and Holidays shall be paid at double the straight time rate.

Any time worked over eight (8) hours on Saturday shall be paid double the straight time rate, except employees assigned to work six 10-hour shifts per week shall be paid double the straight time rate for any time worked on Saturday over 10 hours.

O. All work performed on Saturdays, Sundays, and Holidays shall be paid at one and one half (1-1/2) times the straight time rate of pay.
Holiday Codes

Holiday Codes Continued

7. **A.** Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, And Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

B. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, And Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

C. Holidays: New Year's Day, Martin Luther King Jr. Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, And Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

D. Paid Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Veteran’s Day, Thanksgiving Day, the Friday after Thanksgiving Day, And Christmas Day (8). Unpaid Holidays: President’s Day. Any paid holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any paid holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

E. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, And Christmas Day (7). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

F. Holidays: New Year’s Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, the last working day before Christmas day and Christmas day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

H. Holidays: New Year's Day, Martin Luther King Jr. Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, the Last Working Day before Christmas Day and Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

I. Holidays: New Year's Day, President’s Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day, The Friday After Thanksgiving Day, The Day Before Christmas Day And Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.
Holiday Codes Continued

7. J. Holidays: New Year's Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day and Christmas Day (6). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

K. Holidays: New Year's Day, Memorial Day, Independence Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, and Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

L. Holidays: New Year's Day, Memorial Day, Labor Day, Independence Day, Thanksgiving Day, the Last Work Day before Christmas Day, and Christmas Day (7). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

N. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, and Christmas Day (7). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. When Christmas falls on a Saturday, the preceding Friday shall be observed as a holiday.

Q. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, the Last Working Day before Christmas Day, and Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. If any of the listed holidays falls on a Saturday, the preceding Friday shall be a regular work day.

S. Paid Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, Friday after Thanksgiving Day, Christmas Day, the Day after Christmas, and a Floating Holiday (9). If any of the listed holidays falls on a Sunday, the day observed by the Nation shall be considered a holiday and compensated accordingly.

V. Holidays: New Year's Day, President's Birthday, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, Christmas Day, the Day before or after Christmas, and the Day before or after New Year's Day. If any of the above listed holidays falls on a Sunday, the day observed by the Nation shall be considered a holiday and compensated accordingly.

X. Holidays: New Year's Day, Day before or after New Year's Day, Presidents' Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, Christmas Day, and the day before or after Christmas day. If a holiday falls on a Saturday or on a Friday that is the normal day off, then the holiday will be taken on the last normal workday. If the holiday falls on a Monday that is the normal day off or on a Sunday, then the holiday will be taken on the next normal workday.

Y. Holidays: New Year's Day, Presidents' Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, and Christmas Day. If the holiday falls on a Sunday, then the day observed by the federal government shall be considered a holiday and compensated accordingly.

Z. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, Christmas Eve, and Christmas Day (9). Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday. Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday.
Holiday Codes Continued

15. **G.** New Year's Day, Washington's Birthday, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, The Friday After Thanksgiving Day, the last scheduled workday before Christmas, and Christmas Day (9). If any of the listed holidays falls on a Sunday, the day observed by the Nation shall be considered a holiday and compensated accordingly.

H. Holidays: New Year's Day, Martin Luther King Jr. Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, the Last Working Day before Christmas Day and Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

I. Holidays: New Year's Day, President's Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day, The Friday after Thanksgiving Day, The Day Before Christmas Day And Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

J. Holidays: New Year's Day, Martin Luther King Jr. Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, and Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. If any of the listed holidays falls on a Saturday, the preceding Friday shall be a regular work day.

K. Holidays: New Year's Day, Memorial Day, Independence Day, Thanksgiving Day, the Friday and Saturday after Thanksgiving Day, And Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. Any holiday which falls on a Saturday shall be observed as a holiday on the preceding Friday.

L. Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Veteran's Day, Thanksgiving Day, the Friday after Thanksgiving Day, and Christmas Day (8). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. If any of the listed holidays falls on a Saturday, the preceding Friday shall be a regular work day.

M. Holidays: New Year's Day, Martin Luther King Jr. Day, Independence Day, Memorial Day, Labor Day, Thanksgiving Day, the Friday after Thanksgiving Day, Christmas Eve Day and Christmas Day (9). Any holiday which falls on a Sunday shall be observed as a holiday on the following Monday. If any of the listed holidays falls on a Saturday, the preceding Friday shall be a regular work day.

Note Codes

8. **D.** Workers working with supplied air on hazmat projects receive an additional $1.00 per hour.

L. Workers on hazmat projects receive additional hourly premiums as follows - Level A: $0.75, Level B: $0.50, And Level C: $0.25.

M. Workers on hazmat projects receive additional hourly premiums as follows: Levels A & B: $1.00, Levels C & D: $0.50.

N. Workers on hazmat projects receive additional hourly premiums as follows - Level A: $1.00, Level B: $0.75, Level C: $0.50, And Level D: $0.25.
Note Codes Continued

8. S. Effective August 31, 2012 – A Traffic Control Supervisor shall be present on the project whenever flagging or spotting or other traffic control labor is being utilized. Flaggers and Spotters shall be posted where shown on approved Traffic Control Plans or where directed by the Engineer. All flaggers and spotters shall possess a current flagging card issued by the State of Washington, Oregon, Montana, or Idaho. This classification is only effective on or after August 31, 2012.

T. Effective August 31, 2012 – A Traffic Control Laborer performs the setup, maintenance and removal of all temporary traffic control devices and construction signs necessary to control vehicular, bicycle, and pedestrian traffic during construction operations. Flaggers and Spotters shall be posted where shown on approved Traffic Control Plans or where directed by the Engineer. All flaggers and spotters shall possess a current flagging card issued by the State of Washington, Oregon, Montana, or Idaho. This classification is only effective on or after August 31, 2012.

U. Workers on hazmat projects receive additional hourly premiums as follows – Class A Suit: $2.00, Class B Suit: $1.50, And Class C Suit: $1.00. Workers performing underground work receive an additional $0.40 per hour for any and all work performed underground, including operating, servicing and repairing of equipment. The premium for underground work shall be paid for the entire shift worked. Workers who work suspended by a rope or cable receive an additional $0.50 per hour. The premium for work suspended shall be paid for the entire shift worked. Workers who do “pioneer” work (break open a cut, build road, etc.) more than one hundred fifty (150) feet above grade elevation receive an additional $0.50 per hour.

V. In addition to the hourly wage and fringe benefits, the following depth and enclosure premiums shall be paid. The premiums are to be calculated for the maximum depth and distance into an enclosure that a diver reaches in a day. The premiums are to be paid one time for the day and are not used in calculating overtime pay.

Depth premiums apply to depths of fifty feet or more. Over 50’ to 100’ - $2.00 per foot for each foot over 50 feet. Over 101’ to 150’ - $3.00 per foot for each foot over 101 feet. Over 151’ to 220’ - $4.00 per foot for each foot over 220 feet. Over 221’ - $5.00 per foot for each foot over 221 feet.

Enclosure premiums apply when divers enter enclosures (such as pipes or tunnels) where there is no vertical ascent and is measured by the distance travelled from the entrance. 25’ to 300’ - $1.00 per foot from entrance. 300’ to 600’ - $1.50 per foot beginning at 300’. Over 600’ - $2.00 per foot beginning at 600’.

W. Meter Installers work on single phase 120/240V self-contained residential meters. The Lineman/Groundmen rates would apply to meters not fitting this description.

X. Workers on hazmat projects receive additional hourly premiums as follows - Class A Suit: $2.00, Class B Suit: $1.50, Class C Suit: $1.00, and Class D Suit: $0.50. Special Shift Premium: Basic hourly rate plus $2.00 per hour.

When due to conditions beyond the control of the Employer or when an owner (not acting as the contractor), a government agency or the contract specifications requires that work can only be performed outside the normal 5 am to 6pm shift, then the special shift premium will be applied to the basic hourly rate. When an employee works on a special shift, they shall be paid a special shift premium for each hour worked unless they are in OT or Double-time status. (For example, the special shift premium does not waive the overtime requirements for work performed on Saturday or Sunday.)

Y. Tide Work: When employees are called out between the hours of 6:00 p.m. and 6:00 a.m. to work on tide work (work located in the tide plane) all time worked shall be at one and one-half times the hourly rate of pay.

Swinging Stage/Boatswains Chair: Employees working on a swinging state or boatswains chair or under conditions that require them to be tied off to allow their hands to be free shall receive seventy-five cents ($0.75) per hour above the classification rate.
8. Z. Workers working with supplied air on hazmat projects receive an additional $1.00 per hour.

Special Shift Premium: Basic hourly rate plus $2.00 per hour. When due to conditions beyond the control of the Employer or when an owner (not acting as a contractor), a government agency or the contract specifications require that more than (4) hours of a special shift can only be performed outside the normal 6 am to 6pm shift, then the special shift premium will be applied to the basic straight time for the entire shift. When an employee works on a special shift, they will be paid a special shift premium for each hour worked unless they are in overtime or double-time status. (For example, the special shift premium does not waive the overtime requirements for work performed on Saturday or Sunday.)

9. A. Workers working with supplied air on hazmat projects receive an additional $1.00 per hour.

Special Shift Premium: Basic hourly rate plus $2.00 per hour. When due to conditions beyond the control of the Employer or when an owner (not acting as the contractor), a government agency or the contract specifications require that more than four (4) hours of a special shift can only be performed outside the normal 6 am to 6pm shift, then the special shift premium will be applied to the basic straight time for the entire shift. When an employee works on a special shift, they shall be paid a special shift premium for each hour worked unless they are in overtime or double-time status. (For example, the special shift premium does not waive the overtime requirements for work performed on Saturday or Sunday.)

Certified Crane Operator Premium: Crane operators requiring certifications shall be paid $0.50 per hour above their classification rate.

Boom Pay Premium: All cranes including tower shall be paid as follows based on boom length:

(A) – 130’ to 199’ – $0.50 per hour over their classification rate.
(B) – 200’ to 299’ – $0.80 per hour over their classification rate.
(C) – 300’ and over – $1.00 per hour over their classification rate.

B. The highest pressure registered on the gauge for an accumulated time of more than fifteen (15) minutes during the shift shall be used in determining the scale paid.

Tide Work: When employees are called out between the hours of 6:00 p.m. and 6:00 a.m. to work on tide work (work located in the tide plane) all time worked shall be at one and one-half times the hourly rate of pay. Swinging Stage/Boatswains Chair: Employees working on a swinging stage or boatswains chair or under conditions that require them to be tied off to allow their hands to be free shall receive seventy-five cents ($0.75) per hour above the classification rate.

C. Tide Work: When employees are called out between the hours of 6:00 p.m. and 6:00 a.m. to work on tide work (work located in the tide plane) all time worked shall be at one and one-half times the hourly rate of pay. Swinging Stage/Boatswains Chair: Employees working on a swinging stage or boatswains chair or under conditions that require them to be tied off to allow their hands to be free shall receive seventy-five cents ($0.75) per hour above the classification rate.

Effective August 31, 2012 – A Traffic Control Supervisor shall be present on the project whenever flagging or spotting or other traffic control labor is being utilized. A Traffic Control Laborer performs the setup, maintenance and removal of all temporary traffic control devices and construction signs necessary to control vehicular, bicycle, and pedestrian traffic during construction operations. Flaggers and Spotters shall be posted where shown on approved Traffic Control Plans or where directed by the Engineer. All flaggers and spotters shall possess a current flagging card issued by the State of Washington, Oregon, Montana, or Idaho. These classifications are only effective on or after August 31, 2012.

D. Industrial Painter wages are required for painting within industrial facilities such as treatment plants, pipelines, towers, dams, bridges, power generation facilities and manufacturing facilities such as chemical plants, etc., or anywhere abrasive blasting is necessary to prepare surfaces, or hazardous materials encapsulation is required.
Note Codes Continued

9. E. Heavy Construction includes construction, repair, alteration or additions to the production, fabrication or manufacturing portions of industrial or manufacturing plants, hydroelectric or nuclear power plants and atomic reactor construction. Workers on hazmat projects receive additional hourly premiums as follows - Level A: $1.00, Level B: $0.75, Level C: $0.50, and Level D: $0.25.

F. Industrial Painter wages are required for painting within industrial facilities such as treatment plants, pipelines, towers, dams, power generation facilities and manufacturing facilities such as chemical plants, etc., or anywhere abrasive blasting is necessary to prepare surfaces, or hazardous materials encapsulation is required.

H. One (1) person crew shall consist of a Party Chief. (Total Station or similar one (1) person survey system). Two (2) person survey party shall consist of at least a Party Chief and a Chain Person. Three (3) person survey party shall consist of at least a Party Chief, an Instrument Person, and a Chain Person.
PART 1 GENERAL

1.01 SUMMARY

A. Section Includes:

1. Procedures for preparation and submittal of the Schedule of Values.

1.02 SUBMITTALS

A. Contractor shall submit an initial Schedule of Values per the Pre-Construction Submittal Requirements of Section 01 33 00.

B. Contractor shall submit supporting documentation justifying the amounts in the Schedule of Values if requested by Owner.

1.03 SCHEDULE OF VALUES

A. Contractor shall submit a typed schedule on Owner's form. Once approved, Contractor shall not revise the Schedule of Values without prior approval by Owner.

B. Format:

1. Separate each category of Work into a separate line item.

2. List all major Work activities indicated on the Progress Schedule.

3. Separate floors, phases, and other easily recognized building divisions when appropriate.

4. Separate labor, materials and equipment for each item.

5. Identify site mobilization, demobilization, bonds, and insurance as individual line items.

6. Include a line item for close-out Work between Substantial Completion and Final Completion.

7. If applicable, include a line item for allowances. For unit cost allowances, give quantities measured from the Contract Documents multiplied by the unit cost.

8. When required by Owner, include separate line items for "separately funded Work."

END OF SECTION 01 29 73
PART 1 GENERAL

1.01 SUMMARY

A. Section Includes:
 1. Preconstruction Meeting;
 2. Progress Meetings; and
 3. Other meetings, as requested by Owner.

1.02 PRECONSTRUCTION MEETING

A. Meeting Location: Owner will schedule a meeting prior to the start of construction. The purpose of this meeting is to review Contract administration requirements and mobilization procedures. Attendance is required for the following:
 1. Architect/Engineer and design Subconsultants;
 2. Contractor's Superintendent and Project Manager;
 3. Representative of major Subcontractors, as appropriate;
 4. Others, as appropriate.

B. Owner’s Designated Representative shall:
 1. Preside over and conduct meeting.
 2. Record, reproduce, and distribute copies of minutes within 7 Days of the meeting to all meeting participants.

C. Agenda for the meeting will include at a minimum:
 1. The Work;
 2. Progress Schedule, including Work sequence, phasing, and occupancy requirements;
 3. Communications chain and persons authorized to direct changes;
 4. Use of the Project site;
 5. Special Project procedures;
 6. Procedures and processing:
 a. Application for Payments and Schedule of Values;
 b. Contract Change Proposals (CCP), Work Directive (WD);
 c. Change Orders (CO);
d. Requests for Information (RFI);
e. Submittals; and
f. Others as appropriate.

7. Project Record;
8. Construction facilities, controls, and construction aids;
9. Temporary utilities;
10. Security procedures;
11. Safety and first-aid procedures;
12. Environmental Health and Safety;
13. Housekeeping procedures;
14. AHJ representative(s) and inspection procedures;
15. Utility shutdowns;
16. Parking;
17. Existing conditions;
18. Subcontractor list;
19. Emergency phone and keys to site;
20. Progress meeting scheduling;
21. Shipment and deliveries; and
22. Other(s) as appropriate.

1.03 PROGRESS MEETINGS

A. Progress meetings will occur as required.

B. Meeting Location: Contractor's Project field office, unless otherwise agreed.

C. Attendance: Representatives attending meetings must be qualified and authorized to act on behalf of their firms. Attendance shall include:

1. Architect/Engineer and Subconsultants, as appropriate;
2. Owner's Designated Representatives;
3. Contractor's Superintendent and Project Manager;
4. Subcontractors, as appropriate;
5. Suppliers, as appropriate; and
6. Others, as appropriate.

D. Owner's Designated Representative shall:
1. Administer progress and other specially scheduled meetings;

2. Record, reproduce, and distribute copies of minutes within 6 Days of meeting to all meeting participants; and

E. Contractor shall, at each meeting, provide each meeting attendant with:

1. Short-interval (look-ahead) schedule coordinated with the Progress Schedule;

2. Updated Progress Schedule, if appropriate;

3. Updated submittal log and schedules;

4. Updated RFI log;

5. Issues Log;

6. Quality Control Log; and

7. Any applicable tracking mechanisms.

F. Agenda for these meetings will include at a minimum:

1. Project safety;

2. Review and approval of minutes from previous meeting;

3. Review Work progress since previous meeting;

4. Review plans for progress for subsequent Work period and short-interval (look-ahead) schedule;

5. Review Progress Schedule;

6. Present corrective measures and procedures to regain Progress Schedule, as applicable;

7. Present field observations, problems, and conflicts;

8. Discuss RFIs;

9. Review quality control;

10. Review submittal log and schedules and present methods to expedite as required;

11. Review off-site fabrication;

12. Review delivery schedules;

13. Review coordination issues;

14. Review proposed changes for:
 a. Effect on Progress Schedule and on completion date.
 b. Effect on any other contracts of the Project.

15. Review Issues Log;
16. Review draft Application for Payment (at end of month);
17. Review Project Record; and
18. Review any other issues.

1.04 OTHER MEETINGS

A. Owner may call additional Project meetings as appropriate.
B. Meetings as required by other sections.
C. Format and agenda of these meetings will follow that of Progress Meetings unless Owner determines otherwise.
PART 1 GENERAL

1.01 GENERAL COMMUNICATION

A. Subcontractors: Informal communication between Owner, Owner's consultants, and other Subcontractors is permitted. If written clarification or direction is required to resolve questions, transmit questions in writing using a Request for Information (RFI) through the Contractor to Owner.

B. In case of an EMERGENCY, dial 9-1-1 if appropriate; otherwise, contact Owner's Designated Representative. If he or she is not available contact Facilities Services, Capital at 509-335-9000.

1.02 CORRESPONDENCE

A. Address all correspondence to Owner's Designated Representative.

B. Contractor shall copy Architect/Engineer on all correspondence to and from Owner.

C. Include Project title and Owner Project number on all correspondence.

1.03 REQUEST FOR INFORMATION

A. When field conditions or Contract Document require clarification, a written Request for Information (RFI) must be submitted per the following:

1. Identify the nature and location of each clarification/verification using a RFI form and provide at least the following information:
 a. Project name and number;
 b. Date;
 c. Date response requested;
 d. RFI number;
 e. Subject;
 f. Initiator of the question;
 g. Indication of costs;
 h. Indication of schedule impact;
 i. Location on site;
 j. Contract Drawing reference;
 k. Contract Specification section and paragraph reference;
 l. Descriptive text;
 m. Recommended solution(s); and
n. Space for reply on same page as questions.

B. Each RFI must be limited to a single issue, but shall reference other related RFIs.

C. Route and copy RFIs in same manner as correspondence.

D. Allow a minimum of 14 Days for Owner response to RFI.

1.04 NONCONFORMANCE REPORT

B. Procedure: If Contractor proceeds to install deficient Work or fails to correct Work that in the opinion of Owner fails to conform to the Contract Documents, an NCR may be issued. Upon receipt of a NCR, Contractor shall take immediate action to correct nonconforming Work. Correction of nonconforming Work will be reviewed at progress meetings.

1.05 COORDINATION

A. Special Coordination: Contractor shall:

1. On-site work shall take place between 8 am and 5 pm, Monday through Friday unless accommodations are made with the Dodgen Research Facility Nuclear Science Center (NSC) staff and WSU Construction Manager.

2. While on-site, all personnel involved in the project shall:

 a. Coordinate their activities and movement of equipment and materials into and out of the building with NSC. That coordination may be achieve through either (1) Facilities Services Project Management directly, or (2) with NSC staff including either Corey Hines, director; or Hillary Bennett, reactor supervisor. No movement of personnel, equipment, or tools may be performed without prior coordination with the NSC.

 b. Follow any NSC staff instructions at all times.

 c. Sign in and out of the building using established procedures.

 d. Wear identification badges while in the building.

 e. Keep building hallways, bathrooms, breakrooms, and use areas clean and free of debris.

 f. Coordinate with Facilities Services for any utilities use while in the building.
g. Remain escorted if access is needed to controlled access areas.

h. Wear PPE as required.

i. No elevators are available for contractor use.

B. General Coordination: Contractor shall:

1. Coordinate with Work of other sections to ensure that all fixtures, devices, switches, outlets, ducts, pipes, and similar items can be installed as shown without modifications to framing. Provide all blockouts, raceways and similar framing, as required;

2. Coordinate the Work and not delegate responsibility for coordination to any Subcontractor. Contractor must make available to each Subcontractor, prior to the execution of each Subcontract, copies of the Contract Documents to which the Subcontractor will be bound. Subcontractor will similarly make copies of the Contract Documents available to their respective lower-tier Subcontractors. Contractor must provide Owner copies of the written agreements between Contractor and any Subcontractor upon request;

3. Anticipate interrelationship of all Subcontractors and their relationship with the total Work;

4. Resolve differences or disputes between Subcontractors and materials suppliers concerning coordination, interference, or extent of Work between sections;

5. Be in charge of and responsible for the Work and the Project site, including directing and scheduling all Work; and

6. Cooperate with Separate Contractors. Work by others may be occurring within the building or at locations adjacent or near to the Project site. Contractor must cooperate with all such work.

C. Mechanical and Electrical Coordination: Contractor shall:

1. Resolve all “tight”, restricted, or inaccessible areas involving Work of various disciplines in advance of installation.

2. If necessary, and before Work proceeds in these areas, prepare coordination drawings for review showing all Work in “tight”, restricted, or inaccessible areas.

3. Provide coordination drawings necessary to resolve “tight”, restricted, or inaccessible areas, at no increase in Contract Sum.

D. Job Site Field Measurements and Templates: Contractor shall:

1. Obtain field measurements required for accurate fabrication and installation of Work. Exact measurements are Contractor’s responsibility.
2. Furnish or obtain templates, patterns, and setting instructions as required for installation of all Work. Contractor shall verify in field, as needed.

E. Contractor Badging:

1. All employees of Contractor and Subcontractors, vendors, or consultants retained by Contractor must obtain a Facilities Services Contractor Identification (ID) badge if they will be performing Work on the Pullman campus of Washington State University.

a. ID badges issued for prior Facilities Services projects are valid provided the employee/employer information is still correct and the ID badge has not expired.

2. Facilities Services will issue the Contractor an authorization memorandum necessary to obtain ID badges. Contractor will be responsible for providing copies of the authorization letter to appropriate Subcontractors, consultants, and vendors for use in procuring ID badges for their employees.

3. ID badges will be issued by the Cougar Card Center located on the ground floor of the Compton Union Building (CUB). Employees are required to appear in person so pictures and signatures may be obtained.

a. To receive an ID badge, each employee will be required to present a copy of the authorization letter issued by Facilities Services, a form of picture identification, the name of their current employer and a payment of $10.00.

b. The maximum effective period for an ID badge is 24 months.

c. When ID badges expire, if they are lost or stolen, or if the individual changes employers, the ID badge is no longer valid and the employee is required to obtain a new ID badge through the standard authorization process.

4. A valid ID badge must be worn by all employees in full view above the waist at all times when working at the Pullman campus of Washington State University.

a. Contractor shall enforce Owner’s ID badge policy at all times at the Project site.

5. Subject to Owner review and approval, Contractor may acquire and maintain a limited number of temporary ID badges from Owner to utilize for short duration visits by employees for whom repeat visits are not anticipated. Contractor shall maintain a log indicating the date, time issued/returned, employee name, and employer for all temporary badges. The temporary ID badges shall display “Facilities Services Contractor, Temporary Badge”, Contractor’s name, and a number unique to that particular temporary ID badge.

6. Contractor ID badges will not function as Cougar Cards. Individuals may obtain a Cougar Card as a “community member” but those cards will not be considered an acceptable substitute for the requirement to obtain and
display an ID badge.

7. ID badge expenses:
 a. On projects with a Guaranteed Maximum Price (GMP) the expense for ID badges may be considered a Cost of the Work.
 b. On fixed price contracts, Contractor shall include any and all expenses related to ID badges in its bid, including the actual cost of each badge. These costs will be included in the Contract Sum and not separately reimbursable.

END OF SECTION 01 31 23
PART 1 GENERAL

1.01 SUMMARY

A. This Section specifies the administrative and procedural requirements to comply with the requirements of the General Conditions regarding preparation of Contractor's Progress Schedules, monthly update to the Progress Schedules, and other schedules as specified herein. The purposes of these schedules and reports are to:

1. Ensure adequate planning and execution of the Work by Contractor;
2. Establish a standard against which progress of the Work can be tracked;
3. Assist in monitoring progress;
4. Evaluate the impact of any changes to the Contract; and
5. Support the basis for progress payments.

B. All schedule submittals including updated Progress Schedules will be reviewed by Owner for compliance with Contract terms and the needs of the University. Review of any schedule does not constitute approval or acceptance of Contractor's construction means, methods, or sequencing, or an assessment by Owner of Contractor's ability to complete the Work within the Contract Time.

1.02 WORK INCLUDED

A. Contractor shall submit a preliminary Progress Schedule, as required by the Pre-Construction Submittal Requirements of Section 01 33 00.

B. Contractor shall prepare and submit Progress Schedules and reports as required by this Section. NOTE: Processing and payment of the second Application for Payment is contingent upon receipt, review, and subsequent acceptance of the updated Progress Schedule.

C. Contractor shall participate in monthly scheduling meetings and provide updated Progress Schedules as required by this Section.

D. Contractor shall perform Contemporaneous Period Analysis (CPA) of any delays associated with the critical path schedule as required by this Section.

E. Contractor shall provide weekly Short-Interval (look-ahead) schedules as required by this Section.

F. Contractor shall submit a Submittal Schedule as required by this Section.

1.03 PRELIMINARY PROGRESS SCHEDULE

A. Contractor shall submit a preliminary Progress Schedule as part of the Pre-
Construction Submittal Requirements in Section 01 33 00 - Submittals. This preliminary Progress Schedule shall consist of a narrative description of the Work, a time-scaled logic diagram, and a tabular report identifying planned construction activities for the entire Work. Activities should be sufficiently detailed and no activity should be longer than 14 Days. Together these documents constitute the preliminary Progress Schedule. In the preliminary Progress Schedule, Contractor must emphasize milestone dates, the date of Substantial Completion, and the Work of separate contractors.

B. The preliminary Progress Schedule shall be prepared using the approved software program required by Part 2 of this Section. The time-scaled logic diagram and tabular report will provide similar data, but in an abbreviated form to that specified for the Contractor's Progress Schedule.

C. Contractor shall submit a narrative description of the Work for the 120 Day period following NTP that identifies the critical path and factors that might jeopardize the critical path, achievement of any major milestones, and any unusual circumstances or events upon which the preliminary Progress Schedule relies.

1.04 CONTRACTOR'S PROGRESS SCHEDULE

A. Contractor shall submit a detailed Progress Schedule within 30 Days of receiving Owner's comments on its preliminary Progress Schedule. This schedule shall be the Contractor's as-planned schedule and shall be used to plan, organize, and execute the Work, record and report actual performance and progress through updates, and show how the Contractor plans to complete all remaining Work. The schedule must clearly identify the critical path.

B. The Contractor shall submit a Progress Schedule for the entire Project with all specified tabular reports and electronic copies for review and comment, with 14 Days submittal review per 01 33 00.

C. The Progress Schedule shall be prepared to show the order in which the Contractor proposes to carry out the Work and to indicate any access or Work area restrictions and planned availability and use of manpower, materials, and equipment. The Progress Schedule must incorporate any Contract-specified limitations and restrictions, contractually specified milestones, and completion date(s). Contractor shall prepare the Progress Schedule in sufficient detail and in compliance with the following factors:

1. The Progress Schedule shall be based upon calendar days;
2. The Progress Schedule shall be based upon retained logic;
3. The Progress Schedule shall be organized into logical subnetworks;
4. The type of Work to be performed and labor trades involved shall be identified;
5. All procurement, manufacture, and delivery activities for all major materials and equipment shall be identified. All long lead items identified by submittal shall be included.;
6. Date(s) when Owner-furnished equipment and material is required;
7. Assignment and coding of all activities by the performing entity such as Subcontractors, Vendors, Owner, etc. must be included;
8. Access to and availability of the Work area shall be considered;
9. Identification of interfaces and dependencies with preceding, concurrent, and succeeding activities shall be indicated;
10. Testing, submission and approval of test results shall be identified;
11. Planning for phased occupancy by Owner, if applicable, shall be included;
12. Dates when approvals are required by regulatory agencies or other third parties shall be indicated;
13. In calculating activity durations, normal inclement weather must be considered;
14. Incorporate the Submittal Schedule; and
15. Contract-stipulated milestones and completion date(s) shall be included.

D. The activities defined in the Progress Schedule shall represent the planned durations in anticipation of normal manpower and equipment utilization in durations of whole working days. No activity durations or nonconstruction activities such as procurement, delivery or submittal activities shall exceed 14 Days unless approved by Owner. Contractor shall schedule the Work to minimize the potential effects of adverse weather. Contractor shall also protect the Project site from the effects of weather and take other necessary measures such that the Work can be completed within the time established in the Contract.

E. Scheduled activities shall be identified by a unique identifier, which shall remain consistent throughout the Project.

1. Activity Description: Provide adequate information to readily identify each activity.
2. The critical path must be clearly identified on all schedules.
3. Furnish a written narrative to explain how durations for critical activities were determined. Such explanation must include the number of crews, crew composition, number of shifts per day, number of hours in a shift, and number of Work days per week, as well as construction equipment and material quantities.
4. Logic constraints are disallowed unless a compelling reason exists for their use.
5. Clearly identify and provide a written narrative for all activities that are planned to be conditioned by use of overtime, double shifts, or work on weekends or holidays, whether critical or not.
6. Each submittal involving graphical and/or tabular reports produced shall be accompanied by a report, which includes an open-end listing, a listing of any out-of-sequence progress, identification of any constrained dates,
the schedule calculation mode (retained or logic override), and any other statistics that are normally a part of such a report.

F. Contractor shall provide the following submittals with the initial schedule submission, as applicable, and for each monthly update thereafter:

1. Detail Progress Schedule (baseline schedule);
2. Monthly updated Progress Schedules; and

The above submittals shall be transmitted electronically.

G. The Contractor shall submit the Progress Schedule, consisting of the reports and diagrams as specified by this subsection, in the following formats quantities:

1. Electronic PDF file of all reports, schedules, etc.
2. Native electronic copy of the CPM Progress Schedule.

H. Float: Contractor is not entitled to any adjustment in the Contract Time or the Contract Sum, or to any additional payment or equitable adjustment of any sort, by reason of the loss or the use of any float time, including time between Contractor’s anticipated completion date and the end of the Contract Time, whether or not the float time is described as such on the Progress Schedule.

I. Qualifications: Contractor shall submit the resume(s) of the person(s) designated as responsible for schedules and reports (the Contractor's scheduler) Prior to commencing construction activities. Contractor's scheduler shall have demonstrable capability to plan, coordinate, execute, and monitor a CPM schedule as required for this Project. Owner’s Designated Representative will approve or disapprove the Contractor's proposed scheduler. In the event of disapproval, a new scheduler shall be proposed within 7 Days and be subject to the same consideration criteria as noted above.

1.05 MONTHLY UPDATES

A. Contractor shall prepare and submit updated Progress Schedules and participate in schedule update meetings with the Owner each month. Participation in the meeting and submission of the monthly update is a condition precedent for payment of the line item value for scheduling Work.

1. Updated monthly schedule submittals:
 a. A PDF electronic version of complete Project schedule showing the critical path accompanied by a narrative of any deviations from the previous month.
 b. Electronic schedule file in native format.
 c. Short-interval schedules or look-ahead schedules shall not be an acceptable submittal.

B. Contractor shall prepare an update of the current Progress Schedule each month
to reflect Work progress achieved since the previous update. Progress updating shall be performed without changes to the schedule logic or the original duration of activities. Monthly progress updating is required and necessary prior to performing a Contemporaneous Period Analysis of any change to the calculated completion date from the prior update.

C. Contractor may, in a second report, incorporate any logic and duration changes that represent revised planning. All such changes must be clearly identified and submitted for acceptance.

D. The Progress Schedule must clearly identify the current Substantial and Final Completion dates.

E. Contractor shall account for all adverse weather days and similar excusable noncompensable delays. By whatever method Contractor chooses to account for such delays and events, a narrative description and CPA of the accounting shall be included with the narrative report.

F. Monthly schedule update meetings:

1. Monthly schedule update meetings shall be held at Contractor's Project field office one week prior to the due date of Contractor's monthly Application for Payment, unless otherwise agreed.

2. The Contractor shall provide updated Project schedule submittals.

3. The Contractor shall also provide a narrative report including:
 a. A description of the Work accomplished during the preceding period;
 b. A discussion of the Work that had been scheduled to be performed during the previous period but was not, and explain why it was not performed; and
 c. A discussion of the Work scheduled for the upcoming period noting any issues or events that could impact this Work. If Contractor intends to make logic or original activity duration changes, the report must specifically identify such changes.

4. Contractor, Owner, and Architect/Engineer will review these reports and will discuss any differences or issues raised. No contractual completion dates will be modified except by approved Change Order.

G. Timely submission of updates is of significant and crucial importance to the Project. Owner may withhold payment as per Section 01 29 00 Applications for Payment.

1.06 THE CONTEMPORANEOUS PERIOD ANALYSIS

A. It is Owner's intent to resolve all issues affecting the Contract completion date in a timely, efficient and effective manner. To achieve this goal, and in addition to contractor's obligation to follow the contractual dispute resolution procedure,
Contractor shall analyze any delays to the critical path or completion date by application of the Contemporaneous Period Analysis method. A CPA shall normally coincide with the monthly schedule update meetings.

B. Assessment of impacts due to changes or other events, in accordance with the CPA method, must be based on the most recent accepted updated Progress Schedule. No logic or duration changes shall be made to updates until progress related data has been incorporated into the Progress Schedule and the Progress Schedule is updated to reflect actual progress for the period. All data shall be provided to Owner.

C. Submission of an accurate and properly updated Progress Schedule and completion of the Contemporaneous Period Analysis are conditions precedent to the review and approval of any request for an extension in the Contract Time. Owner may assess liquidated damages, if any, regardless of the status of any requests for time extensions pending, until any such requests are resolved.

D. The process for preparing and submitting a CPA is as follows:

1. Contractor will notify Owner in writing of event(s) or occurrence(s) which constitute a delay of the critical path or completion date affecting progress of the Work.

2. Contractor shall evaluate the event(s) or occurrence(s) and produce a narrative of the resulting delay describing the effect upon concurrent or logically connected subsequent activities.

3. Consistent with the narrative, Contractor shall produce a subnet to graphically describe the event(s) or occurrence(s) and the effect upon the Progress Schedule.

4. Contractor will recalculate the Progress Schedule and provide an updated PDF and Native Progress Schedule.

E. The CPA will be reviewed at the monthly schedule update meeting or at a special meeting scheduled with Owner. At the CPA review meeting, Contractor shall present the CPA and respond to questions.

F. Until and unless substantiated delay is accepted by Owner, the time effect shall not be incorporated into any monthly update. If accepted after a monthly update in which the event(s) or occurrence(s) took place, that monthly update may be recalculated, resubmitted and shall be included in an approved Change Order.

1.07 SHORT-INTERVAL SCHEDULE

A. Prepare a weekly Short-Interval (look-ahead) Schedule based upon the Contractor's Work plan and the updated Progress Schedule.

B. Format for the Short-Interval (look-ahead) Schedule shall be acceptable to Owner. The format shall include comment annotation as necessary.
C. Content of the Short-Interval (look-ahead) Schedule shall include the Work planned for the next 3-week period and the Work that was performed in the previous week.

D. Copies of the Short-Interval (look-ahead) Schedule shall be provided at the weekly progress meetings to be used as a basis for discussion of progress and of planned Work.

1.08 SUBMITTAL SCHEDULE

A. Provide a Submittal Schedule within 10 Days of Owner's Acceptance of the Project Schedule per Section 01 33 00 - Submittals.

PART 2 PRODUCTS

2.01 SCHEDULING SOFTWARE

A. Contractor shall utilize Primavera P6 unless otherwise agreed to by Owner.

B. Contractor shall provide a licensed and royalty pre-paid copy of the mutually agreed upon scheduling software. The selected software must be capable of performing target-to-current schedule comparisons, cost and resource loading functions and have the option of executing calculations in retained logic. Activities must be able to process lead and lag time relationships, start-to-finish or finish-to-finish relationships, and be capable of being hammocked, if required. The software must be registered with Owner and be provided in a format compatible with Owner's systems.
PART 1 GENERAL

1.01 SECTION INCLUDES
A. Preconstruction photography.
B. Construction photography of Work-in-progress.

1.02 GENERAL
A. Contractor shall provide photographs taken from locations coordinated with Owner.
B. Photographer: Experienced in taking construction photography.
C. Equipment: All photos shall be in digital format.
D. Video images may be acceptable for certain operations. Confirm with Owner.

PART 2 PRODUCTS

2.01 PRECONSTRUCTION PHOTOGRAPHS
A. Contractor shall provide electronic files containing photographs of the existing conditions at the site, surroundings, and haul routes per the Pre-Construction Submittal Requirements of Section 01 33 00. Coordinate with Owner the extent of the preconstruction photographic record that is required.

2.02 CONSTRUCTION PHOTOGRAPHS
A. Contractor shall provide electronic files containing photographs of construction progress on a monthly basis.

2.03 PHOTOGRAPHIC SUBMITTALS
A. Photographs shall be submitted each month during the Contract Time, or as otherwise agreed upon by Owner. The number of photographs shall be sufficient to document the site to the satisfaction of the Owner and Contractor.
B. Photographs shall be representative of Project progress, showing all major Work and any critical concealed conditions.
C. The files in each monthly photograph submittal must each be labeled with the Project name, Project number, and submittal date. Additionally, each photograph shall be dated, labeled, and accompanied by a brief description identifying the location and direction the photo was taken. Date stamp using month/date/year format.
PART 3 EXECUTION

3.01 PRECONSTRUCTION PHOTOGRAPHS

A. Coordinate the scope of preconstruction photographic record survey with Owner.

B. Take preconstruction photographs to identify and establish a baseline record of existing conditions.

C. A preconstruction photographic record survey shall include, but not be limited to, all areas that may be impacted or damaged by construction phase activities.

D. The extent or nature of the existing site and adjacent surroundings shall be thoroughly documented.

3.02 CONSTRUCTION PHOTOGRAPHS

A. Contractor shall take construction photographs each month during construction of the Project.

B. Contractor shall document concealed conditions (once exposed) that differ from expectations.

1. It is critical that Contractor photographically document concealed conditions that may benefit Owner’s future maintenance and operations activities. Take photographs (with a reference point) prior to cover or concealment. For example:
 b. Under-slab utility rough-in.
 c. Wall cavity utility routing.
 d. Above-ceiling installation after ceiling support system installed, but prior to cover.

2. The photograph record described above shall be considered minimum and shall not be deemed to limit the quantity or quality of the photographic record.

END OF SECTION 01 32 33
PART 1 GENERAL

1.01 SUMMARY

A. This section includes administrative and procedural requirements for submittals required for performance of the Work, including:

1. Pre-Construction Submittal Requirements;
2. Shop Drawings;
3. Product data;
4. Samples; and
5. Mock-ups.

1.02 SUBMITTAL PROCEDURES

A. Provide submittal schedule as required by Section 01 32 13 – Progress Schedule. The Submittal Schedule shall meet all of the requirements below.

B. Coordination: Review of the submittals by Owner is not for the purpose of determining their accuracy and/or completeness, or for substantiating instructions for installation or performance of equipment or systems, all of which remain the responsibility of Contractor as required by the Contract Documents.

1. Owner reserves the right to withhold action on a submittal requiring coordination with other submittals until all related submittals are provided.

2. Allow at least 14 Days for review of each submittal by Owner. Complex or interrelated submittals, or the submission of multiple submittals at or near the same time, will require additional time. Provide a "priority list" when submitting multiple submittals at or near the same time. Submittal sequencing should coincide with the submittal schedule (see Section 01 32 13 – Progress Schedule).

C. Submittal Preparation: Place a permanent label or title block on each submittal for identification.

1. Include the following information on the label or title block:
 a. Project name, Project number, and date;
 b. Name and address of Owner;
 c. Name and address of Contractor and submitting Subcontractor, if applicable;
 d. Name and address of supplier and manufacturer, if applicable;
 e. Number and title of appropriate Specification section; and
 f. Drawing number and detail references, as appropriate.
2. Provide adequate space for action stamps to record review.

D. Submittal Transmittal: Package submittals in manageable quantities and transmit to Owner and Architect/Engineer, if applicable, simultaneously. Submittals received from sources other than Contractor will be returned without action. By submitting submittals, Contractor represents to Owner that Contractor has (1) reviewed and approved them, (2) determined and verified materials, field measurements, and field construction criteria related thereto, or will do so, and (3) checked and coordinated the information contained within each submittal with the requirements of the Work and of the Contract Documents.

1. Address one topic or related set of topics in each transmittal based upon Specification sections (i.e., mechanical items should not be submitted under same transmittal with electrical items).

2. Clearly call out relevant information, deviations, and requests for data, including minor variations from the Contract Documents on both the transmittal and all copies of a submittal.

3. Shop drawings, product data, samples, and mock-ups shall be submitted to Owner’s Designated Representative for review/approval. The minimum number of submittals to be provided are:
 a. Pre-Construction, Shop Drawings, Product Data: Electronic copies.
 b. Samples: As required by the technical Specification section.
 c. Mock-ups: As required by the technical Specification section.
 d. Demonstrations: As required to facilitate installation and inspection.
 e. Reference technical Specifications for additional submittal requirements.

4. Owner may modify the required submittal quantities.

E. Material and Color Submittal: Submit samples of actual colors and/or materials.

F. Number submittals by Specification section number and revision letter.

G. In the event of the need to "revise and resubmit" a submittal, resubmit same in acceptable form/content, clearly identifying deviations from the previous rejected submittal. Contractor shall also keep accurate records of the receipt, review, and delivery of all submittals and shall submit to Owner, as requested, status reports.

H. Provide a final electronic copy of all approved submittals.

1.03 PRE-CONSTRUCTION SUBMITTAL REQUIREMENTS

A. All Pre-Construction Submittals are required before onsite construction activities may commence. Contractor shall submit the following Pre-
Construction Submittals **within 14 days** of Notice to Proceed. Submittal review for these items only shall be supplied **within 7 days** of receipt by Owner.

1. Indoor Air Quality Management Plan
2. Site Safety and Health Plan (for information only)
3. Quality Control / Quality Assurance Plan
4. Waste Management Plan
5. Progress Schedule
6. Schedule of Values
7. Pre-Construction Photographs
8. Emergency Points of Contact
9. List of Subs and Suppliers
10. Work/logistic plan narrative including demolition and new construction to minimize down time.
11. Demolition Plan
12. Asbestos Safety Plan
13. List of Long Lead Items

1.04 SHOP DRAWINGS

A. Submit Shop Drawings drawn to accurate scale. Do not reproduce Contract Documents or copy standard information for use as Shop Drawings. Standard information prepared without specific references to the Project will not be accepted as a Shop Drawing.

B. Shop Drawings Include: fabrication and installation drawings, setting diagrams, schedules, patterns, templates, and similar drawings. Include the following information:

1. Dimensions;
2. Products and materials;
3. Compliance with specified standards;
4. Coordination requirements;
5. Notation of dimensions established by field measurements;
6. Any deviation from Drawings or Specifications; and
7. Date when review is requested to maintain Progress Schedule.

1.05 PRODUCT DATA

A. Product data includes: Manufacturer's printed installation instructions, catalog cuts, standard color charts, rough-in diagrams and templates, standard wiring diagrams, and performance curves.

1. Where product data must be specially prepared because standard printed data is not suitable, the submittal must be provided as a Shop Drawing.
B. Requirements: Mark each copy to show applicable options. Include the following information:

1. Manufacturer's printed recommendations;
2. Compliance with recognized trade-association standards;
3. Compliance with recognized testing-agency standards;
4. Application of testing-agency labels and seals;
5. Notation of dimensions verified by field measurement;
6. Notation of coordination requirements;
7. Any deviation from Drawings or Specifications; and
8. Date when review requested to maintain Progress Schedule.

1.06 SAMPLES AND MOCK-UPS

A. Submit samples and mock-ups that are identical to the material or product proposed. Samples include partial sections of components, cuts or containers of materials, color range sets, and swatches showing color, texture and pattern.

1. Package samples to facilitate review. Include the following:
 a. Generic description of the sample;
 b. Source;
 c. Product name or name of manufacturer;
 d. Compliance with recognized standards;
 e. Availability and delivery time; and
 f. Specification section.

B. Requirements: Submit samples and mock-ups for review of kind, color, pattern, and texture for a comparison of these characteristics before actual installation.

1. Where variation in color, pattern, texture or other characteristics are inherent in the material, submit not less than four units to show limits of variation.

C. Submittals: Where samples are for selection of appearance from a range of standard choices, submit a full set of choices for the material or products.

D. Maintain sets of approved samples and mock-ups at the Project site for quality comparisons throughout the course of construction.

E. Demolish and remove all samples and mock-ups prior to Substantial Completion but not sooner than directed by Owner.

1.07 OWNER's ACTION

A. Review: Except for submittals for information or a similar purpose, Owner will
review each submittal, mark to indicate action taken, and return promptly.

B. Owner approval of submittals does not supersede or alter Contract Document requirements.

END OF SECTION 01 33 00
PART 1 GENERAL

1.01 SUMMARY

 A. This Section includes the administrative and procedural requirements for any
 general alterations to be performed during the Project, including but not limited to
 products, transition and adjustments, cutting, patching, and repair and cleaning.

1.02 SUBMITTALS

 A. Contractor shall submit a written request in advance of cutting or alteration that
 impacts:

 1. Structural integrity of any element of Project.
 2. Integrity of weather-exposed or moisture-resistant elements.
 3. Efficiency, maintenance, or safety of any operational elements.
 5. Work of Owner or a separate contractor.

 B. Contractor must include in its written request, when required:

 1. Identification of Project.
 2. Location and description of affected Work.
 3. Necessity for cutting or alteration.
 4. Description of proposed Work and products to be used.
 5. Alternatives to cutting and patching.
 6. Effect on Work of Owner or separate contractor.
 7. Written permission of affected separate contractor.
 8. Date and time Work will be executed.

1.03 QUALITY ASSURANCE

 A. Limits of Work:

 1. Contractor shall maintain existing building structure (including structural
 floor and roof decking and envelope (exterior skin and framing, excluding
 window assemblies and nonstructural roofing material) not indicated to be
 removed; do not cut such existing conditions beyond indicated limits.

 2. Contractor shall maintain existing interior nonstructural elements (interior
 walls, doors, floor coverings, and ceiling systems) not indicated to be
 removed; do not cut such existing conditions beyond indicated limits.

 3. Contractor shall maintain existing nonshell, nonstructural components
 (walls, flooring, and ceilings) not indicated to be removed; do not cut such
 existing conditions beyond indicated limits.
B. Structural Elements: Do not cut and patch structural elements in a manner that could change their load-carrying capacity or load-deflection ratio.

C. Operational Elements: Do not cut and patch operating elements and related components in a manner that results in reducing their capacity to perform as intended or that results in increased maintenance or decreased operational life or safety. Operating elements include the following:

1. Primary operational systems and equipment.
2. Air or smoke barriers.
3. Fire-suppression systems.
4. Mechanical systems piping and ducts.
5. Control systems.
6. Communication systems.
7. Conveying systems.
8. Electrical wiring systems.
9. All low voltage systems.
10. Operating systems of special construction in Division 13.
11. Other operating systems as appropriate.

D. Miscellaneous Elements: Do not cut and patch miscellaneous elements or related components in a manner that could change their load-carrying capacity, that results in reducing their capacity to perform as intended that result in increased maintenance or decreased operational life or void of warranty, or could adversely affect safety. Miscellaneous elements include the following:

1. Water, moisture, or vapor barriers.
2. Firestopping or fire barriers.
3. Membranes and flashings.
4. Exterior curtain-wall construction.
5. Equipment supports.
6. Piping, ductwork, vessels, and equipment.
7. Noise and vibration-control elements and systems.
8. Other miscellaneous systems as appropriate.

E. Visual Requirements: Do not cut and patch construction in a manner that results in visual evidence of cutting and patching. Do not cut and patch exterior conditions or in occupied spaces in a manner that would, in Owner’s opinion, reduce the building's aesthetic qualities. Contractor shall remove and replace conditions that have been cut and patched in a visually unsatisfactory manner.

PART 2 PRODUCTS

2.01 PRODUCTS FOR PATCHING AND EXTENDING WORK

A. New Materials: Match existing products and Work when patching and extending Work.
B. Type and Quality of Existing Products: Determine by inspection and testing products where necessary; refer to existing Work as a standard.

PART 3 EXECUTION

3.01 EXAMINATION

A. Contractor shall, before starting each portion of the Work, carefully study and compare the various Contract Documents related to that portion of the Work, as well as other information available to Contractor, take field measurements, and inspect any existing conditions, including elements subject to damage or movement during cutting and patching.

B. After uncovering existing Work, inspect conditions affecting performance of Work.

C. By beginning any cutting or patching, Contractor represents and warrants its acceptance of existing conditions.

D. Contractor shall verify that demolition is complete and areas are ready for installation of new Work.

3.02 PREPARATION

A. Contractor shall cut, move, or remove items as necessary for access to alterations and renovation Work. Replace and restore at completion.

B. Contractor shall remove unsuitable material not marked for salvage, such as rotted wood, corroded metals, deteriorated masonry, concrete, and disturbed subgrade material. Replace materials as specified for finished Work.

C. Contractor shall remove debris and abandoned items from area and from concealed spaces.

D. Contractor shall prepare surface and remove surface finishes to provide for proper installation of new Work and finishes.

E. Contractor shall close openings in exterior surfaces to protect existing Work. Contractor shall insulate ductwork and piping to prevent moisture and condensation in exposed areas.

F. Contractor shall provide temporary supports to ensure structural integrity of the Work. Provide devices and methods to protect Work from damage.

3.03 PERFORMANCE

A. Contractor shall coordinate alterations and renovations to expedite completion of the Work.
B. Remove, cut, and patch Work in a manner to minimize damage. Provide a means of restoring products and finishes to their original or specified condition.

C. Refinish remaining existing surfaces in renovated rooms and spaces, to specified condition for each material, with a neat and clean transition to adjacent finishes.

D. In addition to specified replacement of equipment and fixtures, restore existing plumbing, heating, ventilation, air conditioning, and electrical systems to full original operational condition.

E. Install products as specified in individual sections.

F. Remove samples of installed Work for testing when requested.

G. Provide openings in the Work for penetration of mechanical and electrical Work.

H. Cut rigid materials using the appropriate equipment and tool. Pneumatic tools not allowed without prior approval.
 1. Concrete Walls: Saw-cut walls using accurately located straight lines, unless directed otherwise. Minimize overcuts.
 2. Masonry Walls: Saw-cut along mortar joints, cutting block uniformly in accurately located straight lines, unless otherwise directed. Remove all mortar adhering to edges. Overcuts not allowed.
 3. Wood Framed Walls: Demolish plaster or gypsum wallboard, removing wall framing only as required. Cut wall finish materials in straight uniform lines.
 4. Concrete Floors: Saw-cut floors and remove. Core drill as required.

I. Restore Work with new products in accordance with requirements of Contract Documents.

J. Fit Work to existing pipes, sleeves, ducts, conduit, and other penetrations through surfaces, while maintaining assemblies.

K. At penetrations of fire rated walls, partitions, ceilings, or floors, completely seal voids with firestopping material to full thickness of the penetrated element, while maintaining assemblies.

L. Cleaning: Clean areas and spaces where cutting and patching are performed. Completely remove paint, mortar, oils, putty, and similar materials.

END OF SECTION 01 35 16
PART 1 GENERAL

1.01 SECTION INCLUDES

 A. Requirements pertaining to regulatory requirements.
 B. List of regulatory requirements.

1.02 CONTRACTOR RESPONSIBILITY

 A. Contractor is solely responsible for compliance with all codes, laws, or regulatory requirements.
 B. Inspections performed or not performed by the City of Pullman, Labor and Industries, Owner, Owner Designated Representative, or others who are under contract to Owner do not waive or change Contractor’s obligations, nor do such inspections constitute approval or acceptance of portions of the Work.

1.03 CONTRACTOR REQUIREMENTS

 A. Contractor shall perform the Work in accordance with the requirements of governing agencies and applicable regulatory requirements, including those included in this Section and elsewhere in the Contract Documents. Contractor must comply with all applicable laws, building codes, regulations, and rules, including, when applicable, the Washington State University campus code.
 B. Contractor shall schedule and coordinate inspections and gain approvals required by the City of Pullman and other governing agencies in a timely manner and as required for Owner occupancy of the Project within the Contract Time.
 C. Contractor shall inform the City of Pullman Building and Fire Departments, Labor and Industries, and other governing agencies of changes in the Work affecting regulatory requirements in a timely manner.
 D. Contractor shall promptly forward to Owner all inspection reports, orders, permits, and other directives and correspondence received from the City of Pullman inspectors or other governing agencies having jurisdiction over the Work.
 E. Contractor shall promptly notify Owner when the Contract Documents appear to be in conflict with Regulatory Requirements.
 F. Contractor shall, at all times, use its best efforts and exercise its judgment as an experienced contractor to adopt and implement policies and practices designed to avoid work stoppages, slowdowns, disputes, or strikes where reasonably possible and practical under the circumstances, and shall, at all times, maintain Project-wide labor harmony.

1.04 REGULATORY REQUIREMENTS
A. Authority Having Jurisdiction (AHJ) shall be the organization, office, or individual responsible for enforcing the requirements of the applicable code(s) or standard(s), and or for approving equipment, materials, installation(s), or procedure(s).

B. Regulatory authorities establish minimum requirement levels. Where provisions of the Contract Documents and regulatory requirements differ or conflict, the more stringent requirement governs.

C. Regulatory requirements added by other sections of the Contract Documents or otherwise applicable are binding upon the Work in accordance with the provisions of this Section. The regulatory-requirements list provided below is intended to assist Contractor in determining the regulatory requirements for the Project, but neither the inclusion nor omission of any item from the list shall be construed to relieve Contractor of obligations that otherwise exist under the law or the Contract.

1.05 LIST OF REGULATORY REQUIREMENTS

C. National Fire Protection Association (NFPA) Codes.

H. State of Washington, WAC Chapters 173, 246, and 296, as applicable.

I. U.S. Environmental Protection Agency 40 CFR, as applicable.

J. U.S. Transportation Department Title 49, Parts Pertaining to Transportation of Hazardous Materials.

K. U.S. Nuclear Regulatory Commission Title 10, Parts Pertaining To Radioactive Materials Management.

M. Washington State Energy Code, WAC 51-11C. Shortened

P. Federal Emergency Management Agency (FEMA) requirements for floodway/floodplain development.

Q. Electrical Work:
 1. NFPA 70, National Electrical Code (NEC), most recent adopted edition.
 2. Underwriters’ Laboratories (UL).
 3. National Electrical Manufacturer’s Association (NEMA).

1.06 PERMITS REQUIRED

A. Contractor shall obtain and pay for all required building permits, including any renewals. Contractor shall identify costs for permits on the Schedule of Values for permits obtained.

B. All trade permits (e.g. electrical, pressure vessel, elevator, etc.) must be included in each Subcontractor bid.

C. Owner obtains permits for the following facilities and activities.
 1. U.S. Army Corps of Engineers:
 a. Wetlands (404).
 2. Permits and/or Approvals from the DOE or local environmental authority:
 a. Stormwater from Construction Sites (Notice of Intent).
 b. Wastewater Discharge Facilities.
 c. Well Construction (including Well Abandonment).
 d. Water Rights.
 e. Notice of Construction (Air Pollution Sources).
 f. SEPA.
 g. Floodway/Floodplain development.

END OF SECTION 01 41 00
PART 1 GENERAL

1.01 SUMMARY

A. Conduct portions of the Work requiring special procedures due to hazardous materials and conditions in accordance with regulatory standards and guidance provided in this Section.

1.02 SUBMITTALS

A. Contractor shall deliver a current copy of its site specific Health and Safety Plan to the Owner per the Pre-Construction Submittal Requirements of Section 01 33 00. The submittal must include each Subcontractor’s site specific Health and Safety Plan. Submittal to Owner is for information only, not for review, acceptance, or approval of the Health and Safety Plan, nor for analysis of content or completeness.

1.03 QUALIFICATIONS OF HEALTH AND SAFETY PERSONNEL

A. Contractor shall employ a competent person for each hazardous construction task in accordance with the requirements of WAC 296-155.

B. Contractor shall submit to Owner the names of its employees performing duties as competent persons, as well as the names of Subcontractor employees performing duties as competent persons.

1.04 HAZARDOUS MATERIALS MANAGEMENT

A. Dangerous Waste Management:

1. Contractor agrees and acknowledges that:
 a. Contractor has direct and exclusive control over the Work and operations at the Project site and is responsible for any Contractor generated, created, or disturbed Washington State dangerous waste and its collection, labeling, accumulation, transportation, and disposal. Owner’s EH&S department will provide assistance to Contractor upon request, and will coordinate transportation and disposal of Project-generated Washington State dangerous waste.
 b. Contractor must provide Owner immediate notification of any pre-existing unanticipated Washington State dangerous waste or site contamination.

2. Contractor is responsible for securing its own waste generator identification number, and Contractor shall sign all manifests associated with the Contractor-generated waste.
 a. Contractor shall obtain an EPA/State ID number in accordance with WAC 173-303-360 before conducting activities generating chemical waste designated as Washington State dangerous waste.
b. Contractor shall cancel the EPA/State ID number when:
 1) All activities generating or managing waste have ceased;
 2) All regulated wastes have been removed from the Project site under proper manifests, and all site contamination is remediated; and
 3) All annual dangerous-waste reporting requirements are complete.

c. Contractor may call the Washington State Department of Ecology (DOE) to request a reporting package for early submittal.

d. Contractor shall furnish to Owner’s EH&S Department, Pullman, WA, within 3 Days from submittal or receipt, copies of the following documents:
 1) Form 2 Notification of Dangerous Waste Activities;
 2) All signed Uniform Hazardous Waste Manifests (original copy when shipping wastes and copy returned from the treatment, storage, disposal, or recycling facility), Land Disposal Restriction Notification forms, Certificates of Recycling/Disposal/Destruction, and Exception Reports;
 3) All Annual Reports; and
 4) All correspondence from the DOE.

3. Owner remains responsible for Washington State dangerous waste and site contamination: (1) pre-existing Contractor’s activities at the site, (2) not listed in the Contract Documents, and (3) not disturbed by Contractor through improper construction activities.

4. For waste identified in contract document and for unanticipated Washington State dangerous waste or site contamination discovered during the course of the Work on the site, Contractor shall:
 a. Collect, containerize, and accumulate all Washington State dangerous waste or site contamination in accordance with applicable Federal, State, and local regulations.
 b. Coordinate all transportation and disposal activities through Owner’s EH&S department, who will utilize the Washington State Hazardous Waste Disposal Services contract or equivalent pre-approved contractor. Owner’s disposal contractor shall complete all applicable dangerous waste shipping papers including all Uniform Hazardous Waste Manifests, Land Disposal Restriction Notification forms, profiles and barrel packing lists.

B. Hazardous Materials Spills and Releases:
 1. Contractor and Subcontractor(s) shall immediately report all hazardous materials spills at the Project site to Owner. If a hazardous material spill occurs at a Project site in Whitman County, and if any individual may be affected by the spill, Contractor and/or Subcontractor(s) must immediately
report the spill to Whitcom (emergency dispatch). In other counties, Contractor and Subcontractor(s) must report spills to the appropriate emergency response agency in that area.

2. Contractor shall be responsible for spill containment, cleanup, decontamination, post-cleanup monitoring, disposal of any wastes generated from cleanup activities, and generation of any reports required by regulatory agencies and/or regulations including, but not limited to, WAC 173-303 and WAC 173-340.

C. Spill Prevention Control and Countermeasures:

1. Owner’s EH&S department is responsible for Owner’s SPCC Plan. Any of Contractor’s on-site activities involving the handling and/or storage of materials meeting the definition of oil per 40 CFR 112 in containers and/or equipment with a capacity greater than 42 gallons must be included in the Owner’s SPCC Plan. Contractor shall provide Owner’s EH&S department with an inventory of this equipment or containers at least 14 Days prior to the equipment or containers being brought to the Project site.

2. Contractor shall provide and utilize secondary containment for containers and tanks of oil with a capacity greater than 42 gallons. Owner may waive this requirement in its sole discretion upon Contractor’s request after Owner reviews Contractor’s written explanation as to why secondary containment is unnecessary for a particular container or tank.

D. Asbestos:

1. All Contractor employees involved in excavation or demolition shall be asbestos awareness trained. Contractor shall submit to Owner the name of Contractor’s competent trainer, the names of each of Contractor’s trained personnel, and the date of each training. Contractor’s submittal must also state that the training was conducted for asbestos awareness for the Work.

2. All asbestos abatement Work shall be performed by persons trained in Washington State-approved courses and certified by the State of Washington.

3. All asbestos abatement Work performed shall be overseen by a consultant hired by the Owner to ensure the Work meets regulatory standards and Owner requirements.

4. All asbestos cement pipe Work shall be performed by persons trained in an asbestos cement pipe procedures course whose content is reviewed and approved by the Washington State Department of Labor and Industries, per WAC 296-62-07722(3)(ii)(C).

5. If suspected asbestos-containing material is discovered during Contractor’s execution of the Work, and abatement of the material is not a requirement of the Contract, Contractor shall suspend any Work that affects the material and immediately notify Owner. Contractor shall safeguard the area to prevent entry until certified personnel determine...
whether the material is non-asbestos containing or the material is abated, at which time the Work in that area may resume.

E. Lead:

1. Owner shall inform Contractor of lead-containing coatings and materials that the Contractor may encounter while performing the Work. These materials or coatings may release lead into the air, soil, or water, or may be a source of contamination due to skin contact. Owner shall provide general data about the percentage of lead content of each suspected lead-containing material or coating and/or provide Contractor with data showing the amount of lead per surface area.

2. Contractor is responsible for protecting its employees from lead exposure, as required by Washington law.

3. Contractor shall manage all paint chips, building components, soil, and/or other material considered by Owner to be dangerous waste according to the Dangerous Waste Management paragraph.

F. Polychlorinated Biphenyls:

1. Owner may survey oil-filled equipment prior to commencement of construction. This equipment includes, but is not limited to, transformers, electrical switches, hydraulic elevators, emergency generators, capacitors and light ballasts. Owner’s survey shall usually determine if the equipment is filled with oil containing polychlorinated biphenyl (PCB). Owner shall remove, or arrange for the removal of, any equipment that contains oil in concentrations qualifying the equipment as dangerous waste per WAC 173-303.

2. If oil-filled equipment is discovered during Contractor’s execution of the Work, Contractor shall suspend any Work that may affect the equipment and immediately notify Owner. Owner shall test the equipment and determine the appropriate management method for the equipment and the oil it contains.

G. Mercury:

1. Owner may survey all equipment suspected of containing mercury prior to commencement of construction. This equipment includes, but is not limited to, switches and thermostats. Owner’s survey shall determine if the equipment contains mercury. Owner shall remove, or arrange for the removal of, any such equipment.

2. If mercury-containing equipment is discovered during Contractor’s execution of the Work, Contractor shall suspend any Work that may affect the equipment and immediately notify Owner. Owner shall test the equipment and determine the appropriate management method for the equipment and the mercury it contains.
H. Hazardous Materials or Equipment:

1. Fixed equipment such as fume hoods, safety cabinets, and vacuum systems, and related ductwork, fans, and appurtenances, may contain or be contaminated with hazardous materials. Owner may test this equipment to determine what, if any, hazards are present. If equipment contains a hazard, or if the equipment itself is a dangerous waste, Owner shall inform Contractor of the nature of the hazard including any information necessary for Contractor to protect its workers. If the equipment is a dangerous waste, Contractor shall dispose of, or make arrangements for the disposal of, the equipment per the above Dangerous Waste Management paragraph.

I. Underground Storage Tanks (USTs):

1. Removal of USTs shall be performed in accordance with DOE regulations. Removal of existing USTs shall be performed by a DOE-certified UST removal company following the submittal of required forms. Copies of forms must be provided to Owner’s EH&S department at the same time they are submitted to DOE.

2. Installation of any UST must be done by DOE-certified UST installers. The installation shall be permitted by DOE following the submittal of completed UST installation forms. Copies of forms must be provided to Owner at the same time they are submitted to DOE.

3. Retrofits and upgrades of existing USTs must be completed by DOE certified companies. Records of the retrofit or upgrade must be submitted to DOE following the retrofit or upgrade. Copies of such records must be provided to Owner at the same time they are submitted to DOE.

4. If a UST is discovered during Contractor’s execution of the Work, Contractor shall suspend any Work that may affect the UST and immediately notify Owner. Owner will determine if UST must be sampled and/or removed. If necessary, Owner shall engage a certified company to remove UST.

J. Department of Homeland Security (DHS) Chemicals of Interest (COI)

1. Contractor and Subcontractors shall report any COI to Owner as required by the DHS. Contractor may contact Owner’s Representative in conjunction with the University’s EH&S Department for the specific means of reporting.

1.05 WATER AND STORMWATER POLLUTION PREVENTION:

A. Water Pollution:

1. Discharge of any pollutants (including sewage and chlorinated water from water line disinfection) into surface or ground waters of the State
(including storm drains, ditches and any other water conveyances) is prohibited.

2. Contractor removal of snow, ice, soil, and mud from roadways and sidewalks shall be accomplished without polluting storm drains or surface waters. Mud and soil removal shall be undertaken on a full-time basis, not just once or twice a day. Soil or mud that is dropped onto streets and sidewalks by vehicles at the Project site shall immediately be cleaned by Contractor. Contractor may not use water to clean streets and sidewalks. Under no circumstances may dust mitigation cause soil erosion or pollution of surface waters.

3. If a discharge to surface or ground waters does occur, Contractor shall immediately notify Owner.

B. Stormwater Pollution Prevention Plan (SWPPP):

1. For projects that disturb a soil surface area of one acre or greater:
 a. Contractor shall prepare a written SWPPP that meets DOE regulations and the requirements of Owner's Municipal Stormwater Permit.
 b. Owner shall apply for a DOE NPDES Construction Stormwater General Permit for stormwater discharge, and then transfer the permit to Contractor. Contractor shall comply with all provisions of the permit.
 c. Contractor shall maintain a copy of the NPDES permit and the SWPPP on-site at all times.
 d. Contractor shall maintain on-site or on call, at all times, a Certified Erosion and Sediment Control Lead (CESCL).
 e. Contractor’s SWPPP shall identify all management practices used to prevent stormwater pollution and the location(s) at which each practice will be utilized on the Project site.
 f. Contractor shall obtain approval from Owner of the SWPPP prior to groundbreaking. Contractor shall construct approved BMP’s and the site inspected and approved, per permit requirements, prior to groundbreaking.
 g. Contractor shall use best management practices (BMPs) and shall inspect BMPs at least once a week. In addition, Contractor shall inspect BMPs immediately following each rainfall event of 0.1 inches or greater.
 h. Contractor shall maintain a written log detailing the results of inspections beginning with the first day of construction. Contractor’s written log shall describe all erosion control activities resulting from inspections. In addition, the following dates and events shall be included in the written log:
 1) The beginning and completion of major grading activities.
2) Rainfall events of 0.1 inches or greater.
3) When construction activities temporarily or permanently cease on-site, or on a portion of the site.
4) When stabilization measures are initiated for portions of the site.
5) Stormwater sampling results.

i. Contractor shall maintain and/or repair all BMPs as necessary to ensure continued performance of their intended function. Contractor’s maintenance and repair activities shall include, but are not limited to:

1) Removal of sediment from silt fences before it reaches approximately one third the height of the fence, especially if heavy rains are expected; and

2) Cleaning or removal and replacement of drain inlet protection devices at least once every 7 Days, and once daily during storm events or before 6 inches of sediment can accumulate.

j. Contractor shall remove all temporary erosion and sedimentation control measure from the Project site within 30 Days after final site stabilization is achieved, or after the temporary BMPs are no longer necessary. Contractor shall remove any trapped sediment from the Project site. Contractor shall permanently stabilize any areas of soil disturbed by sediment removal.

k. In addition to sediment control, Contractor shall prevent other pollutant discharges from contaminating stormwater, groundwater, or soils.

1) Any maintenance or repair of heavy equipment and vehicles involving oil changes, hydraulic system draining and removal, solvent and degreasing cleaning operations, fuel tank draining and removal, and other activities that may result in discharge or spillage of pollutants to the ground or into stormwater runoff must be conducted using spill prevention measures, such as drip pans. Contractor shall immediately clean any contaminated surfaces following any discharge or spill incident. Emergency repairs may be performed on-site using temporary plastic placed beneath and, if raining, over the vehicle.

2) Wheel wash or tire bath wastewater shall be discharged to a separate on-site treatment system.

3) Application of agricultural chemicals including fertilizers and pesticides shall be conducted in a manner and at application rates that will not result in loss of chemical to stormwater runoff. Manufacturers’ recommendations for application rates and procedures shall be followed.
4) Use of lime, flyash, or other soil amendments that could alter the pH of discharge waters is prohibited.

5) Highly turbid or contaminated dewatering water from construction equipment operation shall be handled separately from stormwater. Management options include infiltration, transportation off-site for legal disposal, or use of a sedimentation bag with outfall to a ditch or swale for small volumes of localized dewatering.

I. Contractor shall provide to Owner all notifications/reports required by permit to DOE.

1) If stormwater sampling results show turbidity greater than or equal to 250 NTU, Contractor shall immediately report to DOE and shall notify Owner of the report.

2) Contractor shall file monthly Discharge Monitoring Reports (DMR’s) with DOE as required. Contractor shall provide copies of all DMR’s to Owner.

2. For projects that disturb a soil surface area of 5,000 square feet or greater, but less than one acre, provisions shall be made to meet applicable local regulations, as necessary.

a. Contractor shall make provisions for inspection and approval by the local authority prior to groundbreaking.

3. For projects that create additional impervious surfaces, provisions shall be made to meet stormwater flow control and treatment requirements, as applicable.

C. Wetlands:

1. Contractor must follow all Federal, State and local regulations including but not limited to WAC 173-201 regarding protection of wetlands.

1.06 AIR POLLUTION

A. Contractor shall comply with all provisions of the Owner’s Air Operating Permit, WAC 173-400 and WAC 173-401 requirements as applicable.

B. Contractor shall control pollutants, such as diesel emissions, chemical emissions, and dust generated by the Project, so that pollutants do not adversely impact the Project site or the surrounding-area air quality.

C. Contractor shall submit to Owner within 30 Days of the Notice to Proceed a list of any stationary air emission-generating equipment included in the Work, such as: fuel-powered electrical generators, internal combustion engines, boilers, paint booths, CFC-containing equipment, or other regulated emission sources. Contractor shall assist Owner in the preparation of necessary permit applications, and Owner shall obtain necessary permits. Contractor shall abide by any conditions or requirements of permits.
D. Per WAC 173-400, Contractor shall mitigate all fugitive emissions (such as dust, vehicle exhausts, and other emissions that do not pass through a stack, chimney, or vent) generated by the Work. Contractor shall mitigate dust at the Project site throughout the entire duration of the Work. Dust mitigation may include application of specific chemical compounds approved by Owner, or may be accomplished with intermittent watering and sprinkling at such a frequency as will satisfactorily settle dust (excluding paved surfaces). Paved surfaces shall be cleaned mechanically without the discharge of water or chemicals to storm drains and/or surface waters. Under no circumstances shall Contractor permit dust mitigation cause soil erosion or pollution of surface waters.

E. No materials shall be burned without required permits. If permitted burning is done, odors shall be minimized in accordance with the Owner’s Air Operating Permit.

F. CFCs (chlorofluorocarbons) or HCFCs (hydrochlorofluorocarbons) are not permitted as refrigerants in new or renovation projects. New permanently installed refrigeration equipment, such as chillers, temperature controlled chambers, air conditioning equipment, compressors, etc., must contain HFC (hydrofluorocarbon) refrigerants only (i.e., R-134A, R-404A, or R-507). At the completion of the Project, Contractor must provide detailed documentation to Owner about the refrigeration equipment installed, including identifying markings, capacity, and type of refrigerant. Refrigerant must be installed only by persons certified to do so.

G. Indoor Air Quality:

1. Owner shall notify Contractor of the location of fresh air supply intakes for buildings in the immediate area of the Work, and of fresh air supply intakes for buildings that may be affected by emissions from Contractor operations.

2. Contractor shall notify Owner 3 Days prior to commencing Work in which Contractor must operate vehicles or equipment in areas where fresh air supply intakes are located.

3. Contractor shall notify Owner 3 Days prior to commencing Work in which Contractor will be using solvents or other volatile chemicals, or processes which emit fumes, smoke, or strong odors that may affect fresh air supply intakes, or may enter Owner’s buildings through doorways or windows.

4. Contractor shall not allow its activities that emit vapors, fumes, smoke or strong odors to negatively affect fresh air supply intakes.

5. If air releases of hazardous chemicals must occur, Contractor shall submit no later than 30 Days after the Notice to Proceed a chemical release plan detailing how such incidents may adversely affect Owner. Such a plan shall also specify protection to be provided to the employees of Owner and Contractor actions required to minimize chemical overexposure.

6. During welding activity, Contractor shall confine fumes to the Project site, and the fumes must not adversely affect Owner’s employees or students.
1.07 PUBLIC HEALTH

A. Solid Waste Disposal:
 1. Contractor shall legally dispose of or recycle all solid waste at an off-site location. Contractor shall not burn, dump, or bury waste materials, debris, or rubbish on Owner property. Contractor shall clean the Project site at the end of each work shift. Contractor is liable for any and all damage resulting from improper waste handling and disposal (see Section 07 74 19 - Construction Waste Management).

B. Environmental Noise:
 1. Per WAC 173-60, and applicable local requirements, Contractor shall not exceed maximum permissible environmental noise levels for the duration of the Work.

C. General Sanitation:
 1. Per WAC 246-203, Contractor shall supply adequate water for drinking and hand washing purposes. The use of common drinking cups or towels is prohibited. For hand washing purposes, Contractor shall supply hot running water, soap, disposable towels, and a waste receptacle.

D. Drinking Water Protection:
 1. Per WAC 246-290 and 246-291, Contractor shall protect all public water supplies. No portion of a public water system containing potable water shall be put into service nor shall service be resumed until the facility has been effectively disinfected and a satisfactory bacteriological sample has been obtained from a DOE-certified laboratory. Results of sampling shall be sent to Owner. The procedure used for disinfection shall conform to current standards of the American Water Works Association.
 2. A minimum sanitary control area around all wells shall be maintained at all times. The sanitary control area shall extend at least 100 feet from any well. No source of contamination may be constructed, stored, disposed or applied within the sanitary control area.
 3. If wells are being constructed or abandoned, Owner shall procure the appropriate water rights and construction permits per WAC 173-160. Owner shall provide copies of these documents to Contractor. Wells shall be constructed/abandoned properly by a licensed well driller. Contractor shall submit a plan to Owner detailing how all disinfection shall be accomplished.
 4. Backflow Prevention:
 a. Any connection made by Contractor to Owner’s drinking water system, including connection to a fire hydrant, must be made
through a backflow prevention assembly approved by a Washington State certified cross connection control specialist (CCS) engaged by Owner and inspected and tested by a Washington State certified backflow assembly tester (BAT).

b. Contractor shall label all non-potable water outlets, in a manner acceptable to the Owner, “Non-potable Water / Do Not Drink”.

E. Vector Control:

1. Buildings shall be constructed so as to minimize the attraction and/or harborage of pests and vectors such as birds and rodents. Minimize bird roosting areas by not constructing exposed pipes, beams, or flat ledges on openings, especially underneath covered areas directly accessible to the outside. Openings 1/4-inch or larger shall be sealed. Leave a minimum of a 3-foot swath around the building that is bare. Do not plant trees, shrubs and grass immediately adjacent to building.

2. The presence of standing water shall be minimized or eliminated to prevent mosquito breeding.

F. On-Site Sewage Disposal:

1. Contractor is responsible for fully complying with WAC 246-272. A construction permit application shall be submitted to the appropriate jurisdictional authority for approval. The jurisdictional authority shall issue a construction permit prior to the commencement of construction and shall perform pre-opening inspections. Contractor shall ensure that the appropriate authority inspects and approves the site prior to construction and when the project is substantially complete.

G. Water Recreation Facilities:

1. Contractor is responsible for fully complying with WAC 246-260. A construction permit application shall be submitted to the appropriate jurisdictional authority for approval prior to the commencement of construction. WSU EH&S shall be consulted prior to the development of a construction permit application. Contractor shall ensure that the appropriate regulatory authority inspects and approves the site prior to operation.

H. Food Service Facilities:

1. Contractor is responsible for fully complying with WAC 246-215. A construction permit application shall be submitted to the appropriate jurisdictional authority for approval prior to the commencement of construction. WSU EH&S shall be consulted prior to the development of a construction permit application. Contractor shall ensure that the appropriate regulatory authority inspects and approves the food service prior to operation.
1.08 OCCUPATIONAL HAZARD MANAGEMENT

A. Chemical Hazard Communication:

1. If any hazardous chemicals will be used in the Work or present at the Project site, copies of applicable Material Safety Data Sheets (MSDS) shall be made immediately available to Owner prior to use by Contractor and during any use of the hazardous chemicals in the Work.

2. If the use or presence of hazardous chemicals at the Project site may affect the health of individuals outside the Project site, Contractor shall submit a written plan to Owner at least 30 Days prior to such use or presence detailing how Owner can avoid exposure to the products. Contractor shall submit MSDS / SDS to Owner for any hazardous chemical to which persons outside the project site may be exposed. The exposure avoidance plan shall also specify actions that should be taken if inadvertent exposure occurs. Owner shall provide Contractor with a written plan detailing how Contractor employees can avoid exposure to hazardous chemicals used by Owner that may impact the Project site, and shall specify actions which should be taken if inadvertent exposure occurs. Owner shall submit MSDS / SDS to Contractor for any hazardous chemical to which persons inside the project site may be exposed.

B. Lock-Out/Tag-Out:

1. When Owner and Contractor are to be engaged in coordinated activities requiring the control of hazardous energy, Owner and Contractor shall inform each other of their respective lock-out or tag-out procedures.

C. Confined Space:

1. When Contractor employees are to enter permit-required confined spaces, Owner shall:
 a. Inform Contractor that the Project site contains permit required spaces and that permit-space entry is allowed only through compliance with a confined-space program meeting WAC 296-809.
 b. Inform Contractor of hazards that have been identified.
 c. Coordinate entry operations with Contractor when both Owner and Contractor personnel will be working in or near permit spaces.
 d. Debrief Contractor at the conclusion of the entry operations regarding any hazards confronted or created in permit spaces during entry operations.

END OF SECTION 01 41 19
PART 1 GENERAL

1.01 SUMMARY

A. Contractor shall perform all Work in a skillful and workmanlike manner. Materials and equipment furnished by Contract and any Subcontractor(s) must be of good quality and new unless the Contract Documents require or permit otherwise. Materials shall conform to the manufacturer’s standards in effect at the date of execution of the Contractor and shall be installed in accordance with the manufacturer’s instructions, specifications, and directions. Contractor shall, if requested by Owner, furnish satisfactory evidence regarding the kind and quality of any materials identifying thereon the source, and warranting their quality and compliance with the Contract Documents.

B. Section includes:

1. Contractor’s Quality Control Program;
2. Field samples;
3. Mock-ups;
4. Manufacturer’s instructions;
5. Manufacturer’s field services;
6. Testing laboratory services; and
7. Contractor tests and inspections.

1.02 QUALITY CONTROL PROGRAM SUBMITTALS

A. Contractor shall submit a written Quality Control Program for the Project per the Pre-Construction Submittal Requirements of Section 01 33 00. This submittal shall include but not be limited to the following:

1. An overview of Contractor’s Quality Control Program.
2. Identification and resume of Contractor’s on-site Quality Control Manager (QCM).
3. A description of the activities, record keeping, and correspondence that the QCM will perform and be accountable for throughout the duration of the Project.
4. A description of the quality control meetings to be conducted, sample inspection check lists (i.e., samples of actual inspection check list forms that will be submitted to Owner when scheduling inspections), and Subcontractors’ quality control representatives. All forms that Contractor intends to use in its Quality Control Program shall be part of the submittal.
5. A description of the QCM activities when inspections fail to verify compliance with the Contract Documents.
 a. These activities are to include, as a minimum, follow-up with
applicable Subcontractors, correction and/or completion of Work required for re-inspection, and the re-inspection.

b. Contractor shall submit its weekly Non-Compliance Logs at least 2 Days prior to each Progress Meeting.

6. A description of the QCM activities to provide the required notifications for inspections.

7. A description of record keeping and information turn-over to Owner as a component of the Operating and Maintenance data (i.e. factory representative’s start-up reports and permission to energize, verification of correct voltage and phasing to motors, etc.).

8. Contractor will submit a daily report within 3-business days for any day work is performed. The daily report should include the following information; the list may be adjusted or relaxed with Owners Representative approval depending on size and scope of the project requirements:
 a. progress photo’s,
 b. list of contractor’s and work-force #’s for each contractor,
 c. RFI’s or questions,
 d. equipment quantities in use or idle,
 e. weather (if work is being performed outside),
 f. construction delays or likely delays,
 g. 3rd part inspections or city visits,
 h. safety issues,
 i. meetings conducted,
 j. substantive material deliveries, and
 k. any other relevant facts occurring on the site.

1.03 CONTRACTOR’S QUALITY CONTROL PROGRAM

A. Contractor shall establish and maintain a written Quality Control Program which shall be issued by Contractor to Subcontractors performing Work on the Project and utilized to verify that the execution of the Work is consistent with the requirements of the Contract Documents.

B. The Quality Control Program shall include, but not be limited to the following:

1. Preparatory Phase:
 a. Prior to beginning Work, after all required plans/documents/materials are approved/accepted, and after copies are at the work site. Contractor shall:
 b. Review of each paragraph of applicable specifications, reference codes, and standards. Make a copy of those sections of referenced codes and standards applicable to that portion of the work to be accomplished in the field at the preparatory inspection. Maintain these copies in the field, available for use by Owner’s Designated Representative until final acceptance of the work.
c. Review the Drawings.

d. Check to assure that all materials and/or equipment have been tested, submitted, and approved.

e. Review provisions that have been made to provide required control inspection and testing.

f. Examine the work area to assure that all required preliminary work has been completed and is in compliance with the contract.

g. Perform a physical examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored.

h. Review appropriate accident safety procedures.

i. Discuss procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards for that feature of work.

j. Check to ensure that the portion of the plan for the work to be performed has been accepted by the Owner’s Designated Representative.

k. Schedule, manage and record the minutes of each preparatory meeting.

l. Review all RFIs associated with the Work.

2. Initial Phase:

a. At the beginning of the Work, Contractor shall:

b. Check work to ensure that it is in full compliance with contract requirements. Review minutes of the preparatory meeting.

c. Verify adequacy of controls to ensure full contract compliance. Verify required control inspection and testing. Resolve all differences and deficiencies.

d. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate.

e. Check safety to include compliance with and upgrading of the Safety Plan. Review with each worker. Particular attention should be given to high hazard work.

f. Prepare and attach to the daily CQC report separate minutes of this phase.

g. Repeat the initial phase any time acceptable specified quality standards are not being met.

3. Follow Up Phase:

a. Perform daily checks to assure control activities, including control testing, are providing continued compliance with contract requirements.
requirements, until completion of the Work. The checks shall be made a matter of record in the QC documentation. Conduct final follow-up checks and correct deficiencies prior to the start of additional features of work which may be affected by the deficient work. Do not build upon nor conceal non-conforming work.

C. Contractor’s Quality Control Program shall be independent of any inspections and testing performed by Owner or by any independent testing and inspection agencies hired by Owner.

D. Within the Quality Control Program, Contractor shall have available on the jobsite at all times a written report of quality control activities. At a minimum, the report shall note Project site quality control inspections, performance of scheduled tests and follow-up testing, other required inspections, deficiency log, and examinations of workmanship and quality.

E. Test results shall identify applicable Contract (including Specification) requirements, the test or analysis procedures used, and the actual test results. A statement shall be included that the item tested or analyzed conforms or fails to conform to the Contract Documents. Each report shall be conspicuously stamped on the cover sheet “CONFORMS” or “DOES NOT CONFORM” as the case may be. All test reports shall be signed by a testing laboratory representative authorized to sign certified test reports. Copies of all test reports shall be available on the jobsite at all times.

F. If the Quality Control Program is found to be defective and Contractor does not promptly correct the deficiency, Owner may:

1. Withhold payment until satisfactory corrective action has been taken, or
2. Issue a stop work order until satisfactory corrective action has been taken.

G. Pre-Inspections: Contractor shall pre-inspect Work that requires normal, special, and additional inspections as indicated in the Contract Documents.

1.04 FIELD SAMPLES

A. Field samples are defined as the partial installation of selected materials at the Project site for Owner’s review and acceptance of visual features and workmanship. Generally, accepted field samples are incorporated into the Work.

B. Contractor shall provide field samples as required by the Contract Documents at location acceptable to Owner.

C. Perform Work in accordance with the Contract Documents.

D. Approved samples will serve as an acceptable standard of quality and workmanship.

E. Maintain samples until completion of relevant Work.
F. Upon completion of relevant Work or when directed by Owner, demolish and remove samples from Project site unless sample is accepted as part of completed Work.

1.05 MOCK-UPS

A. Contractor shall provide mock-ups as required by the Contract Documents. Provide additional mock-ups, as required by Owner, until approval is obtained.

B. Do not proceed with subsequent Work until approval of the mock-up is obtained.

C. The approved mock-up shall be the standard of workmanship and materials for the Work that is represented by the mock-up.

D. Maintain mock-up in approved condition, until directed otherwise by Owner.

E. Unless specified otherwise, remove mock-up at completion of the Work or when directed by Owner.

F. Unless specified or approved otherwise, mock-ups shall be completed and approved prior to the pre-installation meeting at which the Work represented by the mock-up will be discussed.

G. Notify Owner a minimum of 7 Days prior to requesting mock-up approval.

1.06 MANUFACTURERS' INSTRUCTIONS

A. Contractor shall comply with manufacturers' instructions in full detail, including each step in sequence. Do not omit preparatory steps or installation procedures unless specifically modified or exempted by Contract Documents.

B. Should instructions conflict with Contract Documents, Contractor shall request clarification before proceeding.

1.07 MANUFACTURERS' FIELD SERVICES

A. When specified, Contractor must require product manufacturer to furnish a qualified representative to observe field conditions and quality of workmanship, and to provide recommendations, certifications, and other specified services.

B. Representative shall submit written report to Owner listing observations and recommendations.

1.08 TESTING LABORATORY SERVICES

A. Owner will arrange for services of an independent Testing Laboratory to inspect and test the Work to verify compliance with Contract Documents.

B. Contractor’s Responsibilities:
1. Cooperate with Testing Laboratory personnel, and furnish access, tools, samples, certifications, test reports, design mixes, equipment, storage, and assistance as requested by the Testing Laboratory.

2. Notify Owner and Testing Laboratory a minimum of 7 Days in advance of all required tests and 48 hours in advance of all required inspections. When tests or inspections cannot be performed, through fault of Contractor, Contractor shall reimburse Owner for costs incurred by Owner.

3. Contractor shall remove and replace Work found to not comply with Contract Documents.

4. If initial tests and inspections indicate deficient work, Contractor shall reimburse Owner for costs of all subsequent tests and inspections related to such deficiency.

5. All damage to Work as a result of normal testing operations shall be repaired by Contractor to match surrounding surfaces.

6. Schedule testing and inspection so that work of testing and inspection personnel will be as continuous and brief as possible.

7. Contractor shall reimburse Owner for travel and lodging expenses incurred for testing and inspection services performed outside a radius of 100 miles of the Project site.

1.09 CONTRACTOR TESTS AND INSPECTIONS

A. Inspection and testing performed exclusively for Contractor's convenience shall be the Contractor's sole responsibility.

B. Earthwork Compaction Testing Requirements:

1. Owner will engage the services of a Testing Laboratory to perform all soil and structural fill compaction testing. Compactions of any fill material shall be equal to or exceed the specified percentage of maximum dry density as defined by ASTM test procedure D1557 (modified proctor). Obtaining such specified compaction performance is the sole responsibility of Contractor.

2. During any of Contractor's operations, Owner reserves the right to perform compaction tests for its own information only. At Owner's discretion, copies of such tests may be made available to Contractor. The taking of any such tests by Owner in no way relieves Contractor from testing to assure itself of compliance with the Contract Documents.

C. Approved Structural Steel Fabricators:

1. Contractor shall pay for any required structural steel fabrication special inspections.

D. Cast-in-Place Concrete Strength Testing Requirements:
1. Concrete test cylinders will be made by Owner or Owner’s Testing Laboratory. Contractor shall be responsible for proper care of cast cylinders while on the Project site (with respect to temperature, humidity and protection).

2. Contractor is also responsible for timely transportation to the laboratory in Spokane (or closer) on a schedule that will permit adequate laboratory curing before testing.

3. Contractor shall notify the Owner at least 48 hours before any concrete pour to allow time for observation.

4. Frequency and location of tests are to be determined. As a minimum, four test cylinders will be made for each day’s pour or for every hundred cubic yards, whichever is greater.

5. The results of Owner’s tests will be made available to Contractor.

6. The quality of all concrete is to be the sole responsibility of Contractor. If Contractor feels that additional testing is required to assure continued quality control, the frequency, testing, and payment therefore is Contractor’s responsibility.

E. All Other Work Inspection and Testing Requirements:

1. Contractor shall, at no additional cost to Owner, provide all inspections and tests required to assure full compliance with the Contract Documents. Unless specifically required, Contractor is not required to submit copies of such test results to Owner. Contractor, however, shall maintain copies of all testing and inspection reports at the Project site for inspection and copying by Owner.

2. The performance of testing or inspection by Owner or Owner’s Testing Laboratory does not relieve Contractor from responsibility for meeting all requirements of the Contract Documents.

END OF SECTION 01 45 00
PART 1 GENERAL

1.01 SUMMARY

A. General: Owner will select and employ an independent testing agency, engineering service, or a special inspector to conduct the tests and inspections to be provided by Owner. Inspections that are normally associated with obtaining State approval (e.g., electrical work as specified in Division 26, etc.) shall be provided and paid for by Contractor. Contractor shall comply with all applicable building codes and provide all testing services required by the Contract Documents unless specifically identified as Owner’s responsibility.

B. Owner’s testing agency shall prepare test reports, logs and certificates applicable to the Work for which Owner will provide testing and shall deliver the specified number of copies to the designated parties. If any inspection or testing reveals failure of the portions of the Work to comply with requirements established by the Contract Documents, all costs made necessary by such failure, including those of repeated procedures and compensation for Owner’s services and expenses, shall be at Contractor’s expense.

1.02 DESCRIPTION

A. Definition: For the purpose of this Section, all references made herein to testing laboratory, testing agency, or special inspector shall refer to as the tests or inspections conducted by a special inspector provided by Owner.

1.03 QUALITY ASSURANCE

A. Qualifications: Contractor’s inspection personnel must be approved by Owner and possess certain qualifications as stated in this Section. The testing agency shall comply with all requirements of ASTM E329.

1. The inspector for waterproofing and roofing shall have specialized technical knowledge and experience specific to waterproofing and roofing.

2. The testing agency for concrete testing and inspection services should be an agency other than the agency employed by Contractor for the purpose of establishing concrete mix designs, etc.

3. Geotechnical inspection will be performed by a licensed geotechnical consulting firm.

1.04 DUTIES OF OWNER’S TESTING AGENCY

A. General: Testing agencies shall conduct testing and inspection services, interpret them, evaluate the results for compliance with the Contract Documents, and report the findings to the Owner, Contractor, and local building authority, as applicable. Testing and inspection services shall be performed in accordance with applicable ASTM standard methods or other specified procedures.
B. Testing: Materials to be tested are those so specified and others as Owner or authorities having jurisdiction over the Project may direct.

C. Inspection: Inspections, continuous and special, shall be performed by the inspectors as required by the Contract Documents and authorities having jurisdiction.

D. Rejected Work: Inspectors shall have the right to recommend rejection of materials and workmanship that is defective. Rejected workmanship shall be satisfactorily corrected and rejected materials shall be removed from the Project site without charge to Owner. If Contractor does not correct rejected work within a reasonable time, Owner may elect to correct the work and charge the expense to Contractor.

E. Inspectors are not authorized to do the following:

1. Release, revoke, waive, alter, or enlarge on requirements of the Contract Documents;

2. Approve or accept any portion of the Work, except as specified for soil conditions (i.e. bearing capacities, etc.);

3. Perform any duties of Contractor; or

4. Stop Work.

F. Should the Owner elect at any time before Final Acceptance to make an examination of Work already completed by removing or tearing out the same, Contractor shall on request promptly furnish all necessary facilities, labor, and material. If such Work is found to be defective in any respect, Contractor shall be responsible for the cost of such examinations and of satisfactory reconstruction. If such Work is found to meet the requirements of the Contract, however, Owner shall be responsible for the cost of such examinations and of satisfactory reconstruction.

1.05 PAYMENTS

A. Owner shall pay for the cost of initial testing and inspection, except as otherwise specified in the Contract Documents. Initial tests and inspections are defined as the first tests and inspections as hereinafter specified.

B. In the event any test or inspection reveals Work not in compliance with the Contract Documents, Contractor shall pay for or be backcharged for all costs of re-testing and/or re-inspection.

C. Additional tests and inspections not herein specified but requested by Owner shall be paid for by Owner, unless the results of such tests or inspections reveal Work not in compliance with the Contract Documents, in which case Contractor shall pay for or be backcharged for all costs of testing, re-testing, re-inspection, and any related Owner costs.
D. Costs for additional tests or inspections required because of any change in materials or change in the source of supply from that specified shall be paid by or backcharged to Contractor.

E. Contractor is responsible for all work required to correct any deficiencies.

F. Contractor is responsible for the cost of any testing required for the convenience of Contractor in the scheduling and performance of the Work.

G. Contractor is responsible for the cost to verify testing done without prior notice, with improper supervision, or contrary to construction practice, and for testing of materials for which mill reports are required but not furnished.

H. Contractor is responsible for the cost of any testing that is required to be performed by Contractor by the Contract Documents.

1.06 TESTS AND INSPECTION REPORTS

A. Copies of Test and Inspection Reports: Copies of test and inspection reports will be distributed at weekly intervals. Such reports shall include all tests performed, regardless of whether such tests indicate that material is satisfactory or unsatisfactory. Samples taken but not tested shall also be reported. Records of special sampling operations shall also be reported. Test and inspection reports shall be distributed electronically as requested by Owner.

B. Test and inspection reports shall be distributed as follows:
 1. Mechanical Engineer;
 2. Electrical Engineer;
 3. Owner; and
 4. Contractor.

1.07 CONTRACTOR'S RESPONSIBILITIES

A. Coordination: Contractor shall initiate and coordinate all required tests and inspections, including conforming with requirements of applicable public agencies and authorities. Inspection of the Work does not relieve Contractor of any obligation under the Contract. The Owner’s Designated Representative shall have authority to reject Work that is not in compliance with the Contract Documents.

B. Access: Inspectors shall at all times have free access to the Work, wherever the Work is in preparation. Contractor shall at all times provide and maintain proper facilities and safe access for such inspection. Contractor shall also cooperate with testing personnel and furnish access, tools, samples, certifications, test reports, design mixes, equipment, storage, and requested assistance.

C. Storage Facilities: Contractor shall furnish adequate storage facilities for the sole
use of the testing laboratory for safe storage of specimens that must remain on the site.

D. Data: Furnish records, drawings, certificates and similar data, including Shop Drawings and Change Orders, as may be required by the testing and inspection personnel to confirm compliance with the Contract Documents.

E. Notice: Contractor shall furnish notice to Owner and inspector at least 48 hours in advance of all required tests and inspections, unless otherwise specified.

F. Defective Work: Contractor shall remove and replace any Work found defective by Owner or not complying with the Contract Documents at no additional cost or Contract Time. Where testing personnel take cores or cut-outs to verify compliance, repair prior to acceptance. Where defective Work requires redesign, any redesign costs shall be paid for by Contractor.

G. Cancellations: Contractor shall give sufficient advance notice to the inspector to allow in the event of any cancellation or rescheduling of a previously scheduled test or inspection. Any charges due to insufficient advance notice of cancellations or delay shall be paid by or backcharged to Contractor.

1.08 TEST FAILURES

A. Where a sample fails to pass a required test, Owner may permit re-testing of the sampled material. In such cases, two samples shall be tested and the material shall be rejected if either of the two subsequent samples fail.

1.09 REPORTING TEST FAILURES

A. Immediately upon inspector’s determination of a test failure, inspector shall notify Owner. On the same day, inspector shall send written test results to those named on the distribution list above.

1.10 REMOVAL OF MATERIALS

A. Unless otherwise directed, materials not conforming to the requirements of the Contract Documents shall be promptly removed from the Project site and properly disposed of without additional expense to Owner.

END OF SECTION 01 45 23
PART 1 GENERAL

1.01 SUMMARY

A. Contractor shall be evaluated on performance throughout the course of the contract to provide past performance documentation for future projects.

B. Section includes:
 1. Program Objectives;
 2. Performance Categories and Assessment;
 3. Evaluation Reports;

1.02 PROGRAM OBJECTIVES

A. The Contract Performance Evaluation Program is intended to improve contractor selection given the following primary objectives:

 1. Assist the Owner in evaluating the contractor's qualifications and proven ability to successfully perform future contracts when past performance has been previously documented;
 2. Provide the University objective data relating to Contractor responsibility;
 3. Provide contractors with a means of enhancing their qualifications and reputation by receiving recognition for exceptional performance;
 4. Encourage better working relationships between the University and the Contractor and to provide feedback to the contractor during and after the contract period;

1.03 PERFORMANCE CATEGORIES AND ASSESSMENT

A. Contractor shall be evaluated based upon the following categories:

 1. Schedule and Time Management;
 2. Quality Management;
 3. Communication Effectiveness;
 4. Management Approach;
 5. Code and Compliance; and

B. Each of the above categories will be assessed by multiple key project stakeholders and provided one of the following performance levels based upon objective and cumulative data:
1. **Outstanding (5):** Contractor has exceeded the majority of all of the significant contract criteria and has met or exceeded the Schedule, Quality, Communications, Management, Code Compliance and Cost requirements of the contract. The contractor was extremely or completely knowledgeable of the contract requirements and applicable laws and regulations. A very consistent high level of cooperation, project management, and job site control appreciably contributed to an unusually good result.

2. **Very Good (4):** Contractor has exceeded many of the significant contract criteria and has met or exceeded some of the Schedule, Quality, Communications, Management, Code Compliance, and Cost requirements of the contract. The contractor was knowledgeable of the contract requirements and applicable laws and regulations. Was generally cooperative and performed their work with minimal prompting. Their performance results were very good.

3. **Satisfactory (3):** Contractor has satisfactorily met the overall contract criteria and has met the overall Schedule, Quality, Communications, Code Compliance and Cost requirement of the contract. The contractor occasionally had to be prompted or reminded of the contract requirements, but overall the project was acceptable, producing an acceptable result.

4. **Marginal (2):** Contractor may have met many, but not all, of the contract criteria and failed to meet one or more of the Schedule, Quality, Communications, Code Compliance or Cost performance requirements of the contract. Even though the project may have been accepted, the contractor's performance, as evaluated, was marginal overall. The contractor frequently had to be prompted or reminded of the contract requirements; overall the project was less than satisfactory.

5. **Unsatisfactory (1):** Contractor failed to meet many or most of the contract criteria and failed to meet the overall Schedule, Quality, Communications, Code Compliance and Cost performance requirements of the contract. While the project may have been accepted by the owner, the effort expended in prompting the contractor to perform was excessive. The contractor's poor or uncooperative performance created serious unnecessary and avoidable difficulties in achieving contract completion.

1.04 EVALUATION REPORTS

A. At the midpoint of project completion, Owner shall provide contractor with a draft Contract Evaluation Report based upon the current performance during the contract. This shall provide the Contractor an opportunity improve performance levels during the contract, and provide an opportunity for Contractor-Owner communication and working relationship.

B. A final Contract Performance Evaluation Report will be completed upon contract completion and shall become the official report of record.
1. A Summary Contract Performance Evaluation will be provided to the Contractor within 30 calendar days after Final Completion.

2. Final Contract Performance Evaluation Reports will remain on record for a minimum of 5 years from date issued.

C. Upon receipt of the Summary Contract Performance Evaluation, Contractor shall review the report and may request a debrief conference within 21 calendar days of receipt.

D. If after the debrief, Contractor would like to dispute the evaluation findings the Contractor shall submit in writing, the specific reasons for disagreement and include the basis for their appeal within 14 calendar days following the debrief.

1. Upon receipt of appeal, Owner shall convene a review with the Assistant Vice President, Facilities Services, Capital to consider the objectivity, accuracy, completeness and fairness of the Contract Performance Evaluation.

2. The Contractor shall be notified and issued a final determination within 30 calendar days of receipt of the appeal.

END OF SECTION 01 45 34
PART 1 GENERAL

1.01 TEMPORARY UTILITIES

A. Owner may furnish to Contractor temporary Owner-owned utilities when available and upon Owner written approval. Owner reserves the right to restrict the use of its utilities if, in its opinion, Contractor fails to adequately conserve utilities or to use utilities appropriately. When using Owner-owned utilities, Contractor is to make metered connections to the nearest available service and disconnect same when no longer needed.

B. If Owner-owned utilities are not available at the Project site, or if Owner restricts use of Owner-owned utilities, Contractor shall obtain required services from commercial sources or public utilities, and Contractor is responsible to pay for all utility costs.

C. Contractor shall field verify the availability of utility services provided by Owner and coordinate the Work accordingly.

D. In remodeling projects where portions of the building are to remain in service, Contractor shall be responsible for coordinating the Work to maintain utility services to the occupied portions of the building.

1.02 TEMPORARY ELECTRICAL SERVICE

A. Contractor shall provide all services required for construction operations and may connect to existing services when available upon Owner approval.

B. Contractor shall provide lighting for construction operations.

C. Contractor may use existing lighting when available and adequate.

D. Contractor shall maintain site lighting throughout the duration of the Work.

1.03 HEAT AND VENTILATION

A. Contractor shall provide heat and ventilation as required to maintain specified conditions for construction operations and to protect materials and finishes from damage due to temperature or humidity.

B. After a building is substantially enclosed, the permanent heating system or a temporary hook-up of equipment from the permanent system may be used for temporary heat provided that the equipment is properly installed by the responsible electrical and mechanical Subcontractors and available for supplying temporary heat. Owner shall be the sole judge of the adequacy of the building enclosure for temporary heating or cooling purposes.

C. Contractor shall arrange with the electrical and mechanical Subcontractors installing said systems and equipment for the use, operation, and maintenance of
the systems. Contractor shall pay for all connections and attendants for temporary heating, including necessary accessories such as temporary (construction) air filters to protect the air distribution systems from contamination.

D. Contractor shall provide a dust free air distribution system and correct all damage to this system caused by the Work.

E. In existing facilities, Contractor shall coordinate use of the existing systems with Owner. Contractor shall extend and supplement with temporary units as required to maintain specified conditions for construction operations.

F. Use of electric resistance type heating systems for temporary heat is prohibited.

G. The warranty period for any permanent equipment used during construction will not commence until Contractor achieves Substantial Completion.

1.04 TEMPORARY WATER SERVICE

A. Unless available from an Owner-owned utility, Contractor shall provide service required for construction operations. At all times, Contractor shall utilize backflow/cross-connection devices, certified by Owner, to safeguard water supply.

B. For Work in existing facilities, Contractor shall connect to existing services when approved by Owner and extend branch piping with outlets so that water is available for use by all persons associated with the Work.

C. Provide drinking water from a safe source for all those associated with the Work.

1.05 SANITARY FACILITIES

A. Use of permanent and/or existing Owner’s facilities will be allowed as long as proper cleanliness is maintained. If, in the opinion of the Owner, restrooms are not being properly maintained, Contractor will be required to provide its own sanitary facilities at its own expense.

B. Owner will designate any restrooms that can be used by Contractor personnel.

1.06 BARRIERS

A. Contractor shall provide barriers as required to prevent public entry to construction areas and to protect existing facilities and adjacent properties from damage from construction operations.

B. When temporary fencing is indicated by the Drawings, or if fencing is provided at Contractor’s option, enclosures shall be constructed of 6 feet high commercial grade chain link with vehicular and personnel gates, as required.
1.07 ENCLOSURES

A. Contractor shall provide temporary weather-tight closures of openings to provide acceptable working conditions, protect materials, facilitate temporary heating, and prevent entry of unauthorized persons. Provide doors with self-closing hardware and locks.

B. Contractor shall provide temporary roofing when so indicated by the Drawings or when made necessary by the Project requirements.

C. Contractor shall provide temporary dust-proof partitions when required to confine dust and moisture to the immediate Work area.

D. Contractor shall provide temporary noise-proof partitions when required to confine noise to the immediate Work area.

1.08 PROTECTION OF EXISTING FACILITIES

A. Utility Tunnel Protection: Contractor shall provide adequate planking across any tunnels to distribute loads and prevent damage. If necessary, Contractor shall provide temporary shoring inside tunnel areas.

B. Low Overhead Clearance: Contractor shall be fully responsible for addressing all vehicular limitations caused by low overhead restrictions throughout campus. Route all traffic to avoid damage to overhead structures. Review proposed routing with Owner prior to commencement of construction.

C. Tree and Plant Protection: Contractor shall protect trees and other plants not scheduled for removal; maintain protection until Project completion.
 1. In the event that a tree or plant is damaged as a result of the Work that, in the opinion of Owner, requires replacement, Contractor shall be responsible for such replacement.
 2. If at any time Contractor judges that the protection of plant materials designated to be saved is incompatible with Work required, or if operations necessarily threaten the health of any plant material, Contractor shall immediately notify Owner and cease Work affecting the area until a written agreement is reached concerning acceptable procedure.

1.09 SECURITY

A. Contractor shall provide security to protect the Work, existing facilities, and Owner’s operations from unauthorized entry, vandalism, and theft. Coordinate with Owner’s security program.

B. During construction, all openings to Owner’s utility tunnel system must be protected against unauthorized entry. Contractor shall provide closures, approved by Owner, including locked doors or hatches at any openings created
1.10 PROTECTION OF INSTALLED WORK

A. Contractor shall provide temporary protection for installed products. Control traffic in immediate area to minimize damage.

B. Contractor shall provide protective coverings for walls, projections elevator cabs, jambs, sills, and soffits of openings. Protect finished floors and stairs from traffic, movement of heavy objects, and storage.

C. Contractor shall prohibit traffic and storage on waterproofed and roofed surfaces and on lawns and landscaped areas.

1.11 CLEANING DURING CONSTRUCTION

A. Contractor shall clean the site each day during construction and shall prevent the accumulation of waste materials and rubbish.

B. Contractor shall clean interior areas prior to the start of finish Work and maintain areas free of dust and other contaminants during finishing operations.

1.12 OFF-SITE CLEAN UP

A. Contractor shall continuously keep sidewalks, lawns, parking areas, and streets clear of construction materials, debris, gravel, rock, and dirt related to the Project.

1.13 LIFTING DEVICES AND HOISTING FACILITIES

A. Contractor shall provide cranes, hoists, towers, and other lifting devices necessary for the proper and efficient movement of materials.

1.14 MECHANICAL AND ELECTRICAL SYSTEM SHUT-DOWNS

A. Any shut-down of mechanical or electrical systems affecting Owner's operations shall be scheduled by Contractor during off-hours. Contractor shall submit a written shut-down request providing at least 14 Days advance notice. Any shut-down must be coordinated with and approved by Owner.

1.15 CONSTRUCTION PARKING

A. Contractor's employees may park only in accordance with campus traffic and parking regulations and pay all required fees.

B. When working in Pullman's central campus, Contractor's vehicular use will be limited to the following:

 1. Delivery of materials to and from Project site;
 2. Single vehicle for use by Project supervisor of each major Contractor
(four total vehicles maximum); and
3. Workers' vehicles shall not be allowed to park in the central mall.

1.16 NOISE CONTROL

A. Any construction related noise that interferes or is likely to interfere with normal use of adjacent space(s) shall be scheduled and approved by Owner.

B. Contractor shall restrict any construction related noise to the hours approved by Owner and in accordance with the state and local noise ordinance.

C. Owner may approve Contractor working extended hours. Request any extended hours of operation with Owner.

1.17 TRAFFIC OBSTRUCTIONS

A. Contractor shall submit a written traffic control plan for all traffic obstructions, either pedestrian or vehicular, for approval by Owner, per the Pre-Construction Submittal Requirements of Section 01 33 00.

B. In some cases, it may be necessary to develop special routes for large or unwieldy deliveries that could interfere with pedestrian movement, especially at peak times.

C. Contractor shall avoid deliveries or equipment operations that block street traffic during peak times.

D. Pedestrian Obstructions: Any equipment on sidewalks or other pedestrian ways shall be barricaded. Barricades shall include a horizontal member at a maximum of two feet above the walking surface.

1.18 REMOVAL OF TEMPORARY FACILITIES

A. Contractor shall remove temporary materials, equipment, services, and construction facilities prior to Substantial Completion inspection.

B. Contractor shall clean and repair damage caused by installation or use of temporary facilities.

C. Contractor shall restore existing facilities used during construction to specified or original condition.

END OF SECTION 01 50 00
PART 1 GENERAL

1.01 PRODUCTS

A. Products include material, equipment, and systems.

B. Comply with Specifications and referenced standards as minimum requirements.

C. Components required to be supplied in quantity within a specification section shall be the same, and shall be interchangeable.

D. All materials shall be new unless specifically noted otherwise.

1.02 TRANSPORTATION AND HANDLING

A. Transport products by methods to avoid product damage; deliver in undamaged condition in manufacturer's unopened containers or packaging, dry.

B. Provide equipment and personnel to handle products by methods to prevent soiling or damage.

C. Promptly inspect shipments to assure that products comply with requirements, quantities are correct, and products are undamaged.

1.03 STORAGE AND PROTECTION

A. Store products in accordance with manufacturer's instructions, with seals and labels intact and legible. Store sensitive products in weather-tight enclosures; maintain within temperature and humidity ranges required by manufacturer's instructions.

B. For exterior storage of fabricated products, place on sloped supports above ground. Cover products subject to deterioration with impervious sheet covering; provide ventilation to avoid condensation.

C. Store loose granular materials on solid surfaces in a well-drained area; prevent mixing with foreign matter.

D. Arrange storage to provide access for inspection. Periodically inspect to assure products are undamaged, and are maintained under required conditions.

1.04 VARIATION FROM SPECIFIED PRODUCTS

A. Subsequent to Bid Opening/Proposal - Approved Equivalents:

1. Requests for approved equivalents will only be considered when approved equivalent statements, used in reference to product
specifications, are specifically provided for within individual Specification sections.

2. The terms "or an approved equivalent", "approved equivalent", or similar statements, when used herein in connection with manufacturers' products, shall be understood to mean products that are equally effective and suitable for their intended use; based on the judgment of the Owner, whose decision shall be final.

3. Written requests for consideration by the Owner of approved equivalents may be submitted throughout the Project.

4. Time extensions and additional costs resulting from use of approved equivalent products will not be considered.

B. No Substitutions:

1. The terms "No Substitutions", "Alternative Products not Acceptable", or similar statements used in reference to product specifications, shall mean that only the specified product will meet the needs of the University and that no other products will be considered at any time before or during the Project.

C. Requirements and Procedures for Product Variations:

1. The Contract is based on the standards of quality established in the Contract Documents.

2. Substitution or approved equivalent revisions shall be made only with the prior written acceptance of the Owner.

3. All requests for substitutions or approved equivalents must be on the proposer's letterhead and shall be accompanied by complete specifications, samples, records of performance, certified copies of tests by impartial and recognized laboratories, and such other information as the Owner may request to prove the merit of the proposed revisions.

4. The Contractor assumes the responsibility for capacity, dimensions, clearance, etc., of the named manufacturer's particular item to assure that the revision meets the requirements.

5. The Contractor shall assume the cost of any redesign, in the form of changes to the Drawings, or for the Work of any other trades, or any other costs required to properly incorporate any revision associated with substitutions or use of approved equivalent products.

6. Final decisions as to the quality and suitability of proposed revisions will rest solely with the Owner and will be based on proof submitted.

7. When the Owner approves a substitution or approved equivalent proposed by the Contractor, it is with the understanding that the Contractor certifies that the article or material is equivalent to or better than that specified.

END OF SECTION 01 60 00
PART 1 GENERAL

1.01 PURPOSE

A. Provide for an orderly, timely, and efficient completion of the Work for Owner.

1.02 SUBSTANTIAL COMPLETION

A. Requirements for Substantial Completion: Contractor shall comply with all requirements for Substantial Completion identified in the General Conditions and other Contract Documents. Prior to Substantial Completion, Contractor must have constructed the Work in substantial accordance with the Contract Documents, and:

1. Certificate of Occupancy received from the AHJ.
2. All elements of the Work must be operational and in good working order and condition, except for incidental punchlist Work;
3. The fire and life safety systems, if any, must be tested and accepted;
4. Any elevators must be operational, functioning, and in good working order and condition, and be fully approved for use;
5. All mechanical, electrical, plumbing, telecommunications, security, and access control systems must operate and function in good working order and condition, including commissioning;
6. The finish portion of the Work must be complete including but not limited to paint, trim, doors, partitions, cabinetry, floor coverings, ceilings, wall finish, and other finish surfaces, except for incidental punchlist Work;
7. All roadway improvements, paving, sidewalks, parking areas, other street improvements, lighting, landscaping and irrigation must be complete;
8. Utilities must be complete, connected, and operating normally;
9. Contractor must have removed all construction facilities, temporary controls, and construction debris;
10. Contractor must have completed training Owner’s personnel on all operating instructions and submitted training DVDs; and
11. Final cleaning.

B. Prior to Substantial Completion Contractor shall request in writing that Owner grant Substantial Completion. Accompanying the request Contractor submit the following:

1. A list of all items remaining to be completed or corrected;
2. Signed originals from authorities having jurisdiction of all certificates of compliance and final approval, as applicable;
3. All system software files required by the Contract Documents, including
but not limited to lighting and environmental controls;

4. Revised Draft Operation & Maintenance manuals; and

5. Draft Project Record.

C. Upon satisfactory completion of the requirements for Substantial Completion, Owner shall prepare and forward to Contractor a letter of Substantial Completion. The letter will identify the date of Substantial Completion and include a punch list identifying all remaining incomplete Work. Contract warranties shall begin as of the date of Substantial Completion.

1.03 FINAL COMPLETION

A. Requirements for Final Completion: Upon receipt of Contractor’s written Notice that Contractor has inspected and completed punch list items and that the Work is ready for final inspection and acceptance, Owner will promptly make such inspection accompanied by Contractor. If Owner determines that some or all of the punch list items are not complete, Contractor shall be responsible to Owner for all costs, including re-inspection fees, for any subsequent inspection to determine completion of the punch list. When Owner finds all punch list items complete and the Work and Contract fully performed, Owner shall establish the date of Final Completion. Owner is not required to establish Final Completion until the following are complete:

1. Complete all requirements listed in the Contract Documents for Substantial Completion of the Work;

2. Complete all remaining punch list items and remaining Work, and obtain approval by Owner that all Work is complete;

3. Obtain permanent occupancy permits (if only a temporary occupancy permit was issued at Substantial Completion);

4. Submit Project Record, any final property survey, and final Operation and Maintenance manuals (if not previously submitted) required by the Contract Documents;

5. Deliver any required tools, spare parts, extra stock of material and similar physical items to Owner as required by the Contract Documents;

6. Complete cleaning after completion of punch list;

7. Submit executed warranties;

8. Complete any required sustainability documentation for which Contractor is responsible;

9. Submit a final comprehensive list of all Subcontractors of all tiers and suppliers for the Project; and

10. Submit certification that materials used in the Work are "asbestos-free" and that all requirements of governing jurisdictions related to the Project have been addressed.
11. Final Project Record.

B. Upon satisfactory completion of the requirements for Final Completion, Contractor shall submit a final Application for Payment.

1.04 FINAL ACCEPTANCE

A. Requirements for Final Acceptance: Final Acceptance shall be established by Owner in writing. Owner shall not be obligated to accept the Project as complete before Final Completion has occurred and Contractor has submitted the following:

1. An affidavit that all payrolls, bills for materials and equipment, and other indebtedness connected with the Work for which Owner or Owner’s property might be responsible or encumbered (less amounts withheld by Owner) have been paid or otherwise satisfied, except for any claims that are specifically identified on the affidavit (Affidavit of Payment of Debts and Claims, AIA form G706 or equivalent).

2. A certificate or written statement evidencing that insurance required by the Contract Documents to remain in force after final payment is currently in effect and will not be canceled or allowed to expire until at least 30 Days' prior written Notice has been given to Owner.

3. Receipt of consent of surety, if any, to final payment (AIA form G707 or equivalent).

4. If required by Owner, other data establishing payment or satisfaction of obligations, such as receipts, releases and waivers of liens, claims, security interests or encumbrances arising out of the Contract, to the extent and in such form as may be designated by. If a Subcontractor refuses to furnish a release or waiver required by Owner, Contractor may furnish a bond satisfactory to Owner to indemnify Owner against such lien. If such lien remains unsatisfied after payments are made, Contractor shall refund to Owner all money that Owner may be compelled to pay in discharging such lien, including all costs and reasonable attorneys’ fees.

5. Provide copy to Owner of all “Affidavits of Wages Paid”. Pursuant to RCW 39.12.040, an "Affidavit of Wages Paid" from Contractor and from each Subcontractor certified by the Industrial Statistician of the Washington State Department of Labor and Industries, with the fees paid by Contractor or Subcontractor.

B. Contingent upon completion of all Affidavits of Wages Paid, the “Notice of Completion of Public Works Contract” form may be completed by Owner.

1.05 RETAINAGE

A. Retainage must be held at least 45 Days following Final Acceptance. If there are either unpaid taxes or fees, or unsatisfied claims of lien against the retained percentage, disbursement of retainage funds will be made in accordance with Washington law.
B. The retainage will be held and applied by Owner as a trust fund in the manner required by RCW 60.28. Release of the retainage will be processed in the ordinary course of business following Final Acceptance of the Work by Owner, provided no notice of lien has been given as provided in RCW 60.28, no claims have been brought to the attention of Owner, Owner has no claims under the Contract, and the requirements below have been met.

C. Owner shall not release retainage until the following requirements have been satisfied.

1. “Certificate of Payment of State Excise Taxes by Public Works Contractor”: Following receipt of Owner’s notice of completion and after determining that all taxes, increase and penalties due from Contractor have been paid, the Department of Revenue will issue this certificate to Owner.

2. “Certificate of Payment of Contributions, Penalties and Interest on Public work Contract”: Upon receiving a copy of Owner’s notice of completion and after determining that Contractor is in compliance with the provisions of the Employment Security Act, the Employment Security Department will issue this certificate to Owner.

3. “Certificate of Release”: Upon receipt of Contractor’s request for release and verification from its records that required premiums have been paid by Contractor and each Subcontractor, the Department of Labor and Industries will issue a statement to that effect.

END OF SECTION 01 70 00
PART 1 GENERAL

1.01 SUMMARY

A. This Section describes the waste management and recycle management criteria for debris and solid waste generated as part of the Work.

B. Contractor shall be responsible for sorting, segregating, and placing designated waste materials into containers provided by Owner. Contractor shall be responsible for segregating and disposing all unacceptable and dangerous wastes as defined below.

C. Owner shall be responsible for furnishing waste collection containers, servicing those containers, and disposing solid waste from the Project, with the exception of unacceptable and dangerous waste.

D. Waste that is disposed of by Contractor shall be in accordance with all applicable local, state, and federal regulations, including WAC 173-350, Solid Waste Handling Standards, and WAC 173-303, Dangerous Waste Regulations.

E. Contractor shall include an allowance of $8,000.00 in its bid to deal with unusual conditions pertaining to solid waste disposal, which do not fall within the scope of this Section. Any unused balance of this allowance shall be returned to Owner at Project Close-out.

1.02 DEFINITIONS

B. Dangerous Waste: Solid waste designated in WAC 173-303 and/or 40 CFR. As used in this Section, the words “dangerous waste” will refer to the full universe of wastes regulated by WAC 173-303 and 40 CFR.

C. Demolition Waste: Largely inert waste, resulting from the selective demolition of buildings, roads and other man-made structures such as cured concrete, asphaltic compounds, brick and masonry, ceramic, glass, steel, and aluminum, and non-inert materials such as clean wood, composition roofing and roofing paper, and minor amounts of metal. Plaster (i.e., sheetrock or plaster board) or any other material, other than clean wood, that is likely to produce gases or leachate during its decomposition process and asbestos waste are not considered to be demolition waste.

D. Land Clearing Waste: Natural vegetation and clean soils from clearing and grubbing land for development such as stumps, brush, weeds, tree branches, tree bark, mud, dirt, sod and rocks.

E. Recycle/Recycling: The process of separating waste materials for remanufacturing or reprocessing into usable or marketable materials. Examples of recycling include separating wood off-cuts for recycling by a wood processor.
into paper pulp, or separating cardboard, plastic, beverage containers, or miscellaneous metals for recycling.

F. Reuse: To use a construction waste material again in roughly its same form. Materials can be reused on-site or on other projects off-site. Examples of reuse include removing a hardwood floor and reinstalling it in a new project, or using soil from one site as fill on another site.

G. Salvage: To remove a construction waste material or equipment from an existing building for reuse on-site or reuse on other projects off-site. Items to be salvaged shall be designated by Owner for removal and delivery to Owner.

H. Unacceptable Waste: All waste not authorized for disposal by Owner. This includes any waste that is now or hereafter defined by federal law or by the governing jurisdiction as radioactive, dangerous, hazardous or extremely hazardous waste, unsanitary waste, and vehicle tires in excess or those permitted to be disposed of by the laws of the governing jurisdiction. It does not include any waste destined for salvage, recycling, or general demolition.

I. Waste: All solid waste generated within the limits of the Project, or extra material or material that has reached the end of its useful life in its intended use. Waste includes salvageable and recyclable materials, masonry, and concrete.

J. Waste Management Plan: A Project-specific plan for the salvage, collection, transportation, recycling, and disposal of the waste generated at the Project site. A waste management plan includes procedures for separating, storing, and transporting waste and includes methods to assure proper implementation of the plan.

1.03 WASTE MANAGEMENT PLAN

A. Draft Waste Management Plan: Per the Pre-Construction Submittal Requirements of Section 01 33 00, Contractor shall submit to Owner a Draft Waste Management Plan. The Draft Plan shall contain the following:

1. List of materials to be salvaged, materials to be recycled, and materials to be disposed of as solid waste, and dangerous waste.

2. General material handling methods, including segregation and sorting, and placing solid waste into designated containers, on-site storage, and any special procedures for removing and protecting materials.

3. Plan for communicating salvage and recycling requirements on the Project.

4. Dangerous waste identification, accumulation, and disposal management procedures.

5. Materials to be sorted, salvaged, and recycled:

 a. At a minimum, the following types of materials in reusable condition shall be salvaged and sorted. Contractor shall remove
and deliver to the Owner at designated location on the Pullman campus.

1) Kitchen equipment;
2) Cabinets;
3) Carpet;
4) Dimensional lumber;
5) Lighting fixtures, without asbestos or PCBs;
6) Shelving;
7) Sinks; and
8) Surplus building materials (new, leftover, unwanted).

Review with Owner for clarification.

b. At a minimum, the following types of materials shall be sorted and included for recycling:

1) All metals (from banding, stud trim, ductwork, piping, rebar, roofing, other trim, steel, iron, galvanized sheet steel, stainless steel, aluminum, copper, zinc, lead, brass, and bronze);
2) Beverage containers;
3) Cardboard (from supplies and packaging);
4) Clean wood (all unpainted, untreated wood scrap including pallets and engineered wood);
5) Mixed office paper (including blue prints);
6) Film plastic (from shrink wrap and other packaging, and sheeting used as protection or erosion control); and
7) Plate glass.

c. With the exception of unacceptable waste, all materials not designated for salvage or recycle per Paragraph 1.03(A)(5) above, may be co-mingled and disposed of as waste.

B. Dangerous Waste Management:

1. Contractor is responsible for all dangerous waste generated during the Project shall be identified, accumulated and disposed in accordance with WAC 173-303. Contractor generated dangerous waste must be shipped for disposal within 90 Days of generation.

2. Contractor may accumulate dangerous waste in accordance with WAC 173-303 and Washington Department of Ecology Technical Information Memorandum 94-120, Satellite Accumulation. If Contractor accumulates dangerous waste in volume greater than 55 gallons or acutely hazardous waste in a volume greater than one quart, Contractor shall establish and operate a “90-Day” accumulation area in accordance with WAC 173-303.
3. Contractor shall dispose dangerous waste only through vendor(s) approved by Owner. Contractor shall arrange all dangerous waste shipments. Utilization of the vendor and facilities included in the State of Washington Hazardous Waste Disposal contract is authorized. Any other proposed vendor(s) and/or facilities are subject to audit by Owner, prior to utilization. Contractor shall pay for said audits. Contractor shall coordinate with Owner’s Environmental Health & Safety (EH&S) Department for transportation and disposal of all Project generated dangerous waste. EH&S will sign all Uniform Hazardous Waste Manifests.

C. Final Waste Management Plan: Once Owner has reviewed the draft Waste Management Plan and responded with comments or corrections, Contractor shall submit a final plan within 14 Days.

PART 2 PRODUCTS – NOT USED

PART 3 EXECUTION

3.01 WASTE CONTAINMENT

A. Owner will provide and service containers for all wastes, with the exception of unacceptable waste. This service is at no cost to Contractor.

B. Contractor shall provide separate waste containers for and properly dispose of all unacceptable waste, including dangerous waste, in accordance with applicable law.

3.02 CONTAMINATION OF WASTE

A. Contractor shall take extraordinary care to ensure construction wastes are properly sorted, segregated, and placed within the correct containers.

B. Should any waste containers designated for salvage, recycle, or general disposal be cross-contaminated with dangerous or unacceptable waste, Contractor shall pay all costs of legally disposing the contaminated waste.

C. Co-mingling of waste:

1. Should designated recycle or salvage containers become cross contaminated with other than unacceptable wastes, the Contract Sum shall be reduced at a rate of $500.00 per cubic yard size of container. (i.e. a partially full, co-mingled 3 yard container would result in a charge to Contractor of $1,500.00).

D. Project progress meetings shall include review of construction waste management as an agenda item.
PART 1 GENERAL

1.01 PURPOSE

A. Contractor shall submit advance/draft electronic of Operation & Maintenance manuals (O&Ms) at or immediately following the 80% Application for Payment. Subsequent Applications for Payment will not be processed until an advance/draft copy of the O&Ms has been submitted for review.

B. Contractor shall submit a final draft of O&Ms on or before Substantial Completion and provide training of Owner's staff in the operation and maintenance of the facility.

1.02 PROCEDURES

A. Together with a request for Substantial Completion, Contractor shall provide one revised draft electronic version of O&Ms.

B. To achieve Final Completion, Contractor shall submit:

1. Two final copies of O&Ms;
2. A text-searchable PDF electronic file of the O&Ms;
3. Separate Test & Balance Reports and Telecommunications Test Reports in an independent three ring binder;
4. A text-searchable PDF electronic file of the Test & Balance Reports and Telecommunications Test Reports.

PART 2 PRODUCTS

2.01 O&M MANUAL MATERIALS

A. Contractor shall submit O&Ms in heavy-duty, three-hole, screw-post, black vinyl-covered binders similar to those made by Arts & Crafts Book Bindery, 618 E. 2nd Avenue, Spokane, WA, (509) 747-3818.

B. Cover and spine to be composed and laid out per the cover page template on the last page of this Section. The cover and spine lettering shall be gold-colored embossed.

C. The maximum thickness for each manual shall be 3”. Multiple manual sets shall be organized by:

1. General,
2. Vertical Transportation,
3. Mechanical,
4. Electrical, and
5. Other (Laboratory Equipment, Special Equipment, etc.).

D. Paper shall be 8 1/2" x 11", 20 lb. white paper. Divisions within volumes are to be accomplished and annotated with permanently imprinted tabs (insertable indexes are not permitted) which indicate Specification Section numbers only.

E. Copies must be legible. Facsimile transmission copies are not acceptable. Original equipment manufacturer (OEM) printed material is preferred.

PART 3 EXECUTION

3.01 PRODUCTION

A. O&Ms are to be as follows:

1. Table of Contents – a listing of the contents of all volumes. This table of contents shall be inserted at the beginning of each volume in the set.
 a. Identify Contractor, include name, address, phone and fax number, and provide a contact name.

2. Subcontractor List – a list or spreadsheet, organized by Specification Section, of all suppliers and Subcontractors of all tiers who performed Work on the Project. Include the name, address, phone and fax number of Subcontractor or supplier, the Specification Section, and the description of the Work. When Subcontractors perform Work of more than one Specification Section, provide a separate listing of each Specification Section. This listing shall be at the beginning of volume #1 only.
 a. Written certification from Contractor attesting that no asbestos containing products have been incorporated into the Work.

3. Warranty List – a list or spreadsheet containing Contractor’s one-year correction period obligation and all extended (greater than one-year) warranties, organized by Specification Section that indicates:
 a. Item Description (include here special warranty numbers or codes),
 b. Length of warranty,
 c. Specification Section, and
 d. Contractor’s contact information, followed by physical copies of the Contractor’s one-year correction period obligation and all extended warranties. Note that 1-year warranties from Subcontractors are not to be bound into each volume of the O&Ms. This warranty list and attendant warranties shall be at the beginning of volume #1 only, immediately following the asbestos certification.

4. Provide data as outlined in each specification section.
B. Original equipment manufacturer (OEM) information is required to be a part of all equipment information within the O&Ms.

C. Shop Drawings and product data initially submitted for acceptance are generally not acceptable for O&M use (one notable exception is snow melting cable layout drawing – a manufacturer detailed item). Routine Project components such as asphalt, concrete, pipe, fittings, conduit, etc., are not to be included in O&Ms.

END OF SECTION 01 78 23
(O&M cover and spine data on next page)
Dodgen Research Facility (0074)

Re-Bid Dodgen Research Facility
Nuclear Science Center HVAC Renewal

2024

General
O&M Manual

Vol. X of Y

(Spine and Cover)
PART 1 GENERAL

1.01 PURPOSE AND PROCEDURE

A. Contractor shall submit draft Project Record drawings on or before Substantial Completion. Requests for Substantial Completion will not be considered if submission of Project Record drawings has not occurred.

B. Contractor shall submit final Project Record drawings before Final Completion may be achieved.

PART 2 PRODUCTS

2.01 MATERIALS

A. Project Record drawings are to be red-line markings on original Drawings which clearly indicate the as-built dimensions (both horizontally and vertically) for all installed Work.

B. Identify on Project Record drawings all underground utilities encountered during the Work. Locate these utilities both horizontally and vertically and tie the dimension string(s) back to permanent and visible structures.

C. Clearly label each sheet with the words “PROJECT RECORD DRAWINGS.”

D. Do not affix requests for information (RFIs), change proposals (CCPs) or architectural supplemental instructions (ASIs) to the Project Record drawings. If all or part of a Drawing has been modified, it is acceptable to affix the revised layout over top of the original. However, all dimensions that have been modified are to be red-lined or yellow highlighted.

E. Copies must be legible.

PART 3 EXECUTION

3.01 PRODUCTION

A. During construction, Project Record information will be reviewed not less than monthly concurrent with the monthly review of the draft Application for Payment.

END OF SECTION 01 78 39
PART 1 GENERAL

1.01 DESCRIPTION

A. Owner has set the following indoor air quality requirements for site operations on the Project, within the limits of the Progress Schedule, Contract Sum, and available materials, equipment, products, and services. These include:

1. Protect workers on the site from air quality problems during construction.
2. Prevent indoor air quality problems in the completed facility.
3. Prevent indoor air quality problems in adjacent facilities.

B. To achieve these requirements, Contractor shall develop an “Indoor Air Quality (IAQ) Management Plan” for this Project.

C. Comply with current LEED Reference Guide.

1.02 IAQ MANAGEMENT PLAN MANAGER

A. Contractor shall identify an IAQ Management Plan Manager who will be responsible to monitor construction activities to ensure that the requirements of the IAQ Management Plan are met. The IAQ Manager may also be the Contractor’s Quality Control Manager. The IAQ Manager will be responsible for the following:

1. Draft and submit the IAQ Management Plan to Owner for acceptance.
3. Conduct meetings as required with all participants in the construction process to communicate the IAQ procedures and understand the importance of the requirements of the IAQ Management Plan. If necessary, post signs to ensure workers’ safety.
4. Identify IAQ problems and institute remedial action as necessary.
5. Be present at regular Progress Meetings, as appropriate, and be responsible for providing a monthly written status report as it relates to IAQ for the Project and be prepared to discuss construction related IAQ procedures currently in effect.
6. At time of building flush-out, IAQ Manager shall be the contact person and shall be responsible for overseeing the entire flush-out process.

1.03 IAQ MANAGEMENT PLAN

A. Draft IAQ Management Plan: Submit a Draft IAQ Management Plan within 14 Days after Notice to Proceed, which contains preliminary descriptions of the following procedures for which Contractor is responsible (initial installation, verification that element(s) are in place, daily inspection and upkeep, and
removal):

1. List of indoor air quality protective measures to be instituted at Project site, including HVAC system protection during construction and any other control measure applicable to the Project;

2. A plan and schedule for inspection and maintenance of indoor air quality measures;

3. Installation sequencing for porous materials, including paint;

4. Measures to be employed to protect ducts and stored on-site or installed absorptive materials from moisture damage;

5. Type of filtration media used during construction and at time of building flush-out; and

6. Cleanup of contaminated components after construction, but before scheduled flush-out of building ventilation system.

B. Include with the “Draft IAQ Management Plan” written procedures that describe building flush-out process that will be followed upon completion of construction.

C. The Draft IAQ Management Plan shall meet or exceed the minimum requirements of the current Sheet Metal and Air Conditioning National Contractors Association (SMACNA) IAQ Guidelines.

D. Final IAQ Management Plan: After review and comment on the “Draft IAQ Management Plan,” Contractor shall submit a “Final IAQ Management Plan” that includes the finalized written procedures for above noted elements as well as building flush-out. This final plan and written flush-out procedures shall address all review comments noted on the draft submittal and be submitted prior to the commencement of construction.

1.04 BUILDING FLUSH-OUT SCHEDULE

A. Contractor shall include a separate activity on the Progress Schedule, which indicates the targeted start date and duration of the building flush-out process.

PART 2 PRODUCTS – NOT USED

PART 3 EXECUTION

3.01 IAQ MANAGEMENT PLAN IMPLEMENTATION

A. Contractor shall implement and maintain the approved IAQ Management Plan for the duration of the Project and update procedures at any time due to unanticipated building conditions. Contractor shall:

1. Use temporary filtration media during construction to protect HVAC at each return air grille; filtration media shall have a Minimum Efficiency Reporting Value (MERV) of 8 as determined by ASHRAE 52.2 - 1999.
Isolate the return side of the HVAC system from the surrounding environment as much as possible. Return side shall have the heaviest Work areas dampered off and all return system openings sealed with plastic. Return side shall be shut down and sealed whenever possible.

2. Avoid the use of products, materials and operations that would cause IAQ problems or concerns.

3. Protect the ventilation system components (equipment and ductwork) from contamination, and provide cleaning of the ventilation components, including ductwork exposed to contamination during construction. Protect during transit and installation.

4. Provide ventilation as may be necessary to protect workers’ health and avoid the accumulation of volatile compounds, dust and other harmful airborne contamination.

5. Provide weekly reports and photographs of construction IAQ management measures such as protection of ducts and stored or installed absorptive materials. In each report, describe and illustrate IAQ measures (installation, effectiveness, upkeep, etc.) during construction along with a description of the SMACNA approach employed.

6. Provide data sheets of filtration media used during construction and installed immediately prior to building flush-out and prior to building occupancy.

7. During installation of carpet, resilient flooring, paints, furnishings, and other VOC emitting products, provide supplemental (spot) ventilation for at least 72 hours after Work is completed and describe these activities in the weekly reports.

B. Contractor shall conduct regular inspection and maintenance of indoor air quality measures, including ventilation system protection and ventilation rate.

C. Contractor shall use low-toxic cleaning supplies for surfaces and equipment.

D. When dry sanding for gypsum board assemblies, Contractor shall provide the following protection:

 1. Isolate the space;
 2. Provide plastic sheet separation during sanding;
 3. Close and seal all air system devices and ductwork; and
 4. Sequence the Work to avoid contamination of other spaces with gypsum dust.

3.02 VENTILATION OF CONSTRUCTION FUMES

A. When hazardous chemicals, mineral-spirit based paints, adhesives, or other similar materials are used, the Contractor shall exhaust toxic, noxious, or odor producing fumes from the building in a manner approved by Owner. Contractor’s
method of exhaust shall ensure the safety of building occupants and pedestrians in and around the Project site. All supply and return air ductwork within the construction area shall be capped air-tight to prevent distribution of fumes.

3.03 BUILDING FLUSH-OUT

A. Contractor shall conduct a building flush-out with new filtration media at 100% outside air after construction ends and prior to testing, adjusting and balancing of systems. Filtration media shall have a MERV of 13 as determined by current ASHRAE 52.2. This flush-out is different from and additional to the 72-hour flush-outs described in 3.01.A above.

B. Relocate information signs as required by Work progress.

3.04 COMPLETION PROCEDURES

A. Remove all IAQ measures as well as signs, framing, and supports at completion of Project.

B. All testing, adjusting and balancing of systems, including training of Owner personnel, shall be completed after flush-out. All flush-out filtration media must be replaced with required filtration media prior to testing and adjusting of systems.

C. Actual procedures employed during building flush-out must receive prior approval from Owner.

D. Punch list items that do not affect the mechanical systems may be conducted during flush-out upon approval of the Owner.

E. Upon completion of building flush-out, replace all filtration media. Filtration media shall be the same as used for occupancy.

F. Submit a report upon completion of building flush-out stating that all procedures stated in the approved IAQ Management Plan have been complied with. This report shall contain all weekly reports and photographs, as well as any IAQ management plan activities that occurred during the Project.
PART 1 GENERAL

1.01 DESCRIPTION OF WORK

A. Commissioning is a systematic process of ensuring that all building systems perform interactively according to the design intent and Owner’s operational needs. This begins in the design phase and continues through construction. The commissioning process incorporates the traditionally separate functions of system documentation, equipment startup, control system calibrations, testing and balancing, performance testing, and training. Commissioning during the construction phase is intended to achieve the following specific objectives:

1. Verify that applicable equipment and systems are installed according to the Contract, manufacturer’s recommendations, and industry accepted standards and that they receive adequate operational checkout by installing contractors.
2. Verify and document proper functional performance of equipment and systems.
3. Document all non-performing equipment and systems and track corrective actions through to final resolution.

B. Work includes the completion of formal commissioning procedures on selected equipment and systems. Commissioning procedures will be designed and coordinated under the direction of a Commissioning Agent (CA). Contractor is not responsible for hiring the CA. The CA will work directly for Owner. Contractor is responsible for coordinating and cooperating with the CA as necessary to complete the training and commissioning processes.

1.02 DEFINITION OF TERMS

A. Commissioning Agent (CA): Is an independent third-party consultant under contract with Owner. CA responsibilities are listed in Subsection 1.03 for information, reference, and clarification.

B. Installation Verification Audit: Includes the on-site inspection and review of related system components for conformance to the Contract. The CA will check for proper systems installation and verify systems readiness for function testing. Noted deficiencies will be documented and must be satisfactorily resolved prior to continuing with commissioning on the affected component or system.

C. Commissioning Plan: Outlines the commissioning process. Provides a brief overview of each start-up and functional test to be performed and identifies the responsible Contractor and/or supplier. It also outlines the responsibilities of all personnel to the commissioning process, estimates the commissioning schedule and provides sample Installation Verification, Start-Up, and Functional Performance Test Procedures and related documentation for information.
D. Start-Up Testing: Initial test checkout of component or systems completed prior to functional performance testing. The start-up tests verify that the equipment is installed and operating properly per the Contact.

E. Testing, Adjusting and Balancing (TAB): Testing, adjusting and balancing is a process where heating and air conditioning systems are tested against design standards, adjusted for maximum efficiency, and balanced to provide optimum performance. The Work typically covers balancing and adjusting air and water distribution in areas of the building served by an HVAC system, and verification and adjustment of heating and cooling loads to insure proper indoor environmental conditions. Areas that do not meet the design standards are referred to the appropriate party for correction. Reports are prepared documenting performance and compliance with design standards.

F. Function Performance Testing: Includes the documented testing of individual components and equipment under actual operating conditions. Final performance commissioning of systems will begin only after Contractor certifies that system components are 100% complete, start-up test results have been accepted, and the CA agrees that systems are ready for functional testing.

G. Commissioning Issues Log: Generated by the CA, includes deficiencies discovered during the commissioning process. The log identifies the responsible contractor, current disposition of issues, and the date of final resolution as confirmed by the CA. Deficiencies are defined as those issues where products, execution or performance do not satisfy the Contract, the design intent or Owner’s need.

H. Final Commissioning Report: Includes the overall final commissioning document, prepared by the CA, which details the actual commissioning procedures performed, inspection and testing results, and the final version of the Commissioning Issues Log indicating that all issues discovered through the commissioning process have been verified as resolved.

1.03 COMMISSIONING AGENT’S DUTIES AND RESPONSIBILITIES

A. Meet and communicate with the Owner’s Designated Representative, Contractor, equipment representatives, and others as necessary to facilitate the commissioning process.

B. Write the commissioning plan.

C. Review commissioning-related Specifications, submittals, and Contract Documents. Communicate noted deficiencies and concerns to Owner.

D. Review the Owner Project requirements and Basis of Design documents to insure Owner’s intent and design requirements are met.

E. Chair controls integration meetings to ensure acceptance of control strategies and determine methods to achieve the required sequence of operation.
F. Develop installation and start-up checklists from:
 1. Information in the Contract Documents; and
 2. Information from equipment manufacturers as provided by Contractor.

G. Coordinate functional testing procedures with Contractor and integrate into Progress Schedule.

H. Develop detailed and specific inspection and functional testing procedures for equipment and systems to be commissioned.

I. Confirm completion of all static piping and duct tests and flushing and cleaning as performed by Contractor.

J. Complete a detailed physical inspection and visual checkout of commissioning related equipment and components. Document specific deficiencies for resolution.

K. Confirm completion of equipment and systems start-up procedures as performed by Contractor and equipment representatives. Verify appropriate documentation is completed and provided for inclusion in the final commissioning report. Record noted deficiencies.

L. Schedule and coordinate the final on-site functional testing process. Complete a documented checkout of every specified operating parameter and mode. Document deficiencies and resolutions.

M. Review Contractor-provided O&Ms. Ensure the manuals provide in-depth, Project-specific information. Provide formal comment.

N. Work with Owner, Architect/Engineer, if any, and Contractor to satisfactorily resolve outstanding issues.

O. Provide Owner with final, complete, and documented verification to ensure commissioned systems are 100% operational per Contract, prior to Owner’s acceptance. Exceptions may be made for seasonal commissioning.

P. Perform seasonal commissioning as required to verify proper system operation during peak heating and cooling seasons.

Q. Complete all other items noted in Contract as Commissioning Agent responsibilities.

R. Provide a final Commissioning Report to Owner.

1.04 DUTIES AND RESPONSIBILITIES FOR COMMISSIONING

A. The commissioning process will require the active participation of persons qualified to represent the following interests:
1. Owner,
2. Contractor,
3. Equipment manufacturer’s representatives,
4. Mechanical Subcontractor,
5. HVAC Subcontractor,
6. Controls Subcontractor,
7. TAB Subcontractor,
8. Electrical Subcontractor, and
9. Others as appropriate.

B. The CA will coordinate, schedule, and oversee the final functional performance commissioning process. Participants shall include in their contracts all costs necessary to participate in and complete the commissioning process.

C. Contractor will assure the participation and cooperation of Subcontractors and coordinate with Owner and Architect/Engineer, as required for the commissioning process.

Owner will assure the participation of its chosen representatives.

PART 2 PRODUCTS − NOT USED

PART 3 EXECUTION

3.01 CONTRACTOR RESPONSIBILITIES FOR COMMISSIONING

A. Contractor shall provide material, equipment, and tools to facilitate completing the functional performance testing process. The CA will provide specialized and calibrated test equipment to perform the calibration and functional performance testing.

B. Contractor shall budget and provide sufficient time and qualified personnel to participate on-site in this process until the process is successfully completed and all deficiencies have been corrected or otherwise resolved.

C. Contractor shall provide training to Owner. Specified training on related systems and equipment operation and maintenance shall only commence after final performance commissioning is successfully completed, and systems are verified by the CA to be 100% complete and functional.

D. Contractor shall reimburse the CA for repeated test failures. After a second failed start-up or functional performance test, the CA and Owner shall be entitled to additional compensation for time and expenses involved with re-testing. The compensation shall be at published company billing rates.

E. Owner will not accept equipment and systems, and Owner will generally not make final payment, until all equipment and systems have been successfully
commissioned and all specified requirements have been satisfied.

F. Include a line item for commissioning in the Schedule of Values. Ensure sufficient costs are included for Contractor’s expenses related to all commissioning tasks.

END OF SECTION 01 91 00
PART 1 - GENERAL

1.01 CONDITIONS AND REQUIREMENTS

A. Refer to BIDDING REQUIREMENTS, CONDITIONS OF THE CONTRACT, SUPPLEMENTARY CONDITIONS and DIVISION 1 of these specifications which govern work under DIVISION 23. Refer to other sections of these specifications for additional related requirements.

B. Codes, Permits and Fees:
 1. Mechanical work shall be in accordance with the most recent adopted publication of the following:
 a. International Building Code
 b. International Mechanical Code
 c. Uniform Plumbing Code
 d. International Fire Code
 e. National Electric Code
 f. American Disability Act
 g. Washington State Energy Code
 h. All applicable State and Local Codes and Ordinances.
 2. The Contractor shall obtain permits and inspections required for the mechanical work on this project at his expense. Deliver all inspection certificates to the Owner's Representative prior to final acceptance of the work.
 3. Contractor(s) shall pay all costs levied by utility companies and/or governing agencies associated with water, gas, sanitary and storm sewer connections and include these costs within his bid. This shall include but not be limited to tap fees, service mains, meters and vault charges.

1.02 DESCRIPTION OF WORK

A. The work covered by the contract documents (specifications and construction drawings), shall include but not be limited to:
1. Furnishing all materials and supplying all labor, equipment and services to install the complete mechanical system as shown on the contract documents and specified herein.

2. All products and materials installed on the project shall be new and in first class condition. Used or resold materials will not be allowed. If requested to verify authenticity of materials the Contractor shall be prepared to produce bill-of-sale invoices.

B. This project has been designed to meet or exceed the minimum requirements of the governing Codes. The Contractor must notify the Owner's Representative in writing of any items in conflict with the Codes prior to signing the contract, or he shall thereafter make any minor adjustments necessary to meet the Codes at no cost to the Owner.

C. The Contractor shall comply with the project close-out requirements as detailed in Division 01, “Closeout Procedures.”

D. Safety Measures:

1. The Contractor shall be solely and completely responsible for conditions of the job site, including safety of all persons and property during performance of the work. This requirement applies continuously and is not limited to normal working hours.

2. Provide all required safety measures and consult with the State or Federal safety inspector for interpretation whenever in doubt as to whether safe conditions do or do not exist.

3. Head protection: Where pipe hangers, equipment support angles, etc., are exposed in access ways for any maintenance, cover all such potentially injurious protrusions less than 7'-0” above the floor with padding; secure and permanently fasten, and finish to match adjacent finishes.

1.03 REFERENCES

A. Definitions

1. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspace, and tunnels.

2. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
3. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

4. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts.

5. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.

1.1 QUALITY ASSURANCE

A. Materials used under this Contract, unless specifically noted otherwise, shall be new and of the latest and most current model line produced by the manufacturer. Each item of equipment shall conform to the latest Standard Specifications of the American Society for Testing Materials and shall conform to any applicable standards of the United States Department of Commerce.

B. Electrically Driven or Connected Mechanical Equipment:

6. All electrically driven or connected equipment and associated control panels shall be provided with UL or equivalent label and/or listing in accordance with the requirements of the NEC. Equipment shall be listed as an assembly where listing/labeling program is available for that type of equipment.

7. Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

8. All HVAC equipment provided in Division 23 requiring compliance with NEC Article 440 “Air-Conditioning and Refrigerating Equipment” shall be listed for a minimum short-circuit current (AIC) rating of 10,000 Amperes RMS. This equipment shall be listed under UL 1995 for both circuit breakers and fuses as the upstream overcurrent protective device. The nameplate shall read “Maximum overcurrent protective device” not “Maximum Fuse” or “Maximum Circuit Breaker.

9. All Division 23 equipment other than that provided in 2 above shall be listed or rated for a minimum of 10,000 AIC at 240, 208 or 120 volts and 14,000 AIC at 480 or 277 volts unless a higher value is specifically indicated on the drawings or in the specific equipment specifications.
C. Fuel fired equipment shall be listed by a nationally recognized testing laboratory for use with the particular fuel type.

D. Pressure vessels and relief valves shall be furnished in accordance with applicable State Boiler and Unfired Pressure Vessel Laws.

E. AWS states that welding qualifications remain in effect indefinitely unless welding personnel have not welded for more than six months or there is a specific reason to question their ability.

F. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."

1.04 COORDINATION

A. Dimensions are approximate and are for estimating purposes only, unless noted otherwise.

B. The mechanical drawings are diagrammatic and show general locations. Drawings are not to be scaled. Field verify exact size, location, invert, and clearances of existing material and equipment, and advise the Owners Representative of any discrepancies between the field conditions and the Drawings prior to any installation. Contractor shall be responsible for all costs associated with the removal or relocation of systems that have been installed without prior notification of the Owners Representative.

C. Assume all responsibility for fitting of materials and equipment to other parts of equipment and structure.

D. Prior to installation of the new Division 23 systems, the Contractor shall coordinate the proposed installation with the Architectural and Structural requirements and all other trades (including HVAC, Plumbing, Fire Protection, Electrical, Ceiling Suspension and Tile systems), and provide reasonable maintenance access requirements. Changes required in work specified in Division 23 caused by neglect to do so shall be made at no cost to Owner.

E. The Contractor shall be responsible for installation of systems according to the Contract Documents. Anything not clear or in conflict will be explained by making application to Owner’s Representative. Should conditions arise where certain changes would be advisable, secure approval from Owner’s Representative for those changes before proceeding.

F. Electrical Coordination

1. The electrical characteristics of all mechanical equipment to be furnished on the project shall be cross-checked with the Electrical Drawings, prior to ordering equipment, to confirm correct power supply; horsepower, kW,
amps, voltage and phase. Where proposed equipment characteristics do not agree with the Electrical Drawings, the engineer shall be contacted for direction before proceeding.

2. Electrical connection sizes: coordinate with the Electrical Drawings for proper electrical lug size and quantity on large capacity devices such as chillers, electric heaters, etc. and determine if the connections will accept either copper or aluminum conductors. Make necessary adjustments to equipment connections to accommodate electrical power feeder sizes and types.

3. Disconnect Switches: Where disconnect switches are furnished integral with the equipment, mounting height shall not exceed 7 ft. (to top) above floor or roof level, including allowance for bases on roof curbs.

1.05 SUBMITTALS

A. Mechanical Cost Breakdown:

1. The Contractor shall furnish the Owner’s Representative an itemized breakdown of the mechanical construction cost within 30 days of notice to proceed. This breakdown shall be utilized for pay applications.

2. At a minimum, the cost breakdown shall be as follows:
 a. Mobilization
 b. Ductwork Material
 c. Ductwork Labor
 d. HVAC Equipment
 e. HVAC Equipment Labor
 f. Piping Material
 g. Piping Labor
 h. Temperature Control Material
 i. Temperature Control Labor
 j. Test and Balance
 k. Closeout

B. Payment Requests:
1. Refer to Division 01 for Payment Procedures.

2. Payment requests for materials and equipment will not be reviewed or approved until shop drawings have been received and approved.

C. Submittal Log: Contractor shall prepare a master submittal log tracking spreadsheet for all Division 23 items, to be filled in, updated and furnished with each submittal package. Submittal log shall indicate specification section and sub-paragraph of each item included in the submittal, along with a general description of the item/equipment, manufacturer name, date submitted and a column for returned date, A/E review action (i.e. approved, approved as noted, revise and resubmit or rejected) and re-submittal action required (if any).

G. Submit Shop Drawings and Product Data per the requirements of Division 01 Section, “Submittal Procedures.” See individual Division 23 specification sections for additional submittal requirements.

1. Electronic Submittal: Organize electronic files in a similar manner to hard copy binders, with electronic indexing (bookmarks) and/or portfolio format for ease of organizing and navigating for A/E review and comment purposes. SUBMITTALS NOT PROVIDED IN THIS FORMAT WILL BE REJECTED.

H. Shop Drawings: Refer to Division 01 for specific information regarding the preparation, submittal and approval of Shop Drawings.

2. Shop drawings, catalog information and material schedules shall be submitted for approval on all materials and equipment prior to ordering. This applies to all specified material and equipment in Division 23.

3. Shop drawings shall be reviewed, approved and stamped by Contractor prior to submitting to Owner’s Representative for approval. Submittals without such approval will be returned without review.

4. Allow for sufficient time for developing shop drawings, processing and review time so that the installation will not be delayed.

5. Indicate manufacturer, trade name and model number. HIGHLIGHT, ENCIRCLE OR OTHERWISE INDICATE ALL DEVIATIONS FROM THE SPECIFIED PRODUCTS OR BASIS-OR-DESIGN EQUIPMENT. Include copies of applicable brochure or catalogue materials. Indicate sizes, types, model numbers, ratings and capacities being proposed. Only those items being used on the project shall be included in the submittal.

6. Where choices of options and accessories are available or specified, provide written description of what is to be furnished. If necessary, list page numbers where submitted items are described.
7. Include dimensional data for roughing in and installation and technical data sufficient to confirm that equipment meets requirements of drawings and specifications.

8. Include wiring, piping and service connection data, motor sizes complete with voltage ratings and schedules. Upon approval, copies of these diagrams shall be forwarded to pertinent contractors.

9. Upon approval, copies of these diagrams shall be forwarded to pertinent contractors.

I. Product Data: Refer to Division 01 for specific information regarding preparation, collation, labeling and submittal of Product Data.

10. Clearly identify product data submittal with the project name. Submittals containing resubmitted data shall also include a “Re-submittal” label in bold letters on the cover.

11. Indicate manufacturer, trade name and model number. Include copies of applicable brochure or catalogue material. Indicate sizes, types, model numbers, ratings, capacities and options actually being proposed.

12. Include dimensional data for roughing in and installation, and technical data sufficient to confirm that equipment meets requirements of drawings and specifications.

13. Include wiring, piping and service connection data, motor sizes complete with voltage ratings and schedules.

14. Submit all materials specified in this Division in one pdf binder.

15. Re-submittals shall include all materials being re-submitted in one binder. Only completed re-submittal including all applicable specification sections will be reviewed.

J. If material or equipment is not as specified or submittal is not complete, it will be rejected. Only completed submittal including all applicable specification sections will be reviewed.

K. Review comments shall not relieve Contractor from responsibility for deviations from Contract Documents unless attention has been called to such deviations in writing at time of submission, nor shall they relieve this Contractor from responsibility for errors in items submitted.
1.06 CLOSEOUT SUBMITTALS

L. General: Submit documents to the Owner/Owners Representative for approval prior to Substantial Completion.

M. Record Documents: Construction documents shall be updated to convey a record of the alterations to the original design. Such updates shall include updated drawings red-lined, or redrawn if specified, that show all changes to size, type and locations of components, equipment and assemblies.

A. Mechanical Operating and Maintenance (O&M) Manuals

1. Refer to Division 01 for additional Closeout Submittal and Operation and Maintenance Data requirements.

2. Contents for the Mechanical O&M Manual are to include the following:

 a. Title Page: Project Name, Project Number, building name, Architect, Mechanical Engineer, Electrical Engineer and General Contractor.

 b. Table of Contents: Complete listing of contents of this O&M Manual. Where multiple volumes are required, provide Master Table of Contents covering all Volumes and place in the front of each volume.

 c. Part 1: Listing of all Contractors, subcontractors and suppliers/vendors for all tiers. Information to include: names, addresses, phone numbers, fax numbers and area of work. Also include a copy of the emergency service information required in Division 1.

 d. Part 2: Copies of all signed general, mechanical and plumbing permits, and inspection reports.

 e. Part 3: Copies of all manufacturer’s warranty and guarantee forms, and any specified special guarantees, fully executed.

 f. Part 4: Provide a separate sub divider for each applicable Section. Tabs are to be identified by specification section title (i.e. Valves for HVAC Piping) and not just specification section number (i.e. Section 23 05 23). For every Section provide the following:

 1) Index listing materials and equipment used.
 2) List of suppliers with address, phone number and fax number.
 3) Catalog cuts, data sheets, engineering calculations, schedules, wiring diagrams and complete parts lists for all products and equipment incorporated into the Project. Literature shall be
clearly marked to indicate each specific item. Include copies of approved submittal data as part of this information.

4) Approved submittal drawings (Option to submit Product Data Submittals as separate Volume(s) if contents are large).

5) Manufacturer’s printed operating instructions for all equipment including:
 a) Initial startup procedures and break-in routine.
 b) Normal operating instructions.
 c) Regulation, control, stopping and shutdown.
 d) Troubleshooting and emergency instructions.
 e) Seasonal operating instructions.

6) Cleaning, lubrication and preventative maintenance instructions.

7) Disassembly, repair and reassembly instructions, including alignment and adjustment instructions.

8) Sequence of operation for each system.

g. Part 5: Controls system manufacturer and calibration information, including wiring diagrams, shop drawings, schematics, record documents, and control sequence descriptions. Desired or field determined set-points shall be permanently recorded on control drawings at control devices or, for digital control systems, in system programming instructions.

h. Part 6: Equipment startup records, test records and certifications. Include certification and test results for the disinfection of domestic water piping, and testing of backflow prevention assemblies, pipe pressure testing, duct leak testing and hydronic water treatment flushing and cleaning witness sheets.

j. Part 8: Spare parts and maintenance materials list. Provide summarized list of spare parts that are to be furnished to the Owner.

k. Part 9: Owner training sign-off sheets.
1.07 PRODUCT DELIVERY, STORAGE AND HANDLING:

A. Refer to Division 01 for Product Storage and Handling Requirements”.

B. Follow manufacturer’s directions in delivery, storage, protection, and installation of equipment and materials.

C. Promptly notify Owner’s Representative in writing of conflicts between requirements of Contract Documents and Manufacturer’s directions and obtain written instructions from Owner’s Representative before proceeding with work. Contractor shall bear expenses of correcting deficiencies of work that does not comply with manufacturer’s directions or such written instructions from Owner’s Representative.

D. Deliver equipment and material to site and tightly cover and protect against dirt, water, and chemical or mechanical injury but have readily accessible for inspection. Store items subject to moisture damage in a dry, heated space.

E. Special Storage Requirements:

1. Equipment and products to be stored on the project site either outside or inside but unheated spaces shall be provided with shrink-wrapped coverings and shall be additionally provided with chemical desiccant packs to control any stray moisture that may enter the protective wrapping.

2. Ductwork shall be stored on pallets on grade. Ductwork and air handling equipment shall be kept dry. Air handling equipment that has been allowed to become wet may be rejected.

F. New Equipment and Ductwork Protection:

1. Protect equipment and materials in storage on site, during and after installation until final acceptance. Leave factory covers in place and take special precautions to prevent entry of foreign material into working parts of piping and duct systems.

2. Protect equipment with polyethylene covers and crates.

3. Operate, drain and flush bearings and refill with change of lubricant before final acceptance.

4. Protect bearings and shafts during installation. Grease shafts and sheaves to prevent corrosion. Provide extended nipples for lubrication.

5. During construction, provide temporary closures of metal or taped polyethylene at all openings in new ductwork to prevent construction dust from entering existing ductwork system.
G. Notify Owner of equipment delivery dates 24 hours in advance of delivery.

H. The Contractor shall be responsible for protection of equipment furnished in this Division from vandalism and weather during all phases of construction. Damaged equipment shall be restored to like new condition or replaced at the Contractor’s expense.

I. Any factory painted equipment scratched or marred during shipment or construction shall be restored to original “new” condition. This includes complete repainting if necessary to provide exact paint match.

1.08 FIELD CONDITIONS

A. Existing Utilities and Piping:

1. The locations of existing concealed lines and connection points have been indicated as closely as possible from available information. The Contractor shall assume that such connection points are within a Ten foot (10’) radius of the indicated location. Where connection points are not within this radius, the Contractor shall contact the Owner’s Representative for a decision before proceeding or may proceed at his own expense.

2. Connection points to existing work shall be located and verified prior to starting new work.

3. The Contractor shall be responsible for damages, which might be caused by his failure to exactly locate and preserve underground utilities.

B. Existing Hazardous Materials: Refer to Division 00 for information, instructions, and requirements regarding existing potentially hazardous materials including, but no limited to, asbestos and lead.

1. Specific attention is directed to the potential existence of asbestos bearing compounds and materials on remodel and demolition projects. Careful coordination with other Contractors and reasonable care shall be exercised.

a. Extent of Asbestos:

1) It can be assumed that the Owner will have removed all asbestos from the construction area of this project prior to this contract.

2) An asbestos survey of the building has been performed and reports the extent of asbestos located throughout the building.

3) A copy of the Asbestos Survey is available upon request.
b. If asbestos bearing or other hazardous compounds are encountered during the course of construction that are not identified in the Asbestos Survey, the Contractor shall immediately notify the Owners Representative.

1.09 WARRANTY

A. The Mechanical equipment and installation shall be warranted for a period of one (1) year from the date of acceptance unless an individual item or specification is otherwise noted as longer. The Contractor shall make good, at his own expense, all defects in work and/or furnished equipment which develop at any time during the warranty period and shall bare all expenses including that of cutting and patching.

B. Refer to individual Division 23 specification sections for warranties required to extend beyond the 1-year project warranty period.

PART 2 - PRODUCTS

2.01 SUBSTITUTIONS

A. Refer to Division 01 Substitution Procedures regarding product prior approval and substitution requirements.

B. Throughout these specifications and drawings, various materials, equipment, apparatus, etc., are specified or scheduled by manufacturer, brand name, type or catalog number. Such designation is to establish standards of desired quality and construction and shall be the basis of design and the bid.

C. Substitutions will not be permitted without written approval.

D. Where two or more manufacturer designations are listed in these specifications, choice will be Contractors option.

1. Exception: Where more than one manufacturer is listed, and only one manufacturer’s catalog number is specified or only one manufacturer is scheduled on the drawings (basis of design), that standard of quality, dimensional characteristics, capacities, and construction shall be maintained by materials or equipment supplied by the other manufacturer(s).

E. If the Contractor uses manufacturers other than the basis of design, the Contractor shall be responsible for:

1. Insuring the substituted item will perform identical to the basis-of-design equipment, fit in the available space while allowing proper maintenance
access. In the event other than specified equipment is used and will not fit job site conditions, the Contractor assumes responsibility for replacement with items indicated as the basis of design.

2. Any changes required by other Contractors caused by the substituted equipment, such as different electrical characteristics, control point requirements, etc.

3. Changes in structural design and/or construction due to weight differences.

F. Products furnished other than the basis of design shall have similar electrical characteristics as the scheduled or specified equipment. Contractor shall be responsible for any electrical changes caused by products not in accordance with this requirement.

2.02 ELECTRICAL MOTORS

A. All electrical motors furnished on the project, whether provided with factory packaged equipment such as pumps, fans, air handlers, fan coil units, etc., or provided separately for field mounting, shall meet or exceed the minimum energy efficiency requirements of Washington State Energy Code.

B. Motors used with Variable Frequency Drives (VFDs): Motors shall be Premium efficiency type NEMA MG 1 Part 31 compliant, Class F insulation, rated as “Inverter Duty”.

C. ECM (Electrically Commutated Motor) type single-phase motors utilized on direct drive applications, shall be ultra-high efficiency type with programmable brushless DC motor, utilizing a permanent magnet rotor and built-in inverter. Permanently lubricated ball bearing design. Provide with integral microprocessor controller for variable speed control (constant torque or external input variable speed control) as indicated.

2.03 ACCESS DOORS

A. Access doors to match surrounding surface, provided with recess to accept matching finish in accordance with the requirements of Division 08. Provide UL rated doors in fire rated construction.

B. Provide flush type steel framed panel with concealed hinges, size minimum 24 x 24 inch for man access and minimum 18 x 18 inch for inspection and hand access.

C. Provide cam type locking device with hand or key lock when located in public corridors and washrooms complete with master keys.
D. Provide access doors for maintenance or adjustments purposes for all mechanical system components including valves, volume dampers, fire dampers, fire/smoke dampers, clean outs, traps and controls.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine premises and understand the conditions which may affect the execution of work of this Division before submitting proposals for this work.

B. No allowance for time or money will be considered for any consequence related to failure to examine existing site conditions.

3.02 INSTALLATION

A. Coordinate Division 23 equipment and systems to the available space, with other trades. The access routes through the construction shall be the Contractor’s responsibility.

B. Drawings are diagrammatic. Make offsets, transitions, and changes in direction of pipes and ducts, as required to maintain proper headroom and pitch of sloping lines and avoid structural, electrical, pipe and duct interference’s whether or not indicated on Drawings. Furnish fittings, etc., as required to make these offsets, transitions and changes in direction at no additional cost to the Owner.

C. Determine exact route and location of each pipe and duct and coordinate and obtain approval for changes from the layout indicated on the drawings with the Owner’s Representative prior to fabrication.

D. Locations of equipment and devices, as shown on the drawings, are approximate unless dimensioned. Verify the physical dimensions of each item of mechanical equipment to fit the available space and promptly notify the Owner’s Representative prior to roughing-in if conflicts appear.

E. All piping, wiring, equipment, ductwork, tubing, etc., shall be concealed within building construction unless otherwise noted, or in mechanical rooms.

F. Arrange pipes, ducts, and equipment to permit ready access to valves, unions, traps, trap primers, starters, motors, control components, and to clear openings of doors and access panels.

G. Prior to installation of the new Division 23 systems, the Contractor shall coordinate the proposed installation with the Architectural and Structural requirements, and all other trades (including HVAC, Plumbing, Fire Protection,
Electrical, Ceiling Suspension and Tile systems), and provide reasonable maintenance access requirements.

H. Provide means of access to all valves, dampers, controllers, operable devices and other apparatus which may require adjustment or servicing.

I. Verify in field exact size, location, invert, and clearances regarding all existing material, equipment and apparatus, and advise the Owners Representative of any discrepancies between that indicated on the Drawings and that existing in the field prior to any installation. Contractor shall be responsible for all costs associated with the removal or relocation of installed systems that have been installed without prior notification of the Owners Representative.

J. Equipment Installation – Common Requirements:

1. Install equipment in accordance with the manufacturer’s instructions. Where the construction documents appear to conflict with the manufacturer’s instructions, contact the A/E for direction before proceeding with installation. Rework caused as a result of failing to resolve conflicting information beforehand shall be done at no additional cost to the Owner.

2. Install equipment to allow maximum possible headroom unless specific mounting heights are indicated.

3. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.

4. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting with minimum interference to other installations. Extend grease fittings to accessible locations.

5. Install equipment to allow for piping to be installed at required slope.

6. Motor and equipment name plates as well as applicable UL and AGA labels shall be in place when the Project is turned over to the Owner.

K. Erection of Metal Supports and Anchorages:

1. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor mechanical materials and equipment.

2. Field Welding: Comply with AWS D1.1.

L. Access Openings for Valves, Dampers, Etc.
1. Provide access doors wherever required to service valves, dampers, fire dampers, motors or any other concealed items requiring access, unless specifically indicated on the drawings to be furnished under other Divisions (i.e., architectural). Access doors for fire dampers shall be installed in duct adjacent to fire damper. Equipment which is accessible by means of removable ceiling panels or tile does not require access doors or panels. Access doors and panels for service and maintenance of items shall be sized and located to allow adequate access for required service.

M. Fire Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials.

N. Switchgear/Electrical Equipment Drip Protection:
 1. Every effort shall be made to eliminate the installation of pipe above electrical and telephone switchgear. If this is not possible, encase pipe in a second pipe with a minimum amount of joints.
 2. Installation of piping, ductwork, leak protection apparatus or other installations foreign to the electrical installation shall be located in the space equal to the width and depth of the equipment and extending to a height of 1.8 m (6 ft.) above the equipment to ceiling structure, whichever is lower (NFPA 70).

O. Inaccessible Equipment:
 1. Where the A/E determines that the Contractor has installed equipment not conveniently accessible for operation and maintenance, equipment shall be removed and reinstalled or remedial action performed as directed at no additional cost to the Owner.
 2. The term "conveniently accessible" is defined as capable of being reached without the use of ladders, or without climbing or crawling under or over obstacles such as motors, fans, pumps, belt guards, transformers, high voltage lines, piping, and ductwork.

P. Cutting and Patching:
 1. Perform all cutting and patching of new and existing construction required for the installation of systems and equipment specified in Division 23. All cutting shall be accomplished with masonry saws, drills or similar equipment to provide neat uniform openings. Field verify locations for new openings to avoid conflict with new or existing structure, architectural elements or other utilities. Coordinate penetration locations.
2. Patch and repair walls, floors, ceilings and roof with materials of same quality and appearance as adjacent surfaces unless otherwise shown. Surface finishes shall exactly match existing finishes of same materials. All patching shall meet the approval of the Owner’s Representative. Where existing mechanical systems are removed and roof or wall openings are not to be reused for new systems, the Division 23 Contractor shall be responsible for in-filling the abandoned opening per above.

3. All cutting and patching made necessary by defective equipment, defective workmanship or failure of this Contractor to properly anticipate his requirements shall be included.

4. Cut carefully to minimize necessity for repairs to existing work. Do not cut beams, columns, or trusses or other structural members without the Owner Representative’s written approval.

5. Cutting, patching, repairing, and replacing pavement, sidewalks, roads, and curbs to permit installation of work specified or indicated under this Division is included.

Q. Demolition and Salvage:

1. Refer to Division 01 for cutting, patching, waste management and disposal, recycling, reuse and documentation requirements.

2. Comply with all Local, State and EPA requirements for glycol antifreeze and/or refrigerant disposal and/or reclaim.

3. Demolition of mechanical systems and equipment in remodeled areas shall be provided under Division 23.

4. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 a. Ducts to be removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 b. Equipment to be removed: Disconnect and cap services and remove equipment.
 c. Equipment to be removed and reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 d. Equipment to be removed and salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
5. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

6. Where the plans are not clear on what existing systems are to remain and be reused or retained for later upgrades, the Contractor shall contact the Owner's Representative for direction before proceeding with demolition work.

7. Systems, materials and equipment designated for demolition, shall be salvaged to the Contractor and removed from the site unless otherwise noted.

8. Equipment and materials salvaged to the Owner shall be delivered to an owner approved on-site location.

9. Contractor shall repair any existing equipment damaged as a result of his work.

10. Verify and document condition of existing systems to be connected to prior to construction.

 a. Submit to A/E a list of required equipment repairs due to existing conditions.

 b. Required repairs not documented will be made by the Contractor at his own expense.

11. Contractor's bid shall include re-claim and disposal of refrigerant from existing systems indicated to be removed.

3.03 SPECIAL PROJECT PHASING REQUIREMENTS

A. This is an occupied building and will require careful coordination during construction so as to provide installations that deliver new operational systems, and also to keep existing systems operational until such time as these areas are scheduled for demolition and remodel work.

B. The contractor shall plan and organize all his construction activities, material procurement, manpower forces and planning so as to meet the project phasing without interruption to the owner's occupancy requirements as indicated on the general phasing plans.

C. The nature of this project will require multiple sub-system completion activities, as each phase is completed and made operational. As such the contractor shall allow for several instances of system completion, testing, inspection,
flushing, cleaning, chlorination, start-up, commissioning, training and phased owner acceptance/warranty.

D. Where necessary to keep existing systems operational that are part of later phases, the contractor shall provide all necessary temporary valving, caps, bypasses, interconnects, etc. Where demolition activities of early phases require partial disconnection from the existing systems.

E. Disconnecting from and capping/valving of existing portions of the active systems must be coordinated in advance with the owner's schedule so that systems are not deactivated when the building is being used. Temporary shut-downs for this purpose are allowed but must be approved in advance with the owner.

3.04 EQUIPMENT TESTING

A. Equipment Tests: Equipment shall be subject to tests as specified in individual Division 23 specification sections.

B. Demonstrate that the mechanical equipment and systems are performing to provide conditions through all possible modes of operation as outlined below. The verification testing procedures shall address all operating characteristics of all mechanical equipment and systems. Equipment and systems shall be tested in accordance with the manufacturer’s requirements and the Commissioning testing requirements.

C. Provide all test equipment, including test pumps, gauges, instruments, and other equipment required. Test all rotational equipment for proper direction of rotation. Upon completion of testing, certify to the Owner’s Representative in writing, or as witnessed by the Commissioning Authority, that the specified tests have been performed and that the installation complies with the specified requirements.

1. Provide equipment start-up test reports on forms provided by the manufacturers, filled-in, dated and signed by the authorized start-up agent or technician. Include copies of start-up reports in the O&M manuals.

D. A record similar to the following shall be kept to record each test and copies shall be sent to the Owner’s Representative after each test is complete:

<table>
<thead>
<tr>
<th>EQUIPMENT TESTS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSTEM TESTED</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pool Room HVAC</td>
</tr>
<tr>
<td>Temperature Controls</td>
</tr>
<tr>
<td>Electrical Controls</td>
</tr>
</tbody>
</table>
3.05 PIPING AND DUCTWORK TESTING

A. Piping and duct systems shall be subject to tests as specified in the applicable Division 23 sections.

B. No piping shall be covered, insulated or concealed until it has been tested, inspected and approved by any local authority having jurisdiction. Isolate systems during testing and flushing.

C. Ductwork systems and specialties shall be subject to testing as specified in the applicable Division 23 sections.

D. Tests and repairs shall be completed prior to concealment or insulation of ducts.

E. Provide all test equipment including test pumps, gauges, instruments and other equipment required. Test all rotating equipment for proper direction of rotation. Upon completion of tests contractor shall certify in writing to the Owner’s Representative that the specified tests have been performed and that the installation complies with specifications.

3.06 96 HOUR TEST RUN

A. Refer to Section INSTRUMENTATION AND CONTROLS FOR HVAC for 96 hour test run requirements.

B. Provide adequate time in the project schedule for these functions, which may be done in conjunction with certain Commissioning and Owner training activities.

3.07 CLOSEOUT ACTIVITIES

A. Demonstration and Owner Training: Instruct the designated Owners representative(s) in operation and maintenance of mechanical systems utilizing the information and material available in the Operation and Maintenance Manual.

1. Upon completion of the equipment and systems installation and connections, start-up, testing and balancing, and at the end of each Construction Phase, the Contractor shall assemble all major equipment factory representatives and subcontractors together for the Owner instructional period.

 a. Coordinate training schedule in advance with Owner’s representative so that the required Owner personnel may be present and also to
minimize the number of sessions required and/or return trips by factory agents.

2. Instruction period shall occur after start-up and testing activities have occurred, the controls are operational and when systems are properly working.

3. Prepare statement and check list, similar to below, to be included in the Operation and Maintenance Manual. This Statement shall read as follows:

OWNER TRAINING SIGN-OFF:

“The Contractor, associated factory representatives and subcontractors have started each system and the total system and have proved their normal operation to the Owner’s representative and have provided instruction on the operation and maintenance thereof.”

DATE: __________________

SYSTEM OR EQUIPMENT TRAINED BY OWNER’S STAFF

OR EQUIPMENT (CO. & NAME) **(NAMES & SIGNATURES)**

_________________ ________________ __________________

_________________ ________________ __________________

4. Copies of this acceptance sign-off sheet shall be sent to the Owner’s Representative and included in the O & M manual.

B. Owner Acceptance, Hand-off, Operational & Maintenance Responsibilities & Warranty:

1. Refer to the General Conditions and Division 01 for the definitions or and additional requirements associated with “Prior Occupancy”, “Substantial Completion”, “Correction on Nonconforming Work”, “Final Completion” and “Warranty of Construction”, and other project close-out, substantial completion and warranty requirements.

2. Near the end of the project, or at the end of each phase, schedule a meeting with the Owner, A/E, and Temperature Control Contractor, to discuss mechanical system turn-over responsibilities and expectations.

3. Notwithstanding other requirements in the General Conditions and Division 01, once the Owner has taken beneficial occupancy and the
mechanical systems have been made operational, tested, and the Owner has received training, it is expected that the Owner will be responsible for ongoing system operations, maintenance and control activities, except as otherwise determined above during the Hand-off meeting.

4. Once the Owner has taken over primary responsibility for the operation and maintenance of the mechanical systems, the Contractor shall still be obligated to complete all outstanding work in accordance with the Contract Documents, including, but not limited to those items as identified in the Commissioning issues logs, punch lists, or other reports, as well as correct all nonconforming work and repair all defective work as identified during the warranty period.

C. Punch List Procedures:

1. Refer to Division 01 Closeout Procedures for general punch list procedures.

2. The project shall be fully cleaned and in all respects ready to turn over to the Owner for occupancy before the Punch List Inspection is requested. This shall include but not be limited to:
 a. Cleaning up all equipment, materials, cartons, and other debris that is a direct result of the installation of equipment under this contract.
 b. Cleaning exposed piping, ductwork, equipment, and fixtures.
 c. Repairing damaged finishes.

3. The Contractor shall notify the Owner’s Representative in writing when the project or phase is ready for punch lists. After punch lists are complete, written notice must be forwarded to the Owner’s Representative requesting final checkout.

4. At the time of final observation, the contractor shall accompany the observation party and shall remove access panels as required, to allow complete observation of the entire mechanical system.

END OF SECTION 23 00 00
PART 1 - GENERAL

1.01 SUMMARY
 A. This Section includes the following meters and gages for mechanical systems:
 1. Gages.
 2. Test plugs.

1.02 REFERENCES
 A. American Society of Mechanical Engineers (ASME):
 1. ASME B40.3 – Bimetallic Actuated Thermometers.
 2. ASME B40.5 – Snubbers.
 3. ASME B40.100 – Pressure Gauges and Attachments.

1.03 SUBMITTALS
 A. Product Data: For each type of product indicated; include performance ratings.

PART 2 - PRODUCTS

2.01 PRESSURE GAGES
 A. Manufacturers:
 1. Ashcroft Commercial Instrument Operations; Dresser Industries
 2. Miljoco Corp.
 3. Tel-Tru Manufacturing Company.
 4. Trerice, H. O. Co.
 5. Weiss Instruments, Inc.
 6. Weksler Instruments Operating Unit; Dresser Industries; Instrument Div.
B. Direct-Mounting, Dial-Type Pressure Gages: Indicating-dial type complying with ASME B40.100.

1. Case: Dry type, drawn steel or cast aluminum, 4-1/2-inch diameter.
2. Pressure-Element Assembly: Bourdon tube, unless otherwise indicated.
3. Pressure Connection: Brass, NPS 1/4, bottom-outlet type unless back-outlet type is indicated.
4. Movement: Mechanical, with link to pressure element and connection to pointer.
5. Dial: Satin-faced, non-reflective aluminum with permanently etched scale markings.
7. Window: Glass.
8. Ring: Metal.
9. Accuracy: Grade A, plus or minus 1 percent of middle half scale.
10. Vacuum-Pressure Range: 30-in. Hg of vacuum to 15 psig of pressure.
11. Range for Fluids under Pressure: Two times operating pressure.

C. Pressure-Gage Fittings:

1. Valves: NPS 1/4 brass or stainless-steel needle type.
2. Syphons: NPS 1/4 coil of brass tubing with threaded ends.
3. Snubbers: ASME B40.5, NPS 1/4 brass bushing with corrosion-resistant, porous-metal disc of material suitable for system fluid and working pressure.

2.02 TEST PLUGS (INSTRUMENT GAGE WELLS)

A. Manufacturers:

1. Flow Design, Inc.
2. MG Piping Products Co.
4. Peterson Equipment Co., Inc.

5. Sisco Manufacturing Co.

6. Trerice, H. O. Co.

B. Description: Corrosion-resistant brass or stainless-steel body with core inserts and gasketed and threaded cap, with extended stem for units to be installed in insulated piping.

C. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.

D. Core Inserts: One or two self-sealing rubber valves.

 1. Insert material for air, water, oil, or gas service at 20 to 200 deg F shall be CR.

 2. Insert material for air or water service at minus 30 to plus 275 deg F shall be EPDM.

PART 3 - EXECUTION

3.01 PRESSURE GAGE APPLICATIONS

A. Install pressure gages at suction and discharge of each pump, and across suction diffusers/strainers.

B. Install pressure gages on the inlet and outlet piping of heat exchangers.

C. Install pressure gages elsewhere as indicated on flow diagrams.

D. Pressure ranges shall normally be 0-100 psi, unless otherwise noted on the plans, or where higher system pressures dictate extended ranges.

3.02 INSTALLATIONS

A. Install direct-mounting pressure gages in piping tees with pressure gage located on pipe at most readable position.

B. Install needle-valve and snubber fitting in piping for each pressure gage for fluids (except steam). For steam applications provide needle-valve and syphon.

C. Install test plugs in tees or weld-o-let taps in piping. Install test plugs adjacent to all thermometers and pressure gages, at all DDC temperature and pressure...
sensors, at inlets and outlets to all heating and cooling coils, at inlets and outlets to heat exchangers and elsewhere as indicated on flow diagrams.

D. Install gages adjacent to machines and equipment to allow service and maintenance for meters, gages, machines, and equipment.

E. Adjust faces of gages to proper angle for best visibility.

END OF SECTION 23 05 19
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the following general-duty valves:
 1. Ball Valves
 2. Gate Valves
 3. Check Valves
 4. Drain Valves

B. See Section 23 09 00 - HVAC Instrumentation and Controls, for automatic temperature control valves, actuators and sensors.

C. See other Division 23 Sections for specialty valves including, but not limited to the following:
 1. Hydronic flow balancing valves and circuit setters
 2. Strainers

1.02 references

A. American National Standards Institute (ANSI):
 4. ANSI B16.18 (ASME B16.18) – Cast Copper Alloy Solder Joint Pressure Fittings.

B. American Society of Mechanical Engineers (ASME):
 1. ASME B16.10 – Face to Face and End to End Dimensions of Valves.
2. ASME B16.34 – Valves Flanged, Threaded and Welding End.

3. ASME B31.1 – Power Piping.

4. ASME B31.9 – Building Services Piping.

C. ASTM International:

2. ASTM B16 – Standard Specification for Free Cutting Brass Rod, Bar and Shapes for Use in Screw Machines.

D. Manufacturers Standardization Society (MSS):

1. MSS SP-45 – Bypass and Drain Connections

2. MSS SP-67 – Butterfly Valves.

4. MSS SP-80 – Bronze Gate, Globe, Angle, and Check Valves.

1.03 SUBMITTALS

A. Product Data: Submit manufacturer’s technical product data, including installation instructions for each type of valve indicated.

PART 2 - PRODUCTS
2.01 GENERAL

A. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.

B. Valve Sizes: Same as upstream piping unless otherwise indicated.

C. Valve Actuator Types

1. Handwheel: For valves other than quarter-turn types.

2. Handlever: For quarter-turn valves NPS 6 and smaller. Provide with memory stop control.

2.02 Ball Valves:

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Nibco
2. Apollo
3. Crane
4. Hammond
5. Grinnell
6. Milwaukee
7. Muellar
8. Stockham
9. Victaulic

A. Brass Ball Valves:

11. CWP Rating: 600 psig

15. Seats: PTFE or TFE.
17. Ball: Stainless steel, vented.
18. Port: Full

2.03 GATE VALVES

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 1. Nibco
 2. Apollo
 3. Crane
 4. Hammond
 5. Grinnell
 6. Milwaukee
 7. Meullar

B. Bronze Rising Stem Gate Valves:

 1. Standard: MSS SP-80, Type 2.
 2. CWP Rating: 200 psig.
 3. SWP Rating: 125 psig saturated steam
 5. Ends: Threaded.
 7. Disc: Solid wedge; bronze.

C. Where clearance does not allow the use of rising stem valves as specified, provide a non-rising stem valve of equal quality.

2.04 Check Valves:

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Nibco
2. Apollo
3. Crane
4. Hammond
5. Grinnell
6. Milwaukee
7. Meullar
8. Stockham

B. Bronze Swing Check Valves:

C. Bronze In-Line Lift Check Valves:

15. Standard: MSS SP-80, Type 2.

2.05 Drain Valves:

A. Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 1. Nibco
 2. Apollo
 3. Crane
 4. Hammond
 5. Grinnell
 6. Milwaukee
 7. Meullar
 8. Stockham

B. Two-Piece, Full-Port, Brass Ball Valves:
 2. SWP Rating: 150 psig
 3. CWP Rating: 600 psig
 6. Ends: Threaded x Hose Thread on outlet with cap and chain
 7. Seats: PTFE or TFE.
C. Bronze Rising Stem (RS) Gate Valves:
 1. Standard: MSS SP-80, Type 2.
 2. CWP Rating: 125 psig
 4. Ends: Threaded x Hose Thread on outlet with cap and chain
 5. Stem: Bronze.
 7. Packing: Asbestos free.
 8. Handwheel: Malleable iron.

PART 3 - EXECUTION

3.01 EXAMINATION

 A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.

 B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.

 C. Examine threads on valve and mating pipe for form and cleanliness.

 D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.

 E. Do not attempt to repair defective valves; replace with new valves.

3.02 VALVE INSTALLATION

 A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

 B. Locate valves for easy access and provide separate support where necessary. Valves shall not be located where access is blocked by ductwork, conduit, other
piping, building elements, etc. If necessary, offset locations of valves where shown on the drawings to locations that are more accessible. Do not locate valves in locations that cannot be accessed by a conventional 8 foot ladder, or if necessary, provide a chain operator mechanism.

C. Install valves in horizontal piping with stem at or above center of pipe.
 1. Exception: Install butterfly valves in horizontal piping with stem at the horizontal position.

D. Install valves in position to allow full stem movement.

E. Install check valves for proper direction of flow, and as follows:
 1. Swing Check Valves: In horizontal position with hinge pin level.
 2. Lift and Silent Check Valves: With stem upright and plumb.

3.03 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.04 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

A. If valve applications are not indicated, use the following:
 1. Shutoff Service: Ball or butterfly.
 2. General Backflow Prevention:
 a. NPS 2 and Smaller: Bronze swing check valves.
 3. Pump-Discharge Check Valves:
 a. NPS 2 and Smaller: Bronze lift check valves.
 4. Drain and Blowdown Valves
 a. Water Service: Brass Ball Valve
 b. Steam Service: Bronze Gate Valve

B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
C. Select valves, except wafer types, with the following end connections:

1. NPS 2 and Smaller: Threaded ends except where solder-joint valve-end option is indicated in valve schedules below.

3.05 STEAM AND STEAM CONDENSATE VALVE SCHEDULE

A. Pipe NPS 2 and Smaller:

1. Ball Valves: Two-Piece, Full-Port, Brass or Stainless Ball Valve
2. Gate Valves: Bronze RS Gate Valve
3. Check Valves: Bronze Swing Check Valve

END OF SECTION 23 05 23
PART 1 - GENERAL

1.01 SUMMARY:

A. This Section includes the following:

1. Steel pipe hangers and supports.
2. Trapeze pipe hangers.
3. Metal framing systems and cross-supports.
4. Thermal-hanger shield inserts.
5. Fastener systems.
6. Equipment supports.

B. See Division 5 Section "Metal Fabrications" for structural-steel shapes and plates for trapeze hangers for pipe and equipment supports.

C. See Section 23 05 48 - Mechanical Vibration Controls, and Section 23 05 50 – Mechanical Seismic Controls, for vibration isolation devices.

D. See Section 23 05 16 - Expansion Fittings and Loops for HVAC Piping, for pipe guides and anchors.

E. See Section 23 07 00 – Mechanical Insulation for pipe insulation requirements.

F. See Section 23 31 00 - HVAC Ducts for duct hangers and supports.

1.02 REFERENCES

A. Definitions:

1. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

B. Reference Standards:

1. American Society of Mechanical Engineers (ASME):
 a. ASME B31.1 – Standards of Pressure Piping.
 b. ASME B31.9 – Building Services Piping.
2. ASTM International:

1.03 SUBMITTALS:

A. Product Data: For the following:
 1. Steel pipe hangers and supports.
 2. Thermal-hanger shield inserts.

B. Shop Drawings: Show fabrication and installation details and include calculations for the following:
 1. Trapeze pipe hangers.
 2. Metal framing systems. Equipment supports.

C. Welding certificates.

1.04 QUALITY ASSURANCE:

A. Welding: Qualify procedures and personnel according to ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS
2.01 PERFORMANCE REQUIREMENTS:

A. Contractor shall be responsible for determining the weights of the supported piping, equipment and/or ductwork, based on sizes, hanger support spacing and operating loads. All hangers, rods, clevises, cross-support members, etc. shall be sized and located by the Contractor based on these loads and the recommendations of the support product manufacturers or equivalent structural design practices. Adequacy of building structural elements to bare all upper equipment support anchors points shall be the Contractor’s responsibility through the information provided on the Architectural and Structural Drawings.

B. Design supports for multiple pipes capable of supporting combined weight of supported systems, system contents, and test water.

C. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

D. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

2.02 MANUFACTURERS:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.03 STEEL PIPE HANGERS AND SUPPORTS:

A. Description: MSS SP-58, Types 1 through 58, factory-fabricated components. Refer to Part 3 "Hanger and Support Applications" Article for where to use specific hanger and support types.

B. Manufacturers:

2. ERICO/Michigan Hanger Co.
4. Anvil International
6. PHD Manufacturing, Inc.
7. PHS Industries, Inc.
8. Piping Technology & Products, Inc.

9. Tolco Inc.

C. Galvanized, Metallic Coatings: Pre-galvanized or hot dipped.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.04 TRAPEZE PIPE HANGERS:

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural-steel shapes with MSS SP-58 hanger rods, nuts, saddles, and U-bolts.

2.05 METAL FRAMING SYSTEMS:

A. Description: MFMA-3, shop- or field-fabricated pipe-support assembly made of steel channels and other components.

B. Manufacturers:

2. ERICO/Michigan Hanger Co.; ERISTRUT Div.

3. GS Metals Corp.

5. Thomas & Betts Corporation.

6. Tolco Inc.

7. Unistrut Corp.; Tyco International, Ltd.

C. Coatings: Manufacturer's standard finish, unless bare metal surfaces are indicated.

D. Nonmetallic Coatings: Plastic coating, jacket, or liner.

2.06 THERMAL-HANGER SHIELD INSERTS:

A. Description: High density compressive-strength insulation insert encased in sheet metal shield. Compressive strength varies (25 to 100 psi) based on insulation material selected and shall be as required to accommodate various hanger types, pipe sizes and materials, and associated loading. Flame/smoke
rated at 25/50 for plenum applications. Minimum R-Value per 1” thickness shall be 2.5 for calcium silicate and 5.0 for cellular glass or phenolic insulations.

B. Manufacturers:

1. Thermal Pipe Shields.
2. Carpenter & Paterson, Inc.
3. ERICO/Michigan Hanger Co.
4. PHS Industries, Inc.
5. Pipe Shields, Inc.
7. Value Engineered Products, Inc.

C. Insulation-Insert Material for Cold Piping: Water-repellent treated, ASTM C533, Type I calcium silicate, ASTM C-1126 Type III Phenolic Foam or ASTM C552, Type II cellular glass with vapor barrier.

D. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C533, Type I calcium silicate, ASTM C-1126 Type III Phenolic Foam or ASTM C552, Type II cellular glass.

E. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference, 360 degrees, of pipe.

F. For Clevis, Band or Roller Supports/Hangers: Insert and shield shall cover lower 180 degrees of pipe. Contractor’s option to utilize full 360 degree inserts.

G. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

H. Insert Thickness: Match adjacent pipe insulation thickness as required for system duty. Refer to Section Mechanical Insulation.

2.07 FASTENER SYSTEMS:

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:
 a. Hilti, Inc.
b. ITW Ramset/Red Head.

c. Masterset Fastening Systems, Inc.

d. MKT Fastening, LLC.

e. Powers Fasteners.

B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

1. Manufacturers:

 b. Empire Industries, Inc.

 c. Hilti, Inc.

 d. ITW Ramset/Red Head.

 e. MKT Fastening, LLC.

 f. Powers Fasteners.

2.08 EQUIPMENT SUPPORTS:

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.09 MISCELLANEOUS MATERIALS:

A. Structural Steel for Cross-Supports and Support Stands: ASTM A36, steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C1107, factory-mixed and -packaged, dry, hydraulic-cement, non-shrink and nonmetallic grout; suitable for interior and exterior applications.

 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION
3.01 HANGER AND SUPPORT APPLICATIONS:

A. Contractor shall be responsible for determining the weights of the supported piping, equipment and/or ductwork, based on sizes, hanger support spacing and operating loads. All hangers, rods, clevises, cross-support members, etc. shall be sized and located by the Contractor based on these loads and the recommendations of the support product manufacturers or equivalent structural design practices. Adequacy of building structural elements to bare all upper equipment support anchors points shall be the Contractor’s responsibility through the information provided on the Architectural and Structural Drawings.

B. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.

C. Comply with MSS SP-69 for pipe hanger selections and applications that are not specified in piping system Sections.

D. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.

E. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

F. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated stationary pipes, NPS 1/2 to NPS 30.

2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of 120 to 450 deg F pipes, NPS 4 to NPS 16, requiring up to 4 inches of insulation.

3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes, NPS 3/4 to NPS 24, requiring clamp flexibility and up to 4 inches of insulation.

4. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated stationary pipes, NPS 1/2 to NPS 8.

5. U-Bolts (MSS Type 24): For support of heavy pipes, NPS 1/2 to NPS 30.

6. Pipe Saddle Supports (MSS Type 36): For support of pipes, NPS 4 to NPS 36, with steel pipe base stanchion support and cast-iron floor flange.

7. Single Pipe Rolls (MSS Type 41): For suspension of pipes, NPS 1 to NPS 30, from 2 rods if longitudinal movement caused by expansion and contraction might occur.
8. Complete Pipe Rolls (MSS Type 44): For support of pipes, NPS 2 to NPS 42, if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.

G. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers, NPS 3/4 to NPS 20.
 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers, NPS 3/4 to NPS 20, if longer ends are required for riser clamps.

H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.

I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 6. C-Clamps (MSS Type 23): For structural shapes.
 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
c. Heavy (MSS Type 33): 3000 lb.

8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.

9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.

J. Saddles and Thermal-Hanger Shield Inserts: On all thermally insulated piping, unless otherwise indicated, install the following types:

1. Thermal-Hanger Shield Inserts: Utilize thermal hanger shield inserts on ALL insulated pipe hanger assemblies (clevis, trapeze or rollers). Do not allow bare piping to contact hanger. Do not run straight sections of basic pipe insulation through hanger assemblies since it will crush under the weight of the piping.

2. Steel Pipe-Covering Protection Saddles (MSS Type 39): Where indicated or required for large diameter piping installed on pipe rollers, utilize steel pipe saddles in lieu of thermal hanger shield inserts. Fill interior voids with insulation that matches adjoining insulation.

3. Protection Shields (MSS Type 40): Semi-circular sheet metal saddles may only be utilized when approved in advance by the engineer. Of length recommended in writing by manufacturer to prevent crushing insulation.

K. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.

2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.

3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.

L. Comply with MSS SP-69 for trapeze pipe hanger selections and applications that are not specified in piping system Sections.

M. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.

N. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
3.02 HANGER AND SUPPORT INSTALLATION:

A. Steel Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, cross-supports and structural steel members, clamps, and attachments as required to properly support piping from building structure.

B. Trapeze Pipe Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping and support together on field-fabricated trapeze pipe hangers.

 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified above for individual pipe hangers.

 2. Field fabricate from ASTM A36, steel shapes selected for loads being supported. Weld steel according to AWS D1.1.

C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping and support together on field-assembled metal framing systems.

D. Thermal-Hanger Shield Installation: Install in pipe hanger clevis, trapeze or roller for ALL insulated piping.

E. Fastener System Installation:

 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.

H. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

I. Install lateral bracing with pipe hangers and supports to prevent swaying.

J. Install building attachments within concrete slabs or attach hangers or cross-members to structural steel. Do not anchor to non-structural elements such as
bare metal roof decks, non-load bearing metal stud framing or certain points on metal bar joists as per the joist manufacturer’s limitations. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

K. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

L. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and so maximum pipe deflections allowed by ASME B31.1 (for power piping) and ASME B31.9 (for building services piping) are not exceeded.

M. Insulated Piping: Comply with the following:

1. Install thermal-hanger shield inserts on ALL insulated piping, unless indicated otherwise. Install insert with insulation same thickness as piping insulation.

2. Install MSS SP-58, Type 39, protection saddles, on large diameter piping set on roller supports where indicated. Fill interior voids with insulation that matches adjoining insulation.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier, only when approved by the engineer. Otherwise use thermal-hanger shield inserts. Shields shall span an arc of 180 degrees.

3.03 EQUIPMENT SUPPORTS:

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.04 METAL FABRICATIONS:

A. Cut, drill, and fit miscellaneous metal fabrications for hanger cross-support members, trapeze pipe hangers and equipment supports.

B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
C. Field Welding: Comply with AWS D1.1 procedures for shielded metal arc welding, appearance and quality of welds, and methods used in correcting welding work, and with the following:

1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
2. Obtain fusion without undercut or overlap.
3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and contours of welded surfaces match adjacent contours.

3.05 ADJUSTING:

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.06 PAINTING:

A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.

B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A780.
PART 1 - GENERAL

1.01 SUMMARY

 A. This Section includes the following mechanical identification materials and their installation:

 1. Equipment markers.
 2. Access panel and door markers.
 3. Pipe markers.
 4. Valve tags.
 5. Above ceiling access T-bar markers.

1.02 REFERENCES

 A. American Society of Mechanical Engineers (ASME):

1.03 SUBMITTALS

 A. Product Data: For each type of product indicated.

 B. Lists:

 1. Provide lists of equipment labels and ID tags; pipe labels with system abbreviation, name & pipe size; and valve label ID tags with duty, for engineer review and approval.

1.04 QUALITY ASSURANCE

PART 2 - PRODUCTS
2.01 MANUFACTURERS

A. Approved pipe, valve and equipment label manufacturers.
 1. Seton.
 2. W. H. Brady.
 3. Marking Services Inc.

2.02 EQUIPMENT IDENTIFICATION DEVICES

A. Equipment Markers: 1/16” thick, engraved, color-coded plastic, phenolic or aluminum.
 1. Data: Name and equipment tag # listed on schedule.
 2. Size: 4 by 6 inches for large equipment, 2 by 3 inches for terminal units. Lettering size proportional.
 3. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive.
 4. Tag Colors:
 a. Heating devices: Red with White Letters
 b. Cooling devices: Blue with White Letters
 c. Fans & AHUs: Black with White Letters.

B. Access Panel and Door Markers: Same as equipment markers. Label items or equipment that is access through the door or panel.
2.03 PIPING IDENTIFICATION DEVICES

A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow.

1. Colors: Comply with ASME A13.1, unless otherwise indicated.

2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length.

3. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location.

4. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label.

5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow.

6. <<OPTIONAL for extra $$>> Pipe Size Indication: Provide indication of service pipe size, i.e. 6” HPS, adjacent to, or integral with, main line pipe marker.

B. Pre-tensioned Pipe Markers: Pre-coiled semi-rigid plastic formed to cover full circumference of pipe and to attach to pipe without adhesive.
C. Shaped Pipe Markers: Preformed semi-rigid plastic formed to partially cover circumference of pipe and to attach to pipe with mechanical fasteners that do not penetrate insulation vapor barrier.

E. Plastic Tape: Continuously printed, vinyl tape at least 3 mils thick with pressure-sensitive, permanent-type, self-adhesive back.

2. Width for Markers on Pipes with OD, Including Insulation, 6 Inches or Larger: 1-1/2 inches minimum.

2.04 VALVE TAGS (WITHOUT SERVICE DATA)

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers, with numbering scheme. Provide 5/32-inch hole for fastener.

1. Material: 0.032-inch-thick brass or aluminum.

2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.

3. Labeling: System tag (HW, CW, Steam, etc.) and valve number.

2.05 VALVE TAGS (WITH SERVICE DATA)

A. Valve Tags: Stamped or engraved with white letters for piping system abbreviation and valve duty description. Provide hole for fastener.

1. Material: 1/8-inch thick 3-ply plastic, brass or aluminum.

2. Valve-Tag Fasteners: Brass wire-link or beaded chain; or S-hook.

3. Size: 3" x 3" minimum.

4. Tag Body Color:
 a. Hydronic heating, steam and condensate: Red.
 b. Chilled Water: Blue.
 c. Make-up water, drain: Green.
5. Labeling:
 a. System abbreviation and valve size.
 b. Valve duty and/or building served: (i.e. shut-off, warm-up, drain, blow-down, etc.).
 c. Service: NO (normally open), NC (normally closed), Bypass, etc.

2.06

2.07 T-BAR CEILING LABELS

A. T-Bar ceiling labels tape shall be 3/4-inch diameter plastic tags with self-adhesive backing and mounted to t-bar grid at a point closest to the item to be accessed. Provide with directional arrows indicating which ceiling tile is the most appropriate for removal. Brimar Industries (Pipemarker.com) or equal.

B. Ceiling Label Tag Color Scheme:
 1. HVAC Isolation Valves: BLUE.
 2. Plumbing Isolation Valves: GREEN.
 3. HVAC Units/Filter Access: ORANGE.
 4. Control Dampers, OSA Valves, etc: YELLOW.
 5. Fire or Smoke Dampers: RED.
 6. Waste or Roof Drain Clean-outs: WHITE.
2.08 DUCTWORK LABELS

A. Self-Adhesive vinyl markers with air flow directional arrows. Label to identify air handling unit/system and type of air flow, e.g. "HRU-1 Supply Air", "EF-1 Exhaust Air", etc.

B. Label Color Scheme:
 1. Supply Air (Tempered Air): Red label with white lettering.
 2. Return Air: Yellow label with black lettering.
 3. Exhaust Air: Green label with white lettering.
 4. Outside Air: Blue label with white lettering.

PART 3 - EXECUTION

3.01 PIPING IDENTIFICATION

A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow.

1. Pipes with OD, Including Insulation, Less Than 6 Inches: Pre-tensioned pipe markers. Use size to ensure a tight fit.

2. Pipes with OD, Including Insulation, Less Than 6 Inches: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2 inches wide, lapped at least 1-1/2 inches at both ends of pipe marker, and covering full circumference of pipe.

3. Pipes with OD, Including Insulation, 6 Inches and Larger: Shaped pipe markers. Use size to match pipe and secure with fasteners.

4. Pipes with OD, Including Insulation, 6 Inches and Larger: Self-adhesive pipe markers. Use color-coded, self-adhesive plastic tape, at least 1-1/2
inches wide, lapped at least 3 inches at both ends of pipe marker, and covering full circumference of pipe.

B. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior non-concealed locations as follows:

1. Near each valve and control device.

2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.

3. Near penetrations through walls, floors, ceilings, and non-accessible enclosures.

4. At access doors, manholes, and similar access points that permit view of concealed piping.

5. Near major equipment items and other points of origination and termination.

6. Spaced at maximum intervals of 20 feet along each run. Reduce intervals to 10 feet in areas of congested piping and equipment.

3.02 EQUIPMENT IDENTIFICATION

A. Install equipment markers with permanent adhesive or screws on or near each major item of mechanical equipment (all equipment scheduled and tagged on the drawings).

1. Data: Name and equipment tag # listed on schedule.

2. Locate markers where accessible and visible. Include markers for the following general categories of equipment:

 a. Main control and operating valves, including safety devices and hazardous units such as gas outlets.

 b. Fuel-burning units, including boilers, furnaces, etc.

 c. Pumps, compressors, chillers, condensers, and similar motor-driven units.
d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment.

e. Fans, blowers, air handlers, fan coils, heat pumps and terminal units.

f. Packaged HVAC central-station and zone-type units.

g. Tanks and pressure vessels.

h. Humidifiers, water-treatment systems, and similar equipment.

3.03 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves; valves within factory-fabricated equipment units; plumbing fixture supply stops; shutoff valves; faucets; convenience and lawn-watering hose connections; and HVAC terminal devices and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag List: Provide printed valve tag list with the following information for each valve:

1. System abbreviation as indicated on plans, e.g. HWS, CWS, HPS, PC, etc.

2. Unique valve number for each system valve.

4. Type of valve, e.g. ball valve, gate valve, butterfly valve, etc.

5. Duty of valve: e.g. shut-off, bypass, drain, etc.

6. Location of valve: Room number and/or name, and location, e.g. near boiler, at ceiling, etc.

3.04 ABOVE CEILING ACCESS TBAR TAGS

A. Provide a colored label appropriate to the service being accessed above the ceiling at t-bar ceilings and access doors in hard ceilings. Point directional arrow towards the most accessible ceiling tile that leads to the device to be serviced.
3.05 DUCT LABEL INSTALLATION

A. Install self-adhesive duct labels on all duct systems, including ductwork above lay-in ceilings and inside accessible duct chases. Affix duct label with air flow direction arrows on most visible section of duct. Affix to bare or insulated duct-work as necessary. Clean surfaced before installing labels. Install in the following locations:

1. Near connections to each piece of equipment, inlets and outlets.
2. Near branch take-offs.
3. At wall and floor penetrations. Locate on both sides of penetration.
4. Spaced at a maximum of 25 feet along each duct run. Reduce to intervals of 10 feet in areas of congested ductwork, piping or equipment.

3.06 ADJUSTING AND CLEANING

A. Relocate mechanical identification materials and devices that have become visually blocked by other work.

B. Clean faces of mechanical identification devices and frames of valve schedules.

END OF SECTION 23 05 53
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes TAB to produce design flows for the following:
 1. New and existing air systems:
 2. New and existing steam systems:
 3. Verifying that automatic control devices are functioning properly.

B. Reporting results of activities and procedures specified in this Section.

1.02 COORDINATION

A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities.

B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

C. Provide formal progress reports and deficiency reports.

D. Communicate in writing all set-point and parameter changes made or problems and discrepancies identified during TAB that affect the control system setup and operation.

E. Provide a draft TAB report prior to completion. The report will contain a full explanation of the methodology, assumptions and the results in a clear format with designations of all uncommon abbreviations and column headings.
 1. Provide a list of all components and systems that perform out of specified parameters.
 2. Provide any requested data, gathered, but not shown on the draft reports.

F. Provide a final TAB report for the Owner’s Representative and with details. Provide final information as requested in draft TAB report.
 1. Identify the following:
 a. Systems or subsystems for which final balancing is complete.
b. Status of deficiencies and balancing issues encountered, including corrective actions taken.

c. Plan & Schedule for completion of unfinished work.

1.03 SUBMITTALS

A. Strategies and Procedures Plan:

1. The submitted plan will include:

a. Certification that the TAB contractor has reviewed the construction documents and the systems with the design engineers and contractors to sufficiently understand the design intent for each system.

b. An explanation of the intended use of the DDC. The controls contractor will comment on feasibility of the plan.

c. All field checkout sheets and logs to be used that list each component to be tested, adjusted and balanced with the data cells to be gathered for each.

d. Discussion of what notations and markings will be made on the duct and piping drawings during the process.

e. Final test report forms to be used.

f. Detailed step-by-step procedures for TAB work for each system and issue: terminal flow calibration (for each terminal type), diffuser proportioning, branch / sub-main proportioning, total flow calculations, rechecking, diversity issues, expected problems and solutions, etc.

g. List of all airflow, water flow, system capacity and efficiency measurements to be performed.

h. Details of how total flow will be determined (Air: sum of terminal flows via DDC calibrated readings or via hood readings of all terminals, supply (SA) and return air (RA) pitot traverse, SA or RA flow stations. Water: pump curves, circuit setter, flow station, ultrasonic, etc.).

i. The identification and types of measurement instruments to be used and their most recent calibration date.
Re-Bid Dodgen Research Facility Nuclear Science Center HVAC Renewal

j. Confirmation that TAB understands the outside air ventilation criteria under all conditions.

k. Details of whether and how minimum outside air cfm will be verified and set, and for what level (total building, zone, etc.).

l. Details of how building static and exhaust fan / relief damper capacity will be checked.

m. Details of any TAB work to be done in phases (by floor, etc.), or of areas to be built out later.

n. Details regarding specified deferred or seasonal TAB work.

o. Details of any specified false loading of systems to complete TAB work.

B. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm.

1.04 QUALITY ASSURANCE

A. TAB Firm Qualifications: An independent testing, adjusting, and balancing agency certified by National Environmental Balancing Bureau (NEBB) in those testing and balancing disciplines specified for this project.

B. Pre-approved balancing contractors are:

1. Air Commander

2. TestComm

3. Riley Engineering

C. Report Certification: Certify TAB field data reports in accordance with NEBB’s “Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems, 5.2.2 Report Certification.” This certification includes the following:

1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.

2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification.

E. NEEB’s Quality Assurance Program (QAP): TAB work shall be performed in accordance with NEBB standards. The certified TAB firm will make application to the NEBB Office for a Certificate of Conformance Certification.

PART 2 - PRODUCTS (NOT APPLICABLE)

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.

B. Examine approved submittal data of HVAC systems and equipment.

C. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions.

D. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting specified in individual Sections have been performed.

E. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation.

F. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing.

G. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls are ready for operation.

H. Examine Fan Coil Units to verify that they are accessible and their controls are connected and functioning.
I. Examine strainers for clean screens and proper perforations.

J. Examine system pumps to ensure absence of entrained air in the suction piping.

K. Examine equipment for installation and for properly operating safety interlocks and controls.

L. Examine automatic temperature system components to verify the following:
 1. Dampers, valves, and other controlled devices are operated by the intended controller.
 2. Dampers and valves are in the position indicated by the controller.
 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals.
 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected.
 5. Thermostats are located to avoid adverse effects of sunlight, drafts, and cold walls.
 6. Sensors are located to sense only the intended conditions.
 7. Sequence of operation for control modes is according to the Contract Documents.
 8. Controller set points are set at indicated values.
 9. Interlocked systems are operating.
 10. Changeover from heating to cooling mode occurs according to indicated values.

M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

N. If conditions are discovered that prevent the Testing Agent from performing the test, the Testing Agent shall notify MSI Engineers (509-624-1050) prior to leaving the site.
3.02 PREPARATION

A. Complete system readiness checks and prepare system readiness reports. Verify the following:

1. Permanent electrical power wiring is complete.
2. Automatic temperature-control systems are operational.
3. Equipment and duct access doors are securely closed.
4. Isolating and balancing valves are open and control valves are operational.
5. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
6. Windows and doors can be closed so indicated conditions for system operations can be met.

3.03 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section.

1. Where conditions or situations arise that are not covered by the standards, or where system dynamics and performances are not as intended or expected, the Engineer reserves the right to modify the NEBB TAB procedures and standards for the benefit of the final system operation. The balancing agency shall seek guidance from the Engineer when such conditions develop.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to Specifications.

C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, to show final settings.

D. Phased work: This project is a phased and occupied project, which will require multiple periods of system completion, start-up, testing and balancing.
3.04 PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.

B. Determine the best locations in main and branch ducts for accurate duct airflow measurements.

C. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers.

D. Check dampers for proper position to achieve desired airflow path.

E. Check for airflow blockages.

F. Check for proper sealing of air-handling unit components.

G. Check for proper sealing of air duct system.

H. Adjust terminal units and air outlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than the dampers at air terminals.

 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.

 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

I. Measure humidifier inlet and outlet humidity levels with (a) max heating and (b) max cooling conditions to verify operations and controls.

3.05 PROCEDURES FOR TEMPERATURE MEASUREMENTS

A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system.

B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied.

C. Measure outside-air, wet- and dry-bulb temperatures.
3.06 TEMPERATURE-CONTROL VERIFICATION

A. Verify that controllers are calibrated and commissioned.

B. Check transmitter and controller locations and note conditions that would adversely affect control functions.

C. Record controller settings and note variances between set points and actual measurements.

D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers).

E. Check free travel and proper operation of control devices such as damper and valve operators.

F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes.

G. Check the interaction of electrically operated switch transducers.

H. Check the interaction of interlock and lockout systems.

I. Check main control supply-air pressure and observe compressor and dryer operations.

J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply.

K. Note operation of electric actuators using spring return for proper fail-safe operations.

3.07 TOLERANCES

A. Set HVAC system airflow and water flow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.

2. Air Outlets and Inlets: Plus or minus 10 percent.

3.08 FINAL REPORT

A. General: Provide electronic pdf report tabulated and divided into sections by tested and balanced systems.
B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer.

1. Include a list of instruments used for procedures, along with proof of calibration.

C. Final Report Contents: In addition to certified field report data, include the following:

1. Pump curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance, but do not include Shop Drawings and Product Data.

D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable:

1. Title page.
2. Name and address of TAB firm.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB firm who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.

11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
12. Nomenclature sheets for each item of equipment.

13. Data for terminal units, including manufacturer, type size, and fittings.

14. Notes to explain why certain final data in the body of reports varies from indicated values.

15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outside-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Settings for supply-air, static-pressure controller.
 g. Other system operating conditions that affect performance.

3.09 TRAINING

A. TAB shall meet with Owner’s personnel after completion of TAB and instruct them on the following:

 1. Final TAB report, explaining the layout and meanings of each data type.

 2. Any outstanding deficient items in control, ducting or design that may affect the proper delivery of air or water.

 3. Identify and discuss any terminal units, duct runs, diffusers, coils, fans and pumps that are close to or are not meeting their design capacity.

 4. Discuss any temporary settings and steps to finalize them for any areas that are not finished.

 5. Other salient information that may be useful for facility operations, relative to TAB.
3.10 ADDITIONAL TESTS

A. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions.

END OF SECTION 23 05 93
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes insulation requirements for HVAC ductwork, piping as associated equipment.

1.02 references

A. Insulation values shall conform with the latest edition of the Washington State Energy Code and ASHRAE recommendations.

B. ASTM International:

C. Underwriters Laboratories (UL):

1.03 SUBMITTALS

A. Product Data: Provide product data for each type of insulation product indicated.

B. Shop Drawings: Show details for the following:
 1. Application of protective shields, saddles, and inserts at hangers for each type of insulation and hanger.
 2. Insulation application at elbows, fittings, flanges, valves, and specialties for each type of insulation.
 3. Removable insulation at piping specialties, valves, equipment connections, and access panels.
 4. Application of field-applied jackets.

C. Insulation Schedule: Provide a schedule indicating insulation type and thickness and equivalent R-value for each mechanical system to be insulated. Indicate jacketing type to be utilized.

1.04 QUALITY ASSURANCE

A. Manufacturer’s Qualifications: Firms regularly engaged in manufacture of mechanical insulation products, of types and sizes required, whose products have been in satisfactory use in similar services for not less than 10 years.

B. Installer’s Qualifications: Firms with at least 5 years successful installation experience on projects with mechanical insulation systems similar to that required for this project.

C. Flame/Smoke Ratings: Provide composite mechanical insulation (insulation, jackets, coverings, sealers, mastics and adhesives) with flame-spread index of 25 or less, and smoke developed index of 50 or less, as tested by ASTM E84 (NFPA 255) method.

PART 2 - PRODUCTS
2.01 MANUFACTURERS

A. Subject to compliance with requirements, provide products of one of the following:

1. Armacell LLC
2. CertainTeed Corp.
3. Foster Products Corp.
4. IMCOA
5. Johns Manville Products Corp.
6. Knauf Fiber Glass GmbH.
7. Owens-Corning Fiberglas Corp.
8. Pittsburgh Corning Corp.

2.02 PIPING INSULATION MATERIALS

A. Fiberglass Piping Insulation: ASTM C411, ASTM C547, ASTM C585, ASTM C1136, K = 0.24 @ 100°F mean temperature. HP All Service (White ASJ) vapor retarder jacket with self-sealing longitudinal closure LAP. Equal to Johns Manville Micro-Lok.

B. Elastomeric Piping Insulation: ASTM C534, Type 1, ASTM E84, NFPA 255, UL 723, K = 0.27 @ 75°F Mean temperature. Equal to AP Armaflex pipe insulation.

C. Pipe Fittings:

1. Fitting Insulation: Fittings, elbows, tees, unions, etc. shall be molded fiberglass fabricated specifically for pipe size, type, and adjacent insulation thickness. Only molded products are acceptable. Equal to Johns Manville Hi-Lo temperature fiber glass insulation inserts.

D. Insulation Fitting Covers:

1. Subject to compliance with requirements, provide one of the following products or approved equal:

 b. Speedline Smoke-Safe
2. One-piece premolded 0.020” thick white PVC fitting covers fastened as per manufacturer’s recommendations with fiberglass inserts.

2.03 PIPE INSULATION JACKETS

A. PVC Pipe Insulation Jackets:

1. Subject to compliance with requirements, provide one of the following products or approved equal:
 b. Speedline Smoke-Safe

2. For interior applications, premolded 0.020” thick white PVC wrap covers fastened as per manufacturer’s recommendations.

B. Aluminum jacket pipe insulation shall be 0.016” (0.4MM) thick, stucco embossed finish, with a one mil polyethylene film/forty pound kraft paper integral vapor barrier affixed to the interior of the cover in conformance with ASTM B209. Elbows and fittings shall be jacketed with pre-formed 0.024” thick aluminum covers, with moisture retarder film.

2.04 THERMAL-HANGER SHIELD INSERTS

A. Description: High density compressive-strength insulation insert encased in sheet metal shield. Compressive strength varies (25 to 100 psi) based on insulation material selected and shall be as required to accommodate various hanger types, pipe sizes and materials, and associated loading. Flame/smoke rated at 25/50 for plenum applications. Minimum R-Value per 1” thickness shall be 2.5 for calcium silicate and 5.0 for cellular glass or phenolic insulations.

B. Refer to Section Hangers and Supports for HVAC Piping and Equipment for shield insert requirements.

2.05 PIPE INSULATION REMOVABLE VALVE AND FITTING COVERS

A. Valves and devices subject to service or operational needs shall be insulated with removable type covers. These include: Shut-off valves, balance valves (manual and automatic), control valves, venturis and strainers.

B. Valves sets at terminal unit and air handling unit coil connections shall be covered with pre-insulated valve wraps equal to “No-Sweat” reusable and removable covers. Valve wraps shall consist or 1” thick insulation with a durable vapor
barrier jacket material and Velcro closures. Field or shop fabricated valve wraps for terminal unit and smaller AHU valve sets are NOT acceptable.

C. Larger body valves, strainers, etc. shall be covered with custom made or pre-manufactured removable covers utilizing PTFE Fiberglass Composite Jacketing, 16.5 oz/sq. yd minimum density, inside and outside face, or Silicone-coated F.G. cloth with S.S. mesh inner lining, both with fiberglass insulation fill. Assembly shall be double sewn lock stitch with minimum 4 to 6 stitches per inch. Jackets shall be fasteners using hook and loop (Velcro) straps and 1” slide buckles or S.S. lacing hooks with Teflon-coated F.G. drawstrings.

D. Flex hose connections on the chilled water coil connections to terminal units shall be covered with ½” thick elastomeric foam, pre-molded pipe sections, for condensation control.

2.06 DUCKWORK INSULATION WRAP MATERIALS

A. Flexible fiberglass ductwork insulation shall conform to ASTM C411, ASTM C1104, ASTM C665, ASTM C1338, formaldehyde-free, $K = 0.25 \ @ \ 75^\circ \text{ mean temperature}$. Provide FSK (Alum. Foil-Scrim-Kraft) vapor barrier facing with 2” stapling tab. Equal to Johns Manville Microlite XG.

B. Duct Liner: See Section 23 31 00 - HVAC Ducts.

2.07 DUCT PLENUM INSULATION MATERIALS

A. Rigid fiberglass ductwork insulation shall conform to ASTM C612, type 1A, ASTM C612, type 1B. $K = 0.23 \ @ \ 75^\circ \text{ F mean temperature}$ equal to Johns Manville 800 series spin-glass with FSK (Alum. Foil-Scrim-Kraft) vapor barrier facing. Type 814 at 3.00 pcf density.

2.08 DUCTWORK JACKETING & WEATHERPROOFING

A. Self-adhering cover: Membrane shall be a pre-manufactured self-adhering product with an UV resistant, stucco embossed facing. Water valve transmission of the installed product shall be 0.020 perms or less. Product shall be suitable for continuous use in low temperatures of -10° F. Manufacturers shall be Flex-Clad 400, MFM Building Products Corp. or Alumaguard 60, Polyguard Products, Inc.

B. Non-self-adhering cover: Aluminum jacketing, 0.030” thick, stucco embossed finish with moisture barrier inner lining.
2.09 EQUIPMENT INSULATION MATERIALS

A. Rigid fiberglass equipment insulation shall conform to ASTM C612, Class 2, 6.0
PCF density, \(K = 0.23 @ 75^\circ F \) mean temperature. Cover insulation with pre-
sized glass cloth jacketing material, not less than 7.8 ounces per square yard.
Provide a trowl or glove grade water based purpose mastic (white or light gray)
suitable for interior or exterior applications. Install per manufacturer’s written
installation instructions.

B. Elastomeric Insulation: ASTM C534, Type 1, ASTM E84, NFPA 255, UL 723, \(K = 0.27 @ 75^\circ F \)
mean temperature, equal to Armaflex.

2.10 FASTENERS, MASTICS, SEALANTS, TAPES, ADHESIVES AND
ACCESSORIES

A. The insulation installer shall utilize accessory materials and devices for the
complete and proper application of all insulation systems, in accordance with
manufacturer’s directions and established good industry standards for materials
and workmanship. All accessory products shall be compatible with the insula-
tion materials being utilized.

PART 3 - EXECUTION

3.01 HVAC PIPING INSULATION

A. Provide insulation for the following piping:

<table>
<thead>
<tr>
<th>Pipe Service</th>
<th>Location</th>
<th>Insulation Type</th>
<th>Insulation Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating & Chilled Water</td>
<td>Building Interior</td>
<td>Fiberglass</td>
<td>ASJ</td>
</tr>
<tr>
<td>Steam and Steam Condensate</td>
<td>Building Interior</td>
<td>Fiberglass</td>
<td>ASJ</td>
</tr>
<tr>
<td>Condensate Drains</td>
<td>Building Interior</td>
<td>None</td>
<td>N/A</td>
</tr>
</tbody>
</table>

NOTE: All insulated piping located in mechanical equipment rooms, platforms or other
accessible spaces, located below the 10 ft level, shall be covered with PVC jacketing.

B. Provide minimum pipe insulation as listed in following table (based on Washing-
ton State Energy Code):

<table>
<thead>
<tr>
<th>Pipe Service</th>
<th>Fluid Design Operating Temp. Range, °F</th>
<th>Insulation Conductivity</th>
<th>Nominal Pipe Diameter (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conductivity Range BTUx-</td>
<td>Mean Rating Temp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 1</td>
<td>1 to < 1.5</td>
</tr>
</tbody>
</table>

Issued 8/15/2023 Project No. 1687-2022 Page 6 of 14
Revision 9/8/2023
2.02 DHW INSULATION

- **Nominal Insulation Thickness**
 - **Steam (< 15 psig) and Steam Condensate**
 - Thickness: 0.27 – 0.30 in/(ft²°F)
 - Nominal Thickness: 150°F
 - Required Thickness: 2.5 in
 - **Heating Water Supply / Return**
 - Thickness: 0.25 – 0.29 in/(ft²°F)
 - Nominal Thickness: 125°F
 - Required Thickness: 1.5 in
 - **Chilled Water**
 - Thickness: 0.23 – 0.27 in/(ft²°F)
 - Nominal Thickness: 75°F
 - Required Thickness: 0.5 in

1. The Minimum Pipe Thickness chart shall be used for insulations with the scheduled 'k' values. Insulation thickness of insulation with k values outside of the schedule (i.e. calcium silicate) shall be computed via the formula noted in Washington State Energy Code.

2. For piping systems smaller than 1-1/2" and located in partitions in conditioned spaces, reductions of the listed thickness by 1 inch shall be permitted, but not less than 1 inch minimum.

2.03 HVAC PIPING SYSTEM INSULATION

C. HVAC piping system insulation omitted on steam traps on condensate piping between steam trap and union, hot piping within radiation enclosures or unit cabinets; on cold piping within unit cabinets provided piping is located over drain pan; and on unions, flanges, flexible connections, and expansion joints.

3.02 DUCTWORK SYSTEM INSULATION

A. Provide minimum duct insulation as listed in the following table:

B. Provide insulation for the following ductwork systems:

3.03 Duct Insulation Systems

<table>
<thead>
<tr>
<th>Pipe Service</th>
<th>Location</th>
<th>Insulation Type</th>
<th>Insulation Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concealed Suspend-</td>
<td>Building</td>
<td>Fiberglass Wrap</td>
<td>FSK</td>
</tr>
<tr>
<td>ed Ductwork</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum Duct Insulation Values (Per 2012 WA Energy Code)

<table>
<thead>
<tr>
<th>Duct Type</th>
<th>Duct Location</th>
<th>Insulation R-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply</td>
<td>in ceiling plenums, mechanical rooms</td>
<td>R-3.3</td>
</tr>
<tr>
<td>Return/Exhaust</td>
<td>in ceiling plenums, mechanical rooms</td>
<td>None</td>
</tr>
</tbody>
</table>

Duct Insulation Table Notes:
1. Exposed supply and return ductwork located within the space that it serves does not have to be thermally insulated unless otherwise noted on the plans.
2. Where ductwork is indicated to have internal duct liner (either field applied or factory ducts), at the Contractor's option, the insulation value of the duct liner may be included in the above minimum values, allowing the external insulation levels to be reduced accordingly.

3.04 EQUIPMENT INSULATION

A. Application Requirements: Insulate the following cold (below ambient) equipment:

1. Cold and chilled water pump impeller housings.

B. Insulate each item of equipment specified above with one of the following types and thicknesses of insulation:

1. Elastomeric: 2" thick for refrigeration piping and devices in chilled water piping systems.

C. Application Requirements: Insulate with 2" thick rigid fiberglass the following hot (above ambient temperature) equipment:

1. Heat exchangers.
2. Steam Traps
3. Hot water pumps impeller housings.
4. Air separators.

3.05 COMMON INSTALLATION REQUIREMENTS

A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties.

B. Install insulation with tightly butted joints free of voids and gaps. Vapor barriers shall be continuous. Before installing jacket material, install vapor-barrier system.

C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules.
D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

E. Install insulation with longitudinal seams at top and bottom of horizontal runs.

F. Install multiple layers of insulation with longitudinal and end seams staggered.

G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

H. Keep insulation materials dry during application and finishing.

I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

J. Install insulation with least number of joints practical.

K. Hangers and Anchors: Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 1. Install insulation continuously through hangers and around anchor attachments.
 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

M. Install insulation with factory-applied jackets as follows:
 1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.

3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.

 a. For below ambient services, apply vapor-barrier mastic over staples.

4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal.

5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints at ends adjacent to duct and pipe flanges and fittings.

N. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.

O. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.

P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

Q. For above ambient services, do not install insulation to the following:

 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.06 PENETRATIONS

A. Insulation Installation at Below-Grade Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches.

1. Firestopping and fire-resistive joint sealers are specified in Division 07, Section "Firestopping."

D. Insulation Installation at Floor Penetrations:

1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches.

2. Pipe: Install insulation continuously through floor penetrations.

3. Seal penetrations through fire-rated assemblies according to Division 07, Section "Firestopping."

3.07 INSTALLATION OF HOT PIPING INSULATION

A. After installation and pressure/leak testing of piping systems, install insulation products in accordance with manufacturer’s written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose.

B. Maintain integrity of vapor barrier jacket on pipe insulation, and protect to prevent puncture or other damage.

C. Cover valves, fittings, and similar items in each piping system ≤ 2" with equivalent thickness and composition of insulation as applied to adjoining pipe run. PVC Pipe fittings shall be utilized at all fittings.

D. Install removable covers on all valves, flow balance devices, strainers, etc.

E. Extend Piping insulation without interruption through walls, floors and similar piping penetrations, except where penetrations go through fire rated construction.

F. Cover exposed ends of fiberglass with a vapor retardant mastic.
G. Butt pipe insulation against pipe hanger insulation inserts. Apply 3” wide vapor barrier tape or band over the butt joints.

H. Fasten aluminum jacket to insulation using strapping and wing seals of the same material as the cover. In exterior applications, insure that all seams are watertight. Follow manufacturer’s written installation guidelines.

I. For all hot water (above ambient) hydronic heating piping, install thermal-hanger shield inserts per Section Hangers and Supports for HVAC Piping.

J. For steam piping, install thermal-hanger shield inserts or metal pipe saddles (when indicated) per Section Hangers and Supports for HVAC Piping.

3.08 INSTALLATION OF COLD PIPING INSULATION

A. After installation and leak/pressure testing is completed, install insulation products in accordance with manufacturer’s written instructions, and in accordance with recognized industry practices to ensure that insulation serves its intended purpose. Insulation must be applied so there are no voids between the inner insulation face and cold piping system. The insulation system and vapor barrier must be installed in such a manner that the piping system will not condense.

B. Maintain integrity of vapor barrier jackets on pipe insulation, and protect to prevent puncture or other damage. Special care must be made to maintain the vapor barrier at PVC fittings and with pipe covered with aluminum jackets.

C. Cover valves, fitting and similar items in each piping system with insulation as applied to adjoining pipe run. Extra care must be taken on piping appurtenances to insure a tight fit to the adjoining fiberglass system insulation. Pump impeller housings, air separators, etc. must be totally encapsulated with insulation.

 1. Install fabricated molded insulation inserts at the pipe fittings under the PVC fitting.

D. Install removable covers on all valves, flow balance devices, strainers, etc.

E. Extend piping insulation without interruption through walls, floors and similar piping penetrations, except where penetrations go through fire rated construction. At fire rated construction, stop insulation at each side of the penetration, fill the interstitial space between the fire caulk with mineral wall (or other approved material), and seal penetration to maintain fire rating.

F. Cover exposed ends of fiberglass with a vapor retardant mastic.

G. Elastomeric Insulation:
1. Glue the butt ends of insulation to each other to form a homogenous membrane maintaining the vapor barrier.

2. Exterior elastomeric insulation shall be installed with the longitudinal seam on the bottom of the pipe and shall be protected with an ultra violet resistant paint.

H. Butt pipe insulation against pipe hanger insulation inserts. Apply wet coat of vapor barrier lap cement on butt joints and over staples and seal joints with 3” wide vapor barrier tape or band.

I. Fasten aluminum jacket to insulation using strapping and wing seals of the same material as the cover. In exterior applications, insure that all seams are watertight. Follow manufacturer’s written installation guidelines.

J. For all cold or chilled water (below ambient) hydronic piping, install thermal-hanger shield inserts per Section Hangers and Supports for HVAC Piping.

3.09 INSTALLATION OF DUCTWORK AND PLENUM INSULATION

A. Install insulation products in accordance with manufacturer’s written instructions, and in accordance with recognized industry practices to ensure that insulation serves the intended purpose.

B. Maintain integrity of vapor barrier on ductwork insulation, and protect it to prevent puncture and other damage. Where punctures occur, patch tears with a tape of the same facing. Excessive damage will require the insulation to be replaced.

C. Extend ductwork insulation without interruption through walls, floors and similar ductwork penetrations, except where penetrations go through fire rate construction.

3.10 INSTALLATION OF EQUIPMENT INSULATION

A. Install equipment thermal insulation products in accordance with manufacturer’s written instructions, and in compliance with recognized industry practices to ensure that insulation serves the intended purpose.

B. Install insulation materials with smooth and even surfaces and on clean and dry surfaces. Redo poorly fitted joints. Do not use mastic or joint sealer as filler for gapping joints and excessive voids resulting from poor workmanship.

C. Maintain integrity of vapor barrier on equipment insulation and protect it to prevent puncture or other damage.
D. Do not apply insulation to equipment while hot.

E. Apply insulation using the staggered joint method for both single and double layer construction, where feasible. Apply each layer of insulation separately.

F. Coat insulated surfaces with layer of insulating cement, troweled in workmanlike manner, leaving a smooth continuous surface. Fill in scored block, seams, chipped edges and depressions, and cover over wire netting and joints with cement of sufficient thickness to remove surface irregularities.

G. Cover fiberglass insulated surfaces with all-service jacketing neatly fitted and firmly secured. Lap seams at least 2”. Apply over vapor barrier where applicable.

H. Do not insulate handholes, cleanouts, ASME stamp, and manufacturer’s name-plate. Provide neatly beveled edge at interruptions of insulation.

I. Provide removable insulation sections to cover parts of equipment that must be opened periodically for maintenance; include metal vessel covers, fasteners, flanges, frames, and accessories.

END OF SECTION 23 07 00
PART 1 - GENERAL

1.01 SECTION INCLUDES

A. Section Includes:

1. Energy Management and Control System (EMCS)
2. Control Valves, Dampers and Actuators
3. Controllers, Sensors, Field Devices
4. General Components
5. Control Wiring and Power Supplies

B. The specification is intended to cover equipment, labor, materials and services sufficient for a complete Energy Management and Control System (EMCS) capable of controlling and monitoring the complete mechanical system with owner training as outlined in the drawings and in these specifications.

1. EMCS manufacturer shall be responsible for all EMCS and temperature control wiring done in accordance with all local and national codes and Division 26. This includes all low voltage wiring as well as line voltage wiring required for control power purposes.

1.02 REFERENCES

A. References:

1. City, county, state, and federal regulations and codes in effect as of date of purchase.
4. Underwriters Laboratories (UL) listing and labels.
5. UL 864 UUKL Smoke Control
6. UL 268 Smoke Detectors.
7. UL 916 Energy Management.
10. NFPA 92A and 92B Smoke Purge/Control Equipment.
11. Factory Mutual (FM).
13. National Electric Manufacturer’s Association (NEMA).
14. American Society of Mechanical Engineers (ASME).
15. American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) [user note: add ASHRAE 62 IAQ as applicable].
17. Institute of Electrical and Electronic Engineers (IEEE).
20. Occupational Safety and Health Administration (OSHA).
23. Americans Disability Act (ADA).

B. In the case of conflicts or discrepancies, the more stringent regulation shall apply.

C. All work shall meet the approval of the Authorities Having Jurisdiction at the project site.

1.03 ADMINISTRATIVE REQUIREMENTS

A. Sequencing and Scheduling
1. See Control Diagrams on drawings for required Sequence of Operation.

2. The 96 hour test run shall be made upon completion of the testing, adjusting and balancing for the building. This period is intended to demonstrate the operation of the complete building. See Part 3 Testing for 96 hour testing requirements.

3. Pre-balance inspection and adjustment of the control systems shall be performed by the control engineer in the presence of the Engineer and commission authority. This operation shall be performed prior to the start of the air and water balance work. Pre-balance inspection and adjustment shall include adjustments of all controls and devices as required to prove sequence of operation in all control modes. A written report, signed by participating parties shall be forwarded to the Owner’s Representative with a copy enclosed in the O&M manual.

4. The temperature controls contractor shall assist the balancing agency as required for proper balancing of the systems with up to ten (10) days of assistance. Furnish a hand-held controller or laptop service tool for the balance agency use during test and balance. This tool shall become the property of the Control Contractor at the end of test and balance.

5. Final adjustments and calibration of systems and components, including valve and damper operators, shall be accomplished after balancing has been completed and prior to O&M instruction period. This shall include any required setting of controls or labeling of setpoints. The EMCS Contractor shall coordinate scheduling and setpoints with Owner’s Representative. A letter of certification, stating the above has been completed and signed by the EMCS Contractor shall be forwarded to the Owner’s Representative with a copy enclosed in the O&M manual. The Owner’s Representative shall be notified, in writing, two (2) weeks in advance of scheduled time to witness sequence of operation on all systems. All systems shall be full operational at the time of this demonstration.

B. Coordination with Other Trades, work by Others.

1. It is the responsibility of the EMCS contractor to communicate all specific needs for proper installation (wiring, power, damper and control valves, thermowells, etc.) and operation of the EMCS system to all other necessary trades and to verify that those provisions will be made under the terms of this contract without additional cost to the owner.

2. Coordinate closely with other subcontractors and equipment suppliers to ensure that equipment is provided with features necessary to interface with the EMCS system.
3. Coordinate and schedule work with all other work in the same area or with work which is dependent upon work by other trades to facilitate mutual progress.

4. The EMCS Contractor’s designated project engineer/manager shall attend the regularly scheduled construction meetings as requested by the General Contractor in response to current construction activities and shall be familiar with the technical aspects of the EMCS design and capabilities.

C. Coordination with Packaged Equipment Controls.

1. The EMCS manufacturer shall be responsible for the coordination with all HVAC equipment suppliers and manufacturers to assure compatibility and communication interface requirements between so-call packaged equipment controls (boilers, RTUs, HRUs, heat pumps, VFDs, etc.). In many cases it is possible for the packaged equipment to be provided with self-contained microprocessor based controls that are capable of performing the required sequences of operation required. It shall be the EMCS manufacturer’s responsibility prior to bidding to determine whether the packaged equipment will be provided with factory furnished controls or if the EMCS manufacturer will be providing and installing the controls and devices. In all cases it shall be the EMCS manufacturer’s responsibility to assure that a complete and fully operational direct digital control based HVAC system is provided.

D. Control Coordination Meeting: Control Contractor(s) shall attend a Controls Coordination Meeting with the Engineer, Owner’s HVAC Control Technician after submittal but prior to approval by the engineer. The purpose of this meeting will be to coordinate operational sequences and address Owner’s concerns prior to final approval of the submittal.

1.04 SUBMITTALS FOR REVIEW

A. General: Refer to Section 230000 – HVAC General Provisions for submittal format.

B. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.

1. General Requirements:

a. Include cover sheet with project name, location, owner information, contractor information, and release date.
b. Product information sheets will be arranged based on the Bill of materials list.

c. Provide Product data as single Adobe Acrobat portable document format (PDF) document.

d. Bill of materials list will contain bookmarks (hyperlinks) to their associated technical sheets for quick access to documents.

2. Complete bill of materials of equipment indicating quantity, manufacturer, and model number for each unique product. This includes but not limited to technical data for operator workstation equipment, interface equipment, control units, transducers/transmitters, sensors, actuators, valves, relays/switches, control panels, and operator interface equipment. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.

3. Control System Software: Include technical data for operating system software, operator interface, color graphics, and other third-party applications.

C. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. Shop drawings shall be updated to reflect any changes during construction and re-submitted as “As-Built” at end of construction.

1. General Requirements:

a. Include cover sheet with project name, location, owner information, contractor information, and release date.

b. Include a drawings index sheet listing each drawing number and title that matches the information in each title block.

c. Shop drawings shall be 11 inch by 17 inch, landscape.

d. Provide shop drawings as single Adobe Acrobat portable document format (PDF) document.

e. Shop drawings shall be arranged based on the following order: Cover Sheet, Index of Drawings, sensor location drawing, control panel location drawing, system architecture diagram, equipment schedules, system control drawings and control transformer drawing. The system control drawings will be arranged by system will include in
order by system flow diagram, panel layout drawing, control panel wiring diagram, and I/O wiring details.

2. Floor Plan Wiring and Component Section
 a. Provide floor plans that indicate the location of space sensors and primary control components such as operator work stations, equipment controllers/main panels, unitary (terminal unit) controllers, and associated controlled equipment (boilers, chillers, air handlers, etc.).
 b. Provide a network communications (LAN) wiring diagram showing connectivity between control devices.

3. Equipment Location Drawings
 a. Shows location of pressure sensors include reference locations, temperature and humidity sensors, and control panel locations.
 b. Include name of each control panel that is representative of how it will be identified.

4. System Architecture Design Diagram
 a. This is a riser diagram that shall show the IP layer and all of the field bus layers.
 b. It shall show each computer, printer, router, repeater, controller, protocol translator, and end of line resistor locations that are connected to either the IP layer or any of the field busses. Include approximate fieldbus wire lengths between individual connection points.
 c. This diagram shall include the enterprise level system connection.
 d. Each component that is shown shall have a name that is representative of how it will be identified in the completed database, the manufacturer’s name, model number, mac address and device instance.
 e. The physical relationship of one component to another component shall reflect the proposed installation. Example: If AHU1 controller is the closest controller to the Building Controller on the field bus, then this device shall be shown as the first device on the riser diagram just below the Building Controller.
 f. This diagram shall not include power supplies, sensors or end devices.

5. Equipment Schedule Drawings
a. Damper Schedule: The damper schedule shall contain a unique identifier corresponding to and in sequence with the existing identification scheme, nominal and actual sizes, orientation of axis and frame, direction of blade rotation, spring ranges, positive positioner ranges, locations of actuators and damper end switches, arrangement of sections in multi-section dampers, and methods of connecting dampers, actuators, and linkages for each damper and actuator furnished. The damper schedule shall include the maximum expected velocity through the damper at the intended location, and the maximum leakage rate at the operating static pressure differential. The damper schedule shall contain actuator selection data supported by calculations of the torque required to move and seal the dampers, and shall show access and clearance requirements.

b. Valve Schedule: The valve schedule shall include a unique identifier corresponding to and in sequence with the existing identification scheme, size, flow coefficient (Cv), pressure drop at specified flow rate, spring range, positive positioner range, and actuator size, supported by close off pressure data, dimensions, and access and clearance requirements data for each valve furnished.

6. A System Flow Design Diagram for each controlled system.
 a. A two dimensional cross sectional diagram showing key components such as fans, coils, dampers, valves, pump, etc.
 b. Identify the locations and names of all sensors and end devices that are associated with the control system. Label the panel name and terminal numbers where the connections are landed.
 c. A legend shall be provided for all symbols used.
 d. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 e. Written description of sequence of operation.

7. Interface Wiring Diagrams Section
 a. Provide schematics for each point of interface to other systems or packaged equipment controls.
 b. For interfaces not specified to receive integration devices, provide the following at a minimum:
 1) Schematics showing the location of all terminal strips and/or connection points between systems (including room designa-
tion, location within room, control panel designation, etc. as appropriate). Utilize graphics or reproductions of the actual equipment wiring diagrams for the specific equipment being utilized. Do NOT create generic terminal strip representations that require the field technician to interpret wiring requirements.

2) Notation of contractor responsible for hardware (terminal strips, contacts, etc.), wiring and terminations.

3) A description of each point including plain English functional description, electrical characteristics (0 to 10 V, 4 to 20 mA, N/O dry contact, N/C dry contact, etc.).

c. For interfaces specified to receive integration devices, provide the following at a minimum:

1) Schematics showing the location of the integration device (including room designation, location within room, control panel designation, etc. as appropriate).

2) Notation of contractor responsible for integration device, wiring and terminations.

3) A description of the information that will be transferable through the integration device, including read/write capabilities.

d. Each schematic shall be reviewed, approved and noted as such by both the temperature controls contractor and an authorized agent of the system or equipment requiring interface.

e. At a minimum, a wiring diagram shall be provided for each interface noted in the Systems and Equipment Interfaces section of these specifications.

8. Layout Design Drawing for each control panel:

a. The layout drawing shall be to scale with all devices shown in their proposed positions.

b. Include name of each control panel and control device that is representative of how it will be identified, the manufacturer's name, model number, mac address and device instance.

c. All terminal strips and wire channels shall be shown.

d. Identify control transformer and 120 VAC feeding control panel.
9. Control Panel Wiring Design Diagram for individual components (controllers, protocol translators, etc.): The wiring diagram for each component shall identify all I/O, power, and communication wiring and the locations on the terminal blocks to which the wires are landed. When universal inputs or outputs are used indicate point type (AI, DI, AO, DO) and configuration of any hardware dip switches for point configuration and controller configuration.

10. Installation Design Detail for each I/O device.
 a. A drawing of the wiring details for each sensor and/or end device.
 b. For devices with multiple quantities, a standard detail may be submitted.

11. Graphical User Interface Section
 a. Provide a representation of the typical graphical penetration scheme as outlined in these specifications. This can be in the form of a simple flow diagram.
 b. Provide a representation of how points and schedules are accessible through the graphical interface.
 c. Provide a representation of how the system programming is accessible through the graphical user interface.
 d. Provide information on the graphics development package.
 e. Provide graphic floor plan displays for all spaces. Include a representation of each of the required space temperature indicators.
 f. Provide a table of occupied heating, occupied cooling, unoccupied heating and unoccupied cooling setpoints for each temperature control zone. Setpoint criteria shall be obtained from the owner prior to submission of submittals. This table shall be a verification of these criteria.
 g. Provide a table of the warm-up/pre-cool, occupied and unoccupied scheduling for each temperature control zone. Scheduling criteria shall be obtained from the owner prior to submission of submittals. This representation shall be a verification of these criteria.

12. Statements of Conformance Section
 a. Statement of Conformance: The temperature controls submittal shall be accompanied by a statement of conformance by the temperature
controls supplier. This statement of compliance shall indicate that the EMCS, as installed, will meet all of the requirements of these specifications. If the EMCS is not capable of meeting each requirement of these specifications, this statement of compliance shall indicate each individual requirement that cannot be met, the impact this might have on the system, and proposed methods of equivalent compliance.

b. Statement of Native BACnet Conformance: For BACnet systems the temperature controls submittal shall be accompanied by a separate statement of native BACnet conformance by the temperature controls supplier. This statement of compliance shall indicate that the EMCS, as installed, will meet all of the requirements of the specified conformance class of native BACnet architecture. Included with this statement shall be Protocol Implementation Conformance Statements (PICS) for each applicable component necessary to demonstrate compliance.

1.05 PROJECT RECORD DOCUMENTS

A. Provide “as-built” documentation of all information required for original system and equipment submittals as outlined above. Information shall be included in the operation and maintenance manuals as outlined below. Refer to Section 230000 – HVAC General Provisions.

B. In addition to inclusion in the operation and maintenance manuals, the points list, adjustable points list, and alarm points list, as required in the systems control section of the submittals, shall be laminated in plastic after approval by Owner’s Representative. One copy shall be posted at the main control cabinet of the building and the second copy shall be given to the Owner.

1. For BACnet system, the points list shall identify BACnet information and address for each point for use in the future by other BACnet manufacturers.

1.06 OPERATION AND MAINTENANCE DATA

A. Refer to Section 230000 – HVAC General Provisions for Operation and Maintenance Data submittal requirements.

B. The Energy Management and Controls System section shall include the following sub-sections:

1. An individual section for each system. These sections shall include as-built documentation of the information required in the Systems Interface section of the submittals.
2. Systems Wiring Diagrams Section. This section shall include as-built documentation of the information required in the Systems Wiring Diagrams section of the submittals.

3. Interface Wiring Diagrams Section. This section shall include as-built documentation of the information required in the Interface Wiring Diagrams section of the submittals.

4. Components Section. This section shall include as-built documentation of the information required in the components section of the submittals.

5. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.

7. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.

8. Calibration records and list of set points.

C. Software and Firmware Operational Documentation: Include the following:

1. Software operating and upgrade manuals.

2. Program Software Backup: On a magnetic media or compact disc, complete with data files.

3. Device address list.

4. Printout of software application and graphic screens.

5. Software license required by and installed for DDC workstations and control systems.

1.07 DELIVERY, STORAGE, AND HANDLING

A. Refer to Section 230000 – HVAC General Provisions for additional Delivery, Storage and Handling requirements.

B. Store products in shipping containers in clean, dry location until installation.

C. The Contractor shall be responsible for his work and equipment until finally inspected, tested, and accepted. The Contractor shall protect any material that is not immediately installed. The Contractor shall close all open ends of work with
temporary covers or plugs during storage and construction to prevent entry of foreign objects.

1.08 QUALITY ASSURANCE

A. Project Manager/Engineer’s Qualifications: The qualifications of the EMCS Contractor’s proposed project manager/engineer shall be submitted in writing within the time frame of the submittals. The EMCS Contractor’s engineer shall have a minimum of five (5) year’s experience in the automation and control field with the same company furnishing the work, as well as having been involved in the design and construction of three (3) projects of similar size and scope. The Owner reserves the right to approve the proposed project engineer from the control contractor’s staff. The project manager/engineer shall be designated as a key personnel and shall remain assigned to the project through its entire duration of submittals, construction and warranty. The project manager shall be the contractor’s and Owner’s primary contact.

1.09 WARRANTY

A. Standard Material and Labor Warranty:

1. Provide a one-year labor and material warranty on the EMCS.

2. If within twelve (12) months from the date of acceptance of product, upon written notice from the A/E, it is found to be defective in operation, workmanship or materials, it shall be replaced, repaired or adjusted at the option of the EMCS Contractor at the cost of the EMCS Contractor.

3. Maintain an adequate supply of materials within 150 miles of the Project site such that replacement of key parts and labor support, including programming. Warranty work shall be done during EMCS Contractor’s normal business hours.

PART 2 - PRODUCTS

2.01 SYSTEMS

A. System Architecture

1. General

 a. The system shall be modular in nature, and shall permit expansion of both capacity and functionality through the addition of sensors, actu-
ators, equipment controllers, unitary controllers, and operator devices while re-using the existing controls equipment.

b. The EMCS shall utilize an open architecture and fully support a multi-vendor environment. To accomplish this effectively, the EMCS shall not only utilize open communication protocol standards, but also be able to integrate a wide variety of third-party devices and applications via existing vendor protocols and through the latest software standards.

c. Each equipment controller shall operate independently by performing its own specified control, alarm management, and historical data collection. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operational devices.

2. Automation Network: Ethernet Network Communication: All equipment controllers, the operator’s workstation, and other devices not connected downstream of equipment controllers shall communicate over a 10Base-T (or faster) Ethernet Network communications network. Unless specifically indicated on the Electrical Plans, the Automation System shall reside on its own Automation Network and shall not share or otherwise reside on the Building-wide Ethernet Network.

B. Native Bacnet System Requirements

1. The system shall be modular in nature and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, equipment controllers, unitary controllers, and operator devices while re-using the existing controls equipment.

3. The communication network between controllers shall be BACnet. All controllers shall utilize native BACnet architecture and shall be independently tested and listed through BACnet Testing Laboratories. See http://www.bacnetassociation.org/btl.

C. Systems and Equipment Interfaces

1. General: Provide interfaces/integration with these microprocessor-based systems and packaged equipment as indicated on the control drawings. Coordinate closely with the respective subcontractors and their equipment suppliers to ensure that the necessary interface is provided with each piece of equipment.
2.02 ENERGY MANAGEMENT AND CONTROL SYSTEM (EMCS)

A. Approved Manufacturers/Installer;
 1. Siemens Building Technologies using Native BACnet System or, where required and pre-approved by owner, Siemens Proprietary Communications Protocol.

B. Operator’s Terminal (Existing)

C. EMCS Software (Existing)

D. Graphical User Interface (Existing)
 1. Floor Plan and System Selection/Penetration: The operator interface shall allow users to access the various system schematics and floor plans via both a graphical penetration scheme and menu selection.
 a. Graphical penetration scheme: Multiple floor plan displays, when required, shall all be accessible from a single initial screen. System schematics shall be directly accessible from the floor plan display for the area they serve. For zoned systems, both the zone and main system schematics shall be accessible from the floor plan display. For systems that interact with secondary systems and/or equipment (e.g. an air handling unit with a hot water coil served by a heating water system), the secondary system and/or equipment shall be accessible from the primary system schematic. It is the intent of this graphical penetration scheme that, from a single screen, any location served by the system can be accessed and, from any floor plan display, all systems and/or equipment serving that area can be accessed.

 2. Floor Plan Displays: Provide color graphic floor plan displays designating each temperature control zone. Each zone shall have a graphic and color-coded indication of space temperature relative to setpoint, with a minimum of five (5) different indicators (e.g. dark blue, light blue, green, yellow, red).

 3. System Schematic Displays: Provide color graphic system schematics for all mechanical equipment and systems. Schematics shall be similar in nature to the control diagrams included in the drawings. Each system and/or equipment schematic shall include the following minimum information:
 a. System designation
 b. Graphic representation and labeling of all major equipment and components (all scheduled equipment as a minimum)
c. Current status of all I/O points applicable to the system (located appropriately for ease of proper association)

2.03 DAMPER AND VALVE ACTUATORS

A. Manufacturers:
 1. Belimo or Equivalent Siemens product

B. High resolution type with positive feedback on valve or damper position, direct coupled type.
 1. Spring-return operation to fail open or closed upon loss of signal or power when indicated on the drawings as normally open (NO) or normally closed (NC), respectively; constructed to maintain last position upon power failure when not specified to be either normally open or normally closed on the drawings.
 2. Built-in overload protection to prevent damage to the actuator when the actuator or damper reaches its end position.
 3. Designed for a minimum life of 60,000 cycles; selected for compatibility with associated equipment.
 4. Damper actuators sized for 50 % safety factor with ample capacity to hold device at an intermediate position.
 5. Valve actuators sized for torque required for valve close-off at maximum pump differential pressure. Valve actuators shall be factory installed on the valves with necessary hold off brackets and shields to protect the actuator from condensation and over-heating.
 6. Actuator unit shall be submerged in oil and sealed in die cast case; UL listed; 3 year unlimited warranty.
 7. Provide damper actuator size/rating and quantity suitable for control and shut-off dampers sizes being utilized. Coordinate with air handling unit manufacturers to determine size and type of factory furnished dampers.

2.04 DDC CONTROLLERS

A. Manufacturers:
 1. As manufactured by approved EMCS manufacturer.
 2. Equipment Controllers
a. **Stand-Alone Operation**: Integral processor, software, hardware, firmware, and memory sufficient to perform complete stand-alone control and operation of associated equipment.

b. **Expansion**: Controllers shall accommodate multiple I/O expansion modules for the possibility of future expansion.

c. **Operator’s Terminal Interface**: All point data, algorithms and application software within a controller shall be custom programmable from the operator’s terminal.

d. **Self-Diagnostics**: Each controller shall include self-diagnostics, which allow the controller to automatically notify the network controller of any malfunctions or alarm conditions that exceed desired parameters.

e. **Operator’s Interface**: Each controller shall contain a port for connection of a portable computer. The entire system shall be accessible from this port.

3. **Unitary Controllers**

a. **Stand-Alone Operation**: Upon loss of communication, each unitary controller shall execute its assigned control algorithm in a stand-alone mode.

b. **Zone Temperature Sensor Compatibility**: Unitary controllers shall support various types of zone temperature sensors including temperature sensor only, temperature sensor with setpoint adjustment, temperature sensor with local override switch, and temperature sensor with setpoint adjustment and local override switch.

c. **For applications that require airflow measurement**, the unitary controller shall include a precision built-in differential pressure transducer. The differential pressure transducer shall have a measurement range of 0 to 4,000 FPM and measurement accuracy of ±5% at 400 to 4,000 FPM. Controller shall include provisions for manual and automatic calibration of the differential pressure transducer. Automatic calibration shall occur whenever the system mode switches from occupied to unoccupied mode or vice versa.

d. **VAV Applications**: Unitary controller shall be provided with either a separate or integral direct-coupled electronic actuator. The actuator shall be of the on-off floating point control. The actuator assembly shall mount directly to the damper operating shaft. The actuator shall be electronically protected against overload.
e. Serviceability: Controller wiring terminal bars shall be of detachable type allowing quick serviceability of the electronic controller hardware without removal of the existing wiring.

2.05 COMPONENTS

A. General: Where required components are not listed or specified, but are required for system operation, submit product literature for proposed component based on manufacturer’s typical application recommendations.

B. Conduit: Conduit shall meet all requirements of the Latest Edition of the National Electrical Code and State Codes and Division 26.

C. Contactors

1. Single coil, electrically operated, mechanically held type
2. Positive locking obtained without the use of hooks, latches or semi-permanent magnets
3. Doubled break silver to silver type protected by arching contact where necessary
4. Number and rating of contacts selected for the intended application
5. Operating and release times shall be 100 milliseconds or less
6. Equipped with coil transient suppression devices to limit transients to 150% of rated coil voltage

D. Electronic Transmitters: Temperature sensing elements shall be thermistor or platinum RTD type as indicated below.

E. Enclosures: Enclosures shall conform to the requirements of NEMA 250 for the types specified. Finish color shall be the manufacturer’s standard, unless otherwise indicated. Damaged surfaces shall be repaired and refinished using original type finish. Enclosures may be NEMA 1 when located in a clean dry indoor environment. Indoor enclosures shall be NEMA 12 when installed in other than a clean dry environment. Equipment installed outdoors shall be housed in a NEMA 4 enclosure. Penetrations shall be sealed to preclude entry of water using a silicone material. All control panels shall be UL listed for code compliance.

F. Nameplates: Provide laminated plastic nameplates for all equipment and monitoring and control devices in accordance with the requirements of Section 230553 – Identification for HVAC Piping and Equipment. Each nameplate shall
identify the function, such as “mixed air controller” or “cold deck temperature sensor”.

G. Power Conditioning

1. Capacity shall match the equipment served
2. Output 120 VAC, +6 to –8 % at 90 to 136 VAC input
3. Maximum 2 % total harmonic wave form distortion
4. 10 million to 1 common-mode noise attenuation (140dB minimum at 0.0)
5. 57dB normal-mode noise attenuation for 10 Hz to 1 MHZ
6. Provide for all solid state equipment unless protection meeting these requirements is an integral part of the equipment.

H. Power Monitors: Three-phase type with three-phase disconnect/shoring switch assembly; UL listed voltage transformers and UL listed split-core current transformers.

I. Relays

1. General:
 a. Rated for the intended application
 b. Minimum of 2 sets of Form C contacts
 c. Enclosed in a dust-proof enclosure
 d. Rated for a minimum life-cycle of 1,000,000 operations
 e. 20 milliseconds or less operating time
 f. 10 milliseconds or less release time
 g. Equipped with coil transient suppression devices to limit transients to 150 % of rated coil voltage
2. Enclosed Relays (Relay-in-a-Box) RIB: SPDT enclosed relays with nipple mount for panel applications with LED status pilot light.
3. DIN Socket Control Relays:
 a. Plug-in type with dust cover
b. Contact rating, configuration, and coil voltage suitable for application

c. UL listed

d. Over-ride capability.

4. Time Delay Relays:

a. Solid state plug-in type with adjustable time delay

b. Delay shall be adjustable plus or minus 200% from setpoint called for

c. Contact rating, configuration, and coil voltage suitable for application

d. NEMA 1 enclosure when not installed in local control panel

J. Sensors

1. General: Sensors and control elements shall be rated for continuous operation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified or normally encountered for the installed location.

2. Provide wall boxes for sensing elements for conduit rough-in with extension rings if required due to finished surfaces on the walls.

3. Room Temperature Sensors/Thermostats:

a. 10K ohm at 77 degrees F thermistor, ±0.5 degrees F accuracy.

b. Provide with integral communications jack to communicate with the zone’s unitary controller.

c. Temperature sensor with LCD display indicating space temperature, humidity, local over-ride, and setpoint adjustment buttons or slider.

1) Generally sensors in occupied areas (classrooms, offices, conference rooms, etc) have LCD display, adjustable controls within a temperature range allowed by the Owner, and over-ride. Coordinate set-up with the Owner.

2) Sensors in public areas (toilet rooms, corridors, lobbies etc) and mechanical areas (processing room, truck bay, etc.) shall be blank tamperproof style with stainless steel cover plate. Box shall be recessed in the process and truck bay areas to prevent damage from moisture.
4. **Humidity Sensors-Indoor**
 a. **Power:** 24 volt input, 4-20 mA output
 b. **Humidity Sensor:** Impedance type
 c. **Accuracy** +/-3% RH
 d. **Range:** 0 to 95% RH
 e. **Mounting:** Standard 2x4 J-box.
 f. **Enclosure:** ABS Plastic
 g. **Blank Cover**
 h. **Basis of Design:** BAPI Delta Style Room Units

5. **Humidity Sensors-Duct**
 a. **Power:** 24 volt input, 4-20 mA output
 b. **Humidity Measurement:** Humidity Ratio (lbs water/lb air)
 c. **Accuracy** +/-5% RH
 d. **Mounting:** Standard 2x4 J-box.
 e. **Enclosure:** ABS Plastic

6. **Outdoor Humidity Sensor**
 a. **Accuracy** +/-3% accuracy, 3 point calibration
 b. **Range:** 0 to 100% RH range
 c. **Basis of Design:** Veris HO

K. **Switches**

1. **Air Flow Switches:**
 a. **General purpose utilizing differential air pressure.**
 b. **SPDT snap-acting contracts.**
 c. **Adjustable from 0.1 to 2.0 inches WG minimum or as required for the intended application.**
d. Aluminum construction with neoprene diaphragm.

2. Bypass Switches:
 a. Momentary contact type push button.
 b. Installed in standard wall box with stainless steel cover.

3. Current Sensors:
 a. Self-powered.
 b. Solid state.
 c. Adjustable trip current; selected to match the current of the application and output requirements of the EMCS system.
 d. UL listed.
 e. Provide variable frequency drive rated current switches on motors with VFDs.
 f. For on/off indication, digital current transducer with dry contact.
 g. For current measurement, analog current transducer, with 0-10 V or 4-20 ma output scalable to amp draw.

L. Sensor Wells
 1. Bronze or brass with NPT threads sized to match associated device.

M. Transformers
 1. Current Transformers:
 a. Current ratio as necessary for application.
 b. Windings completely enclosed, except for terminals.
 c. 1 % of full scale accuracy.
 d. UL listed.
 2. Voltage Transformers:
 a. 600 VAC rated.
 b. Complete with built-in fuse protection.
c. Windings completely enclosed, except for terminals.

d. Suitable for ambient temperatures of 40 to 130 degrees F.

e. 0.5 % accuracy at 24 VAC.

3. Control Power Transformers:

a. Provide all low voltage power supplies and transformers in sufficient quantity and distribution, to provide power to all control devices. 24 VAC power supply to all control devices shall be Class II as defined by the NEC.

b. Transformer size for any load shall be 100 VA maximum, 40 VA minimum. Provide with integral circuit breaker protection.

N. Transmitters

1. Current Transmitters:

a. Self-powered combination split-core current transformer type with built-in rectifier and high-gain servo amplifier.

b. Unit range as necessary for application.

c. Internal zero and span adjustment.

d. 1 % of full scale accuracy.

e. UL listed.

2. Voltage Transmitters:

a. Self-powered single loop type.

b. Internal zero and span adjustment.

c. 1 % of full scale accuracy.

d. UL listed.

O. Variable Frequency Drives (VFDs)

1. Variable frequency Drives (VFDs) shall be provided under Section 230926 – Variable Frequency Drives, and factory installed on air handling equipment and/or field installed and wired under Division 26. Coordinate interface and control wiring I/O requirements with EMCS.
P. Wiring: All wiring shall be compliant to local building codes and the NEC and Division 26 of these specifications.

PART 3 - EXECUTION

3.01 EXAMINATION

A. The project plans shall be thoroughly examined for control device and equipment locations. Any discrepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.

B. The contractor shall inspect the site to verify that equipment may be installed as shown. Any discrepancies, conflicts, or omissions shall be reported to the Architect/Engineer for resolution before rough-in work is started.

C. The contractor shall examine the drawings and specifications for other parts of the work. If head room or space conditions appear inadequate or if any discrepancies occur between the plans and the Contractor’s work and the plans and the work of others, the Contractor shall report these discrepancies to the Engineer and shall obtain written instructions for any changes necessary to accommodate the Contractor’s work with the work of others. Any changes in the work covered by this specification made necessary by the failure or neglect of the contractor to report such discrepancies shall be made by this contractor at his expense.

3.02 INSTALLATION, GENERAL

A. Installation of temperature control system and equipment shall be complete under this section. Provide all required system components and wiring necessary to accomplish the specified sequences of operation as indicated on the drawings.

1. Exception: Components specified to be factory furnished with a particular mechanical equipment item.

B. All control devices installed in ductwork shall be positively anchored and attached to the ductwork by mechanical means. Duct access panels shall be provided for all such devices.

C. It shall be the responsibility of this contractor to provide power for all devices requiring power. Coordinate with other trades to arrange for necessary power circuits. All control devices shall obtain power from dedicated control circuits. Provide control voltage transformers for low voltage control power.
D. Wiring as used herein shall be construed as all power, control signal wiring, network communication wiring/cabling, conduits, hangers, etc., required for successful operation of the system. All wiring shall be in strict accordance with the latest edition of the National Electrical Code and local and state electrical code requirements and Division 26.

E. Install equipment, piping, and wiring/raceways parallel to building lines wherever possible.

F. Provide sufficient slack and flexible connections to allow for piping and equipment vibration isolation.

G. Install equipment in readily accessible locations as defined by National Electrical Code (NEC) Chapter 1 Article 100 Part A.

H. Verify wiring integrity to ensure continuity and freedom from shorts and ground faults.

I. Equipment, installation, and wiring shall comply with industry specifications and standards and local codes for performance, reliability, and compatibility.

J. Test & Balance

1. Provide Test and Balance Contractor a single set of necessary tools to interface to control system for testing and balancing excluding laptop computer.

2. Train Test and Balance Contractor to use control system interface tools.

3. Provide a qualified technician to assist with testing and balancing in getting started with testing.

4. Test and Balance Contractor shall return tools undamaged and in working condition at completion of testing and balancing.

3.03 INSTALLATION

A. Controllers

1. General: Controllers shall be installed in convenient locations directly on or immediately adjacent to the controlled equipment. If locations are not shown on the drawings, verify location with owner’s representative prior to installation.

 a. Spare Capacity: Provide a minimum of one AI/AO/DI and DO spare point at each controller. Provide a minimum of 25% spare capacity on each communication trunk for future use.
2. Unitary Controllers
 a. Unitary Controllers shall be provided as required. Unitary controllers serving mechanical equipment that is part of a larger system (e.g. air terminal unit controllers that are part of a VAV system) shall be connected to the EMCS through the equipment controller serving the associated system.

 b. Air terminal unit controllers furnished under this Section shall be shipped to the air terminal unit manufacturer by the EMCS contractor for factory mounting. Controllers and terminal units shall be factory calibrated to provide the maximum and minimum airflow values as indicated in the schedule. Final control connection, checkout, and calibration of factory-mounted controls shall be done at the site under this Section. This shall include all terminal unit controllers.

B. General Components
 1. Conduit: Provide as required in the wiring section in complete accordance with the applicable version of the NEC. Conduit terminations shall be free from burrs with a strain relief fitting provided.
 2. Nameplates: Provide system and component labeling in accordance with the requirements of Section 230553 – Identification for HVAC Piping and Equipment. All control components except room temperature sensors shall be equipped with nameplates to identify each control component. Contractor shall submit proposed labeling list prior to installation of labels.
 3. Room Temperature Sensors: Mount at 4 feet 0 inches above finished floor unless indicated otherwise. Sensors shall connect to the equipment serving the space the thermostat is located in. Not all thermostats are shown on the drawings and those shown are preliminary locations only. The contractor shall mark all final thermostat locations on-site for approval by the Owner’s Representative prior to installation. Locations shall be coordinated with light switches where appropriate.
 4. Sensors
 a. General:
 1) Mount sensors rigidly and adequately for the environment within which the sensor operates.
 2) All wires attached to sensors shall be air-sealed in their raceways or in the wall to stop air transmitted from other areas affecting sensor readings.
3) Duct Temperature Sensors: Averaging type sensors installed in a serpentine manner vertically across the duct. Each bend shall be supported with a capillary clip.

4) Low Limit Thermostats: Installed in a serpentine manner horizontally across duct. Each bend shall be supported with a capillary clip. Locate on the inlet side of air handling unit cooling coils close the outside air damper.

5) Outside Air Temperature Sensors and Outside relative humidity sensors: Install on a north wall with sun shield. Install away for air relief or exhaust vents.

6) Pressure Sensors: The piping to the pressure ports on all pressure transducers shall contain a capped test port located adjacent to the transducer.

7) Room Temperature Sensors: Install on concealed junction boxes properly supported by the wall framing.

8) Room CO2/Humidity/CO/NO2 Sensors: Install on concealed junction boxes properly supported by the wall construction.

5. Thermometer Wells: All pipe-mounted temperature sensors shall be installed in wells. Install all liquid temperature sensors with heat-conducting fluid in thermal wells.

6. Transmitters
 a. Provide for all temperature and pressure sensing
 b. Serpentine transmitter and controller cap tube averaging elements in mixed air and across coil face to prevent possibility of sensing stratified air
 c. Provide access panels for temperature transmitters located in return/exhaust ductwork.

7. Differential Air Static Pressure.
 a. Supply Duct Static Pressure. Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to manufacturer's recommendations.
 b. Return Duct Static Pressure. Pipe high-pressure tap to duct using a pitot tube. Make pressure tap connections according to manufacturer's recommendations.
c. Building Static Pressure. Pipe pressure sensor's low-pressure port to the static pressure port located on the outside of the building through a high-volume accumulator. Pipe high-pressure port to a location behind a thermostat cover.

d. Piping to pressure transducer pressure ports shall contain a capped test port adjacent to transducer.

e. Pressure transducers, except those controlling VAV boxes, shall be located in control panels, not on monitored equipment or on ductwork. Mount transducers in a vibration-free location accessible for service without use of ladders or special equipment.

f. Mount gauge tees adjacent to air and water differential pressure taps. Install shut-off valves before tee for water gauges.

8. CO/CO2/NO2/Humidity Sensors

a. Mount duct mounted sensors per manufacturer’s instructions. Locate in accessible locations for maintenance or recalibration.

b. Mount wall mounted sensors where indicated on plans or adjacent to room temperature sensors.

9. Wiring

a. Provide all power, control and network wiring and raceways for a complete and fully operational system under this Section, including line voltage power supply to controller and transformers, low voltage power supplies to field devices, actuators, switches, sensors and controllers, and hard-wired I/O wiring and all network communications wiring and/or cabling. Coordinate with Division 26 for available power supply sources.

b. Control and interlock wiring and installation shall comply with national and local electrical codes, Division 26, and manufacturer’s recommendations.

c. NEC Class 1 (line voltage) wiring shall be UL listed in approved raceway as specified by NEC and Division 26.

d. Low-voltage wiring shall meet NEC Class 2 requirements. Sub-fuse low-voltage power circuits as required to meet Class 2 current limits.

e. NEC Class 2 wires not run in raceways, but run in concealed and accessible locations, such as return air plenums, shall be UL listed for intended applications.
f. Wiring inside control cabinets shall be dressed neatly and tied with Thomas and Betts wire ties. Plastic tooth wire ties are not acceptable.

g. All field wiring entering control cabinets shall be labeled with Thomas and Betts self-laminating wire markers or appropriate alphanumeric labels corresponding to termination shown on the control drawings. Colored phase tape shall not be used.

h. Wiring routed from equipment shall be in a manner as to avoid injury to the wiring.

i. “Across-the hinge” wiring shall be dressed to avoid strain and abrasion. Provide spiral wrap suitable to this application.

j. Install instrumentation grounding as necessary to preclude ground loops and noise from adversely affecting equipment operations.

k. Wiring shall be enclosed in conduit in the following conditions:

1) All wiring in mechanical/equipment rooms, below 7 foot level, in catwalk platform areas, electrical or service rooms, or other areas subject to damage.

2) Concealed wiring in walls or above hard-lid ceilings.

3) Outdoor wiring.

4) Wiring mounted on vibrating equipment such as fans and compressors. (Avoid crossing flexible connections or vibration isolation components. Where wiring leaves vibrating equipment, provide ample flexible conduit to permit normal machinery movement.)

5) Wiring routed above ceilings.

6) All wiring associated with smoke control system.

7) Communication wiring.

8) Exception:

a) Conduit for wiring above accessible T-bar ceilings may be omitted if approved by local and state electrical code authorities.

b) Conduit for wiring in return air plenums may be omitted if approved by local and state electrical
code authorities, providing that the contractor utilize plenum rated cable.

1. All wiring requirements noted above apply to communications wiring. The following requirements are intended to be supplemental to those requirements.

 1) Communication wiring shall not be installed in raceway and enclosures containing Class 1 or other Class 2 wiring.

 2) Maximum pulling, tension, and bend radius for cable installation as specified by the cable manufacturer shall not be exceeded during installation.

 3) Contractor shall verify the integrity of the entire network following the cable installation. Use appropriate test measures for each particular cable.

 4) Provide a lightning arrestor between the lines and ground wherever a cable enters or exits a building.

 5) Communication wiring shall be installed in continuous lengths. Spliced wires are not acceptable.

 6) Grounding of coaxial cable shall be in accordance with NEC Regulations Article on Communications Circuits, Cable and Protector Grounding.

10. Fiber Optic Cabling

 a. Maximum pulling tensions as specified by the cable manufacturer shall not be exceeded during installation. Post-installation residual cable tension shall be within cable manufacturer’s specifications.

 b. All cabling and associated components shall be installed in accordance with manufacturer’s instructions. Minimum cable unjacketed fiber bend radii as specified by cable manufacturer shall be maintained.

11. Warning Labels

 a. Affix permanent warning labels to equipment that can be automatically started by the control system.

 1) Labels shall use white lettering (12-point type or larger) on a red background.
2) Warning labels shall read as follows:

CAUTION
This equipment is operating under automatic control and may start or stop at any time without warning. Switch disconnect to "Off" position before servicing.

b. Affix permanent warning labels to motor starters and control panels that are connected to multiple power sources utilizing separate disconnects.

1) Labels shall use white lettering (12-point type or larger) on a red background.

Warning labels shall read as follows:

CAUTION
This equipment is fed from more than one power source with separate disconnects. Disconnect all power sources before servicing.

12. Identification of Hardware and Wiring

a. Label wiring and cabling, including that within factory-fabricated panels, with control system address or termination number at each end within 2 in. of termination.

b. Label pneumatic tubing at each end within 2 in. of termination with a descriptive identifier.

c. Permanently label or code each point of field terminal strips to show instrument or item served.

d. Label control panels with minimum ½ in. letters on laminated plastic nameplates.

e. Label each control component with a permanent label. Label plug-in components such that label remains stationary during component replacement.

f. Label room sensors related to terminal boxes or valves with nameplates.

g. Manufacturers' nameplates and UL or CSA labels shall be visible and legible after equipment is installed.

h. Label identifiers shall match record documents.
3.04 PROGRAMMING

A. Point Naming. Name points as shown on the equipment points list provided with each sequence of operation. If character limitations or space restrictions make it advisable to shorten the name. Where multiple points with the same name reside in the same controller, each point name may be customized with its associated Program Object number. For example, "Zone Temp 1" for Zone 1, "Zone Temp 2" for Zone 2.

B. Software Programming. Programming shall provide actions for each possible situation. Graphic- or parameter-based programs shall be documented. Text-based programs shall be modular, structured, and commented to clearly describe each section of the program.

1. Application Programming. Provide application programming that adheres to sequences of operation specified. Program documentation or comment statements shall reflect language used in sequences of operation.

2. System Programming. Provide system programming necessary for system operation.

C. Operator Interface

1. Standard Graphics. Provide graphics as specified. Show on each equipment graphic input and output points and relevant calculated points such as indicated on the applicable Points List as indicated on the drawings. Point information on graphics shall dynamically update.

2. Install, initialize, start up, and troubleshoot operator interface software and functions (including operating system software, operator interface database, and third-party software installation and integration required for successful operator interface operation) as described in Section 23 09 00.

D. Alarm Processing

1. Coordinate with the owner for a list of alarm priorities required for the building. A minimum of 15 separate priorities shall be configured.

2. Alarms required by the sequence of control shall be fully configured for delivery to the operator workstations and the alarm files.

3. A common alarm file shall be established to receive alarms from the field devices.

4. A separate alarm file shall be established on a per building basis to receive just the alarms from that building.
5. The alarm messages shall be descriptive and include as a minimum:
 a. Building identification.
 b. System identification.
 c. Date.
 d. Time to the second.
 e. Nature of the alarm such as high value, low value, or fail to start.

6. The system shall be configured to send an alarm message on return to normal.

7. Additional alarms that are required to be added to building systems include fans, pumps, chillers, etc. used for preventative maintenance.
 a. Run time alarm for preventative maintenance.
 b. Performance deviation reports that compare actual performance with specified performance. An example would be the average deviation from set point for space temperatures, discharge air temperatures on air handling units, etc.

E. Trends

1. Trend I/O point present values, set points, and other parameters used in the sequence of operation.

2. Trends shall be stored within the controller and uploaded to server automatically on reaching 80% of controller buffer limit, or by operator request, or by archiving time schedule.

3. Standard trend intervals for each I/O point are as follows:
 a. Temperature noncritical – 5 min
 b. Temperature Critical – COV of 0.25°
 c. Manual Setpoints – COV
 d. Auto Resetting Setpoints – COV 0.5°
 e. Zone Humidity noncritical – 5 min
 f. Zone Humidity Critical – COV of 3%
g. Static Pressure – 1 Min
h. Damper position – COV 5%
i. Fan status – COV
j. Fan Command - COV
k. Fan speed – COV 5%
l. Valve command – COV 5%
m. Valve command – COV 5%
n. Damper position – COV 5%
o. Occupancy mode - COV
p. Water temperature – 5 Min
q. Water set point - COV
r. Equipment load – 5 Min
s. Pump status – COV
t. Pump Command - COV
u. Water gpm – COV 5% of Max Flow
v. Differential pressure – 5 Min
w. Electrical Consumption – 15 Min

4. Minimum number of consecutive trend values stored at one time shall be 100 per variable.

5. Archived and real-time trend data shall be available for viewing numerically and graphically.

3.05 INTEGRATION TO OTHER SYSTEMS AND EQUIPMENT WITH INTEGRAL CONTROLS

A. Communication Interface:
1. EMCS shall have a communication interface with equipment having integral controls and having a communication interface for remote monitoring or control.

B. Points to be mapped:

1. Coordinate with owner as to which points shall be required to be mapped from communication interface to Network graphical interface. Allow for a minimum of 20 points for each piece of equipment, unless noted otherwise.

3.06 START-UP

A. Start-up and check-out

1. Verify that all circuits, controls and devices are properly installed.

2. Check connectivity of all control points between field devices and controllers. Check and confirm all device addresses and control points.

3. Verify that all dampers and control valves operate in the correct direction.

4. Energize the controlled equipment and test for proper operation. Make all necessary adjustments, remove and replace any malfunctioning devices and retest.

3.07 CALIBRATION AND ADJUSTING

A. Calibrate all sensors and devices.

B. Submit calibration sheets to the Owner’s Representative.

C. Make 3 point calibration test for both linearity and accuracy for each analog device.

D. Calibrate devices according to manufacturer’s directions.

E. Adjust flow, pressure and temperature switches.

F. Stroke and adjust control valves and dampers.

G. Adjust all initial temperature setpoints.
3.08 TESTING

A. The completed control system shall be adjusted and tested under operating conditions by a qualified technician in the employ of the EMCS Contractor.

B. Startup Testing Plan: Submit a startup testing plan for each unique system.

1. The purpose of a startup test is to demonstrate the “completeness” of the physical tasks associated with installation and the physical performance of the components.

2. For each task on the startup test checklist, the plan shall require the technician to enter his or her initials and the date the test was completed along with any recorded data such as voltages, offsets, or tuning parameters. Any deviations from the submitted installation plan shall also be recorded.

3. Required elements of the startup testing include:

 a. Measurement of voltage sources, primary and secondary.

 b. Verification of proper controller power wiring.

 c. Verification of component inventory when compared to the submittals.

 d. Verification of labeling on components and wiring.

 e. Verification of connection integrity and quality (loose strands and tight connections).

 f. Verification of bus topology, grounding of shields and installation of termination devices.

 g. Verification of point checkout.

 1) Each I/O device is landed per the submittals and functions per the sequence of control.

 2) Analog sensors are properly scaled and a value is reported.

 3) Binary sensors have the correct normal position and the state is correctly reported.

 4) Analog outputs have the correct normal position and move full stroke when so commanded.

 5) Binary outputs have the correct normal state and respond appropriately to energize/de-energize commands.
h. Documentation of analog sensor calibration (measured value, reported value and calculated offset).

i. Documentation of Loop tuning (sample rate, gain and integral time constant).

4. Submit at least four weeks prior to any scheduled start-up tests.

 a. Startup testing reports shall be submitted on a per system basis.
 b. Startup testing reports shall be the documented results of the executed startup testing plans.

C. When the testing is completed, the test log and a letter of certification stating that all control functions of the system have been checked and are in satisfactory operating order and in compliance with the contract documents shall be given to the Owner.

3.09 SERVICE AND TROUBLE SHOOTING

A. Perform the regularly scheduled maintenance service visits as required by Part 1 of these specifications.

B. Provide warranty service and system troubleshooting as needed during the project warranty period.

3.10 SYSTEM SCHEDULING

A. During initial set-up and programming of the control system, the EMCS Contractor shall work closely with the Owner’s staff to develop and program equipment utilization schedules.

1. Equipment utilization schedules shall allow the Owner to operate groups of equipment in occupied mode based on the use of the building through selection of the appropriate utilization schedule at the Operator’s workstation. Any piece of equipment shall have the capability of belonging to more than one utilization schedule.

2. The type and expected duration of the building activities shall dictate which mechanical systems and HVAC equipment must be operational, as well as the appropriate occupied setpoints.
3.11 CLOSEOUT ACTIVITIES

A. Refer to Section 230000 – HVAC General Provisions

B. System Demonstration

1. The Owner reserves the right, at their option, to require a demonstration by a factory authorized representative of the control system prior to acceptance of any temperature control bid.

2. This demonstration shall occur at the project site and shall include a functional demonstration and complete description of the control system as bid including, but not limited to, a list of representative projects, software routines, hardware components, sequences of operation, programming and troubleshooting techniques, and availability of service and training.

3. The complete and fully operational control system shall be demonstrated to the designated Owner’s personnel and project engineer upon completion of successful start-up and testing. Demonstration shall be an overview of the entire functionality of the system including the operator’s terminal, the web browser interface, the graphical user interface, remote control point adjustment, scheduling procedures, overrides, alarms, unitary and terminal unit control.

4. Demonstration of the system shall occur in order to verify overall compliance with the above start-up and testing.

5. Demonstration shall be prior to, and in addition to, the required operator training.

C. Owner Training

1. Training shall be conducted by an engineer familiar with the specific design of the system provided for this project.

2. Training sessions shall include all necessary people including the controls system programmer, the controls components installer, and other representatives as necessary to access equipment and components and for clarification of interfaces with other systems.

 a. Systems Interface (Provide the following for each individual system):

 1) Provide a presentation of how the sequence of operation has been implemented.

 2) Show the location in the graphics of each viewable input and output.
3) Show the location in the graphics of each adjustable setpoint, including the procedure for adjustment.

4) Show the graphic presentation of each system alarm.

b. Components:

1) Show the actual location for each sensor, control system device and control panel.

2) Show procedure for any required maintenance of components, as well as replacement procedures as appropriate.

c. Review of each system and the sequence of operations.

3.12 MAINTENANCE SERVICES

A. Complete service as required, including, but not limited to, a minimum of four (4) service inspections of all control systems during the first year following acceptance of the work. The inspections shall be scheduled as close as possible to the beginning of the heating and cooling seasons with the final inspection just prior to the expiration of the warranty period. These inspections are in addition to any warranty calls that are required during the warranty period. Documentation shall be forwarded to the Owner's Representative with a copy to the Design Engineer at the completion of each trip.

3.13 96-HOUR TEST RUN

A. The 96-hour test run shall be made when all field equipment is installed and the system is calibrated and running.

B. The 96 hour rest run shall be made upon completion of the resting, adjusting and balancing.

C. The 96-hour test run shall include performance of all associated software and hardware operations called for in these specifications. The test shall be for a duration of 96 continuous hours with no Contractor maintenance required. Notify Owner’s Representative prior to beginning the 96-hour run test.

END OF SECTION 23 09 00
PART 1 - GENERAL

1.01 SUMMARY

A. Related Sections:
 1. Section 23 00 00 – HVAC General Provisions.
 2. Section 23 05 13 - Motors
 3. Section 23 21 23 – Hydronic Pumps
 4. Section 23 09 00 – Energy Management and Direct Digital Controls and Instrumentation.
 5. Section 23 34 23 – Power Ventilators.
 6. Section 23 73 13 – Indoor Air Handling Units
 7. Section 23 73 15 - Heat Recovery Ventilation Units
 8. Section 23 74 13 – Outdoor Central Station Air Handling Units

B. VFD Equipment List: Provide Variable Frequency Drives (adjustable frequency drives) on the following equipment.

 1. See Schedule on the drawings. Note VFD for F-4 is owner-furnished contractor-installed.

 2. All VFDs on the project shall be of the same manufacturer. Coordinate between packaged equipment manufacturers and VFDs provided under this section for continuity.

1.02 QUALITY ASSURANCE

A. The variable frequency drives and all components shall be designed, manufactured and tested in accordance with the latest applicable standards of IEC, UL, CUL, and NEMA.

B. The supplier of the assembly shall be the manufacturer of the electromechanical power components used within the assembly, such as bypass contactors when specified.

C. For the equipment specified herein, the manufacturer shall be ISO 9001 certified.
D. Variable Frequency Drives shall be on the basis of ABB ACH 550 Series for function and quality. Products that are in compliance with the specification and manufactured by others will be considered as “Approved Equal” only if pre-approved by the Engineer fourteen (14) days prior to bid date. Alternate suppliers shall submit documentation showing itemized compliance to the specifications and experience specific to the proposed VFD including a list showing details of the installation, application, location, contact name and telephone number of at least 10 users.

1.03 SUBMITTALS

A. Product Data: Include manufacturer’s descriptive literature, operating instructions, installation instructions, maintenance and repair data, and parts listings.

B. Shop Drawings:
 1. Dimensioned outline drawing.
 2. Schematic diagram.
 3. Power and control connection diagram(s).
 4. Purchase Order or Bill of Sale to allow Owner to submit to Utility Co. for Rebates.

C. Operation and Maintenance Data:
 1. Submit operation and maintenance data per the requirements of Section 23 00 00.
 2. Include manufacturer’s descriptive literature, operating instructions, installation instructions, maintenance and repair data, and parts listings.

D. Warranty

1.04 DELIVERY, STORAGE AND HANDLING

A. Equipment shall be handled and stored in accordance with manufacturer's instructions. One (1) copy of these instructions shall be included with the equipment at time of shipment.
1.05 WARRANTY

A. Provide two years (24 months) warranty under the provisions of Section 23 00 00. The warranty shall include parts, labor, travel costs and living expenses incurred by the manufacturer to provide factory authorized service.

PART 2 - PRODUCTS

2.01 MANUFACTURES

A. ABB

B. Prior Approved Equal.

2.02 ADJUSTABLE FREQUENCY DRIVES

A. Where indicated in the drawings and specifications, variable frequency drives shall have the following features:

1. The VFDs shall be rated for 480 Vac (unless otherwise specified) and sized for motor HP with a service factor of 20%. The VFD shall provide microprocessor based control for three-phase induction motors. The controller’s full load output current rating shall be based on variable torque application at 40\(^\circ\) C ambient and 10 kHz switching frequency below 40 Hp and 3.6 kHz 40 Hp and above to reduce motor noise and avoid increased motor losses.

2. The VFDs shall be of the Pulse Width Modulated (PWM) design converting the utility input voltage and frequency to a variable voltage and frequency output via a two-step operation. Variable Current Source VFDs are not acceptable. Insulated Gate Bipolar Transistors (IGBTs) shall be used in the inverter section. Bipolar Junction Transistors, GTOs or SCRs are not acceptable. The VFDs shall run at the above listed switching frequencies.

3. The VFDs shall have an efficiency at full load and speed that exceeds 95% for VFDs below 15 Hp and 97% for drives 15 Hp and above. The efficiency shall exceed 90% at 50% speed and load.

4. The VFDs shall maintain the line side displacement power factor at no less than 0.96, regardless of speed and load.

5. The VFDs shall have a one (1) minute overload current rating of 110% for variable torque applications.
6. The VFDs shall be capable of operating any NEMA design B squirrel cage induction motor, regardless of manufacturer, with a horsepower and current rating within the capacity of the VFD.

7. The VFDs shall limit harmonic distortion reflected onto the utility system to a voltage and current level as defined by IEEE 519 for general systems applications, by utilizing the standard 3% nominal impedance integral ac three-phase line reactor.

8. Any harmonic calculations shall be done based on the kVA capacity, X/R ratio and the impedance of the utility transformer feeding the installation, as noted on the drawings, and the total system load. The calculations shall be made with the point of common coupling being the point where the utility feeds multiple customers.

9. Total harmonic distortion shall be calculated under worst case conditions in accordance with the procedure outlined in IEEE standard 519-1992. Copies of these calculations are to be made available upon request. The contractor shall provide any needed information to the VFD supplier three (3) weeks prior to requiring harmonic calculations.

10. The system containing the VFDs shall comply with the 5% level of total harmonic distortion of line voltage and the line current limits as defined in IEEE 519-1992. If the system cannot meet the harmonic levels with the VFDs provided with the standard input line reactor or optional input isolation transformer, the VFD manufacturer shall supply an eighteen pulse, multiple bridge rectifier ac to dc conversion section with phase shifting transformer for all drives above 75 Hp. This eighteen pulse rectifier converter shall result in a multiple pulse current waveform that will more nearly approximate a true sinewave to reduce voltage harmonic content on the utility line. The phase shifting transformer shall be of a single winding type to optimize its KVA rating and harmonic cancellation capability.

11. Harmonic filters are not acceptable above 75 Hp.

12. The VFDs shall be able to start into a spinning motor. The VFDs shall be able to determine the motor speed in any direction and resume operation without tripping. If the motor is spinning in the reverse direction, the VFDs shall start into the motor in the reverse direction, bring the motor to a controlled stop, and then accelerate the motor to the preset speed.

13. Standard operating conditions shall be:
 a. Incoming Power: Three-phase, 480 Vac (+10% to -15%) and 50/60 Hz (+/-5 Hz) power to a fixed potential DC bus level.
b. Frequency stability of +/-0.05% for 24 hours with voltage regulation of +/-1% of maximum rated output voltage.

c. Speed regulation of +/- 0.5% of base speed.

d. Load inertia dependant carryover (ridethrough) during utility loss.

e. Insensitive to input line rotation.

f. Humidity: 0 to 95% (non-condensing and non-corrosive).

g. Altitude: 0 to 3,300 feet (1000 meters) above sea level.

h. Ambient Temperature: -10 to 40 °C (VT).

i. Storage Temperature: -40 to 60 °C.

14. Control Functions:

a. Frequently accessed VFD programmable parameters shall be adjustable from a digital operator keypad located on the front of the VFD. The VFDs shall have a 3 line alphanumeric programmable display with status indicators. Keypads must use plain English words for parameters, status, and diagnostic messages. Keypads that are difficult to read or understand are not acceptable, and particularly those that use alphanumeric code and tables. Keypads shall be variable for contrast with large characters easily visible in normal ambient light.

b. Standard advanced programming and trouble-shooting functions shall be available by using a personal computer’s RS-232 port and Windows™ based software. In addition the software shall permit control and monitoring via the VFD’s RS232 port. The manufacturer shall supply a diskette with the required software. An easily understood instruction manual and software help screens shall also be provided. The computer software shall be used for modifying the drive setup and reviewing diagnostic and trend information as outlined in this section through section 18.

c. The operator shall be able to scroll through the keypad menu to choose between the following:

1) Monitor

2) Operate

3) Parameter setup
4) Actual parameter values
5) Active faults
6) Fault history
7) LCD contrast adjustment
8) Information to indicate the standard software and optional features software loaded.

d. The following setups and adjustments, at a minimum, are to be available:
1) Start command from keypad, remote or communications port
2) Speed command from keypad, remote or communications port
3) Motor direction selection
4) Maximum and minimum speed limits
5) Acceleration and deceleration times, two settable ranges
6) Critical (skip) frequency avoidance
7) Torque limit
8) Multiple attempt restart function
9) Multiple preset speeds adjustment
10) Catch a spinning motor start or normal start selection
11) Programmable analog output
12) Proportional/Integral process controller
e. The VFDs shall have the following system interfaces:
1) Inputs – A minimum of six (6) programmable digital inputs, two (2) analog inputs and serial communications interface shall be provided with the following available as a minimum:
 a) Remote manual/auto
 b) Remote start/stop
c) Remote forward/reverse

d) Remote preset speeds

e) Remote external trip

f) Remote fault reset

g) Process control speed reference interface, 4-20mA dc

h) Potentiometer or process control speed reference interface, 1-10V dc

i) RS232 programming and operation interface port

2) Outputs – A minimum of two (2) discrete programmable digital outputs, one (1) programmable open collector output, and one (1) programmable analog output shall be provided, with the following available at minimum.

3) Programmable relay outputs with one (1) set of Form C contacts for each, selectable with the following available at minimum:

a) Fault

b) Run

c) Ready

d) Reversing

e) Jogging

f) At speed

g) In torque limit

h) Motor rotation direction opposite of commanded

i) Overtemperature

4) Programmable open collector output with available 24V dc power supply and selectable with the following available at minimum:

a) Fault
b) Run

c) Ready

d) Reversing

e) Jogging

f) At speed

g) In torque limit

h) Motor rotation direction opposite of commanded

i) Overtemperature

5) Programmable analog output signal, selectable with the following available at minimum:

a) Output current

b) Output frequency

c) Motor speed

d) Motor torque

e) Motor power

f) Motor voltage

g) DC link voltage

h) Monitoring and Displays

6) The VFD’s display shall be a LCD type capable of displaying three (3) lines of text and the following thirteen (13) status indicators:

a) Run

b) Forward

c) Reverse

d) Stop

e) Ready
f) Alarm

g) Fault

h) Local

i) Panel

j) Remote

k) Hand

l) Auto

m) Off

7) The VFD’s keypad shall be capable of displaying the following monitoring functions at a minimum:

a) Output frequency

b) Output speed

c) Motor current

d) Motor torque

e) Motor power

f) Motor voltage

g) DC-link voltage

h) Heatsink temperature

i) Total operating days counter

j) Operating hours (resetable)

k) Total megawatt hours

l) Megawatt hours (resetable)

m) Voltage level of analog input

n) Current level of analog input

o) Digital inputs status
p) Digital and relay outputs status
q) Motor temperature rise, percentage of allowable.

15. Protective Functions:
 a. The VFD shall include the following protective features at minimum:
 1) Overcurrent/Overvoltage
 2) Inverter fault
 3) Undervoltage
 4) Phase loss
 5) Output phase loss
 6) Undertemperature
 7) Overtemperature
 8) Motor stalled
 9) Motor overtemperature
 10) Motor under load Logic voltage failure
 11) Microprocessor failure
 12) DC injection braking

16. The VFD shall provide ground fault protection during power-up, starting, and running. VFD’s with no ground fault protection during running are not acceptable.

17. Diagnostic Features
 a. Fault History.
 b. Record and log faults
 c. Indicate the most recent first, and store up to 9 faults.

18. Optional features to be included in the VFD:
 a. HMCP or thermal magnetic breaker to provide a disconnect means. Operating handle shall protrude the door. The disconnect shall not
be mounted on the door. The handle position shall indicate ON, OFF, and TRIPPED condition. The handle shall have provisions for padlocking in the OFF position with at least three (3) padlocks. Interlocks shall prevent unauthorized opening or closing of the VFD door with the disconnect handle in the ON position. This shall be defeatable by maintenance personnel.

b. Three contactor bypass shall include a drive input disconnect, an VFD input isolation contactor, bypass contactor and an VFD output contactor that is electrically and mechanically interlocked with the bypass contactor. This circuit shall include control logic, status lights and motor overcurrent relays. The complete bypass system (Inverter-Off-Bypass)1 (Hand-Off-Auto with Inverter-Bypass) 1 selector switch(s), and inverter/bypass pilot lights shall be packaged with the VFD. The unit may be set up for (Manual) 1 (Automatic) 1 bypass operation upon an VFD trip.

c. Communication card for interface with ANSI/ASHRAE standard 135 (including all current addenda) bacnet using MST protocol(Modbus RTU) (Johnson Controls Metasys N2) (Siemens Building Technologies Apogee FLN) (Lonworks) control system.

19. Enclosure

a. The VFD enclosure shall be NEMA 1. The VFD shall have complete front accessibility with easily removable assemblies.

b. The VFD manufacturer shall maintain, as part of a national network, engineering service facilities within 250 miles of project to provide start-up service, emergency service calls, repair work, service contracts, maintenance and training of customer personnel.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Variable frequency drives shall be provided by the Division 23 contractor. VFD shall be field mounted by Division 26 or by the AHU manufacturer as noted below. Power wiring & connections from the electrical service to the VFD and from the VFD to the pumps/fans shall be field provided by division 26. Control wiring & connections between DDC controller and VFD shall be field provided by section 230900 contractor.
B. The following standard factory tests shall be performed on the equipment provided under this section. All tests shall be in accordance with the latest version of UL and NEMA standards:

1. All printed circuit boards shall be functionally tested via automatic test equipment prior to unit installation.

2. All final assemblies shall be tested at full load with application of line-to-line and line-to-ground bolted faults. The Variable Frequency Drive shall trip electronically without device failure.

3. After all tests have been performed, each VFD shall undergo a burn-in test. The drive shall be burned in at 100% inductive or motor load without an unscheduled shutdown.

4. After the burn-in cycle is complete, each VFD shall be put through a motor load test before inspection and shipping.

5. The manufacturer shall provide three (3) certified copies of factory test reports.

3.02 FIELD QUALITY CONTROL

A. Provide the services of a qualified manufacturer's employed Field Service Engineer or authorized service representative to assist the Contractor in installation and start-up of the equipment specified under this section. Field Service personnel shall be factory trained with periodic updates and have experience with the same model of VFD's on the job site. Sales representatives will not be acceptable to perform this work. The manufacturer's service representative shall provide technical direction and assistance to the Contractor in general assembly of the equipment, installation as specified in manufacturer’s installation instructions, wiring, application dependant adjustments, and verification of proper VFD operation.

B. The following minimum work shall be performed by the Contractor under the technical direction of the manufacturer's service representative.

C. Inspection and final adjustments.

D. Operational and functional checks of VFDs and spare parts.

E. The contractor shall certify that he has read the drive manufacturer's installation instructions and has installed the VFD in accordance with those instructions.

F. The Contractor shall provide three (3) copies of the manufacturer's field start-up report before final payment is made
END OF SECTION 23 09 26
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes pipe and fittings materials and joining methods for the following systems:

1. Low Pressure Steam (15 psig or less) and condensate piping.

1.02 PERFORMANCE REQUIREMENTS

A. Components and installation shall be capable of withstanding the following minimum working pressures and temperatures:

1. Low Pressure Steam and Condensate Piping: 15 psig at 250 deg F.
2. Drain Piping: Equal to pressure of the piping system to which it is attached.
3. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
4. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.

1.03 SUBMITTALS

A. Product Data: For each type of the following:

1. Steel Pipe and Fittings

B. Shop Drawings:

1. Assemblies and fabrication of pipe anchors, hangers, pipe, multiple pipes, alignment guides, and expansion joints and loops and their attachment to the building structure. Detail locations of anchors, alignment guides, and expansion joints and loops.

C. Qualification Data: For Installer(s)

D. Welding Certificates

E. Field quality-control test reports.
1.04 QUALITY ASSURANCE

A. Pipe Welding: Qualify processes and operators according to the following:
 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

B. ASME Compliance: Comply with ASME B31.1 "Power Piping" and ASME B31.9, "Building Services Piping" for materials, products, and installation.

PART 2 - PRODUCTS

2.01 COPPER TUBE AND FITTINGS

A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.

B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.

C. Wrought-Copper Fittings: ASME B16.22.

D. Wrought-Copper Unions: ASME B16.22.

2.02 STEEL PIPE AND FITTINGS

A. Steel Pipe: Black steel, plain ends, ASTM A 53 or A 106, Grade B, seamless or ERW, and wall thickness as indicated in Part 3 piping applications articles.

B. Threaded Fittings (NPS 2 and smaller):
 1. Forged carbon steel, ASME B16.11, classes indicated in Part 3 application articles.

C. Weld Fittings:
 1. NPS 2 and smaller: Forged steel, socket weld, ASME B16.11, classes indicated in Part 3 application articles.
 2. NPS 2-1/2 and larger: Wrought Carbon Steel, butt weld, ASTM A 234, wall thickness to match adjoining pipe.
D. Flanges and Flanged Fittings: Forged carbon steel ASME B16.5 flanges and wrought steel butt welded fittings with bolts, nuts, and gaskets of the following material group, end connections, and facings:

2. End Connections: Weld neck or slip-on flange.
3. Facings: Raised flange face.
4. Flange Bolting: Carbon steel machine bolts or studs and nuts, ASTM A 307, Grade B.
5. Class: As indicated in Part 3 application articles

E. Unions: Malleable-iron, ASME B16.39; Class as indicated in Part 3 piping applications articles.

F. Pipe Nipples: Black steel, ASTM A 733, made of ASTM A 53, black steel of same Type, Grade, and Schedule as pipe in which installed.

G. Stainless-Steel Flexible Connectors are specified in Division 23 Section “Pipe Expansion Fittings and Loops”.

H. Branch and Tap Connections: Forged steel weld-o-lets, or branch-o-lets and thread-o-lets may be used for branch connections up to one pipe size smaller than the main. Forged steel half-couplings, ASME B16.11 may be used for drain, vent and gage connections.

2.03 JOINING MATERIALS

A. Flange Gaskets: Non-asbestos gasket shall be stainless steel spiral wound strip with flexible graphite filler, rated for saturated and superheated steam service 750 deg. F. and 1500 psi. Flexitallic Style CG.

C. Welding Materials: Comply with Section 11, Part C, of ASME Boiler and Pressure Code for welding materials appropriate for wall thickness and for chemical analysis of piping being welded.

D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

E. Screwed/Threaded Joints: Lubricant or sealant shall be oil or graphite or other compound approved for intended service.
2.04 DIELECTRIC FITTINGS

A. Provide where copper tubing and ferrous metal pipe are joined.

C. 2 ½ inches and Larger: Flange union with dielectric gasket and bolt sleeves, ASME B16.42.

D. Temperature Rating, 250 deg F for steam condensate and as required for steam service.

E. Contractor’s Option: On pipe sizes 2” and smaller, threaded brass gate valves or dielectric nipples may be used in lieu of dielectric unions.

PART 3 - EXECUTION

3.01 STEAM PIPING APPLICATIONS

A. Low Pressure Steam piping:
 1. NPS 2 and Smaller: Schedule 40 steel pipe with standard weight threaded and/or socket welded fittings.
 2. NPS 2-1/2 through NPS 12: Schedule 40 steel pipe with standard weight butt-weld fittings and class 150 flanges. Elbows shall be long radius.

B. Low Pressure Steam Condensate Piping:
 1. NPS 2 and Smaller: Schedule 80 steel pipe with extra heavy weight threaded and/or socket welded fittings.
 2. NPS 2-1/2 through NPS 12: Schedule 80 steel pipe with extra heavy weight butt-weld fittings and class 150 flanges. Elbows shall be long radius.

3.02 ANCILLARY PIPING APPLICATIONS

A. Drain Piping: Same materials and joining methods as for piping specified for the service in which blowdown drain is installed.

B. Air-Vent Piping:
 1. Inlet: Same as service where installed.
2. Outlet: Type K (A) annealed-temper copper tubing with soldered or flared joints, or Schedule 40 steel pipe with threaded fittings.

C. Vacuum-Breaker Piping: Outlet, same as service where installed.

D. Safety-Valve-Inlet and -Outlet Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed.

3.03 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Use indicated piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.

B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.

C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.

D. Install piping to permit valve servicing.

E. Install piping free of sags and bends.

F. Install fittings for changes in direction and branch connections.

G. Install piping to allow application of insulation.

H. Select system components with pressure rating equal to or greater than system operating pressure.

I. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.

J. Install drains, consisting of a tee fitting, NPS 3/4 full port-ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.

K. Install steam supply piping at a minimum uniform grade of 0.2 percent downward in direction of steam flow.

L. Install condensate return piping at a minimum uniform grade of 0.4 percent downward in direction of condensate flow.
M. Reduce pipe sizes where required using eccentric reducer fitting installed with level side down.

N. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to top of main pipe.

O. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.

P. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.

Q. Install identification labels as specified in 23 Section “Identification for HVAC Piping and Equipment”.

R. Install drip legs at low points and natural drainage points such as ends of mains, bottoms of risers, and ahead of pressure regulators, and control valves.

S. On straight runs with no natural drainage points, install drip legs at intervals not exceeding 300 feet.

T. Size drip legs same size as main. In steam mains NPS 6 and larger, drip leg size can be reduced, but to no less than NPS 4.

U. Install sleeves and escutcheons for piping penetrations of walls, ceilings, and floors. Install sleeve seals for penetrations of concrete walls and slabs. Comply with requirements for sleeves and seals specified in Division 23 Section “General HVAC Requirements”.

3.04 HANGERS AND SUPPORTS

A. Hangers and supports are specified in Division 23 Section Hangers and Supports for HVAC Piping and Equipment.

3.05 PIPE JOINT CONSTRUCTION

A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA’s “Copper Tube Handbook.”
D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.

2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

E. Welded Joints: Construct joints according to AWS B2.1 and ASME B31.1, AWS D10.12, using qualified processes and welding operators according to Part 1 “Quality Assurance” Article.

F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.06 TERMINAL EQUIPMENT CONNECTIONS

A. Size for supply and return piping connections shall be the same as or larger than equipment connections.

B. Make connections according to the following, unless otherwise indicated:

1. Install unions, in piping NPS 2 and smaller, adjacent to each control valve and at final connection to each piece of equipment.

2. Install flanges, in piping NPS 2½ and larger, adjacent to flanged valves and at final connection to each piece of equipment.

C. Install a drip leg at coil outlet.

3.07 FIELD QUALITY CONTROL

A. Prepare all steam and condensate piping systems according to ASME B31.9, "Building Services Piping," and as follows:

1. Leave joints, including welds, uninsulated and exposed for examination during test.

2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
3. Remove steam traps from the piping system or isolate them and open by-pass valve.

4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.

5. Flush system with clean water. Clean strainers. Replace steam traps.

B. Perform the following tests on above grade steam and condensate piping:

1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.

2. Subject piping system to hydrostatic test pressure that is equal to 1.5 times the working pressure or 125 psig, whichever is greater. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength.

 a. Operating Pressures:

 1) Low Pressure Steam: 15 psig
 2) Condensate Piping: 50 psig

3. After hydrostatic test pressure has been applied for at least 2-hrs, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components and repeat hydrostatic test until there are no leaks.

4. Prepare written report of testing.

END OF SECTION 23 22 13
PART 1 GENERAL

1.01 SUMMARY

A. This Section includes the following steam and condensate piping specialties:
 1. Steam traps.
 2. Thermostatic air vents and vacuum breakers.
 3. Strainers.

1.02 PERFORMANCE REQUIREMENTS

A. Components shall be capable of withstanding the system pressures and temperatu-eres in which they are installed as follows:
 1. Low Pressure (15 psig and less) Steam and Condensate Piping: 125 psig at 250 deg F.
 2. Medium and High Pressure (greater than 15-psig) Steam and Condensate Piping: 250 psig at 350 deg F.
 3. Blowdown-Drain Piping: Equal to pressure of the piping system to which it is attached.
 4. Air-Vent and Vacuum-Breaker Piping: Equal to pressure of the piping system to which it is attached.
 5. Safety-Valve-Inlet and -Outlet Piping: Equal to pressure of the piping system to which it is attached.

1.03 SUBMITTALS

A. Product Data: For each type of the following:
 1. Steam traps.
 2. Thermostatic air vents and vacuum breakers.
 3. Strainers.

B. Operation and maintenance data: For safety valves, pressure-reducing valves, steam traps, air vents, vacuum breakers.
1.04 QUALITY ASSURANCE

A. ASME Compliance: Comply with ASME B31.1, "Power Piping" and ASME B31.9, "Building Services Piping" for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label.

PART 2 - PRODUCTS

2.01 STEAM TRAPS

A. Thermostatic Traps:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Armstrong International
 b. Dunham-Bush
 c. Hoffman Specialty
 d. Spirax Sarco
 e. TLV

2. Body: Bronze angle-pattern body with integral union tailpiece and screw-in cap.

3. Trap Type: Balanced-pressure.

4. Bellows: Stainless steel or monel.

5. Head and Seat: Replaceable, hardened stainless steel.

6. Pressure Class: 125.

B. Thermodynamic Traps:

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

 a. Armstrong International
 b. Dunham-Bush
 c. Hoffman Specialty
 d. Spirax Sarco
4. Disc and Seat: Stainless steel.
5. Maximum Operating Pressure: 600 psig.

C. Float and Thermostatic Traps:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 a. Armstrong International
 b. Dunham-Bush
 c. Hoffman Specialty
 d. Spirax Sarco
 e. TLV
2. Body and Bolted Cap: ASTM A126, cast iron.
6. Trap Type: Balanced pressure.
7. Thermostatic Bellows: Stainless steel or monel.
8. Thermostatic air vent capable of withstanding 45 deg F of superheat and resisting water hammer without sustaining damage.

D. Inverted Bucket Traps:
1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
a. Armstrong International
b. Dunham-Bush
c. Hoffman Specialty
d. Spirax Sarco
e. TLV

2. Body: Cast Iron

5. Valve Retainer, Lever, Guide Pin Assembly: Stainless Steel

6. Bucket: Brass or Stainless Steel

7. Strainer: No integral inlet strainer.

2.02 THERMOSTATIC AIR VENTS AND VACUUM BREAKERS

A. Thermostatic Air Vents:

1. Manufacturers:
 a. Armstrong International
 b. Dunham-Bush
 c. Hoffman Specialty
 d. Spirax Sarco

2. Body: Cast iron, bronze, or stainless steel.

5. Thermostatic Element: Phosphor bronze bellows in a stainless-steel cage.
7. Maximum Temperature Rating: 350 deg F.

B. Vacuum Breakers

1. Manufacturers:
 a. Armstrong International
 b. Dunham-Bush
 c. Hoffman Specialty
 d. Spirax Sarco, Inc.

2. Body: Cast iron, bronze, or stainless steel.
5. O-ring Seal: EPR.
7. Maximum Temperature Rating: 350 deg F.

2.03 STRAINERS

A. Y-Pattern Strainers

1. Body: ASTM A126, Class B cast iron, with bolted cover and bottom drain connection.

2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.

3. Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.

4. Tapped blowoff plug with 4" long schedule 80 steel nipple and plugged blow down valve.

5. CWP Rating: 250-psig working steam pressure.

B. Basket Strainers:
1. Body: ASTM A 126, Class B cast iron, with bolted cover and bottom drain connection.

2. End Connections: Threaded ends for strainers NPS 2 and smaller; flanged ends for strainers NPS 2-1/2 and larger.

3. Strainer Screen: Stainless-steel, 20 mesh strainer, and perforated stainless-steel basket with 50 percent free area.

4. CWP Rating: 250-psig working steam pressure.

PART 3 - EXECUTION

3.01 STEAM-TRAP INSTALLATION

A. Select system components with pressure rating equal to or greater than system operating pressure.

B. Install inverted bucket or float and thermostatic trap at low-pressure condensate outlet of flash tanks, sized for three times the calculated heat load.

C. Install steam traps in accessible locations as close as possible to connected equipment.

D. Install full-port ball valve, strainer, and union upstream from trap; install union, check valve, and full-port ball valve downstream from trap unless otherwise indicated.

E. Install traps in accessible locations close to connected equipment.

3.02 THERMOSTATIC AIR VENTS AND VACUUM BREAKER INSTALLATION

A. Install vacuum breakers downstream from control valve, close to coil inlet connection.

3.03 STRAINER INSTALLATION

A. Install strainers on supply side of control valves, pressure-reducing valves, traps, and elsewhere as indicated.

B. Install NPS 3/4 nipple and full port ball valve in blowdown connection of strainers NPS 2 and larger. Match size of strainer blowdown connection for strainers smaller than NPS 2.

END OF SECTION 23 22 16
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes refrigerant and condensate drain piping used for split system air conditioners.

1.02 REFERENCES

A. Materials and products shall comply with the following standards:
 1. ANSI B16.22 – Wrought Copper and Wrough Copper Alloy Solder Joint Pressure Fittings
 2. ASTM B88 – Seamless Copper Water Tube
 3. ASTM B280 – Seamless Copper Tube for Air Conditioning and Refrigeration Field Service
 4. ASHRAE 15 – Safety Code for Mechanical Refrigeration
 5. ASME B31.5 – Refrigeration Piping and Heat Transfer Components
 6. UL 207 – Refrigerant – Containing Components and Accessories, Nonelectrical

1.03 SUBMITTALS

A. Product Data: For pipe material, fittings, joining methods, materials and tools. For valves and other piping specialties.

B. Shop Drawings:
 1. For small single-zone type systems (split systems, furnaces, and heat pumps) provide manufacturer's line sizing recommendations for refrigerant piping between indoor units and outdoor units. Indicate specialty items, valves, sight glasses, filter/dryers, solenoid valves, expansion valves, etc.
 2. For multi zone VRV systems, submit complete layout of entire refrigerant piping system, showing indoor units, branch controller boxes, outdoor units, pipe routing, pipe sizes, valves and other specialty items.

C. Installer Qualifications
1. Brazed Copper Piping: Submit installer names and certifications for fitters that are qualified to install “ACR” and medical gas grade brazed piping.

D. Field Piping Leak Test Report: Witnessed and signed by an Owner’s Representative.

1.04 QUALITY ASSURANCE

B. Order all copper refrigeration tube with each shipping unit marked with the metal or alloy designation, temper, size, and name of supplier; with soft straight lengths or coils identified with a tag indicating that the product was manufactured in accordance with ASTM B280; and with each hard temper straight length identified throughout its length by a blue colored marking not less than 3/16 inch in height and a legend at intervals of not greater than three feet that includes the designation “ACR” and pipe outside diameter.

C. Any installed material not meeting the specification requirements must be replaced with material that meets these specifications without additional cost to the Owner.

1.05 DELIVERY, STORAGE AND HANDLING

A. Promptly inspect shipments to insure that the material is undamaged and complies with specifications.

B. Cover pipe to eliminate rust and corrosion while allowing sufficient ventilation to avoid condensation. Do not store materials directly on grade. Protect pipe, tube, and fitting ends so they are not damaged. Where end caps are provided or specified, take precautions so the caps remain in place. If end caps are not present on tube bearing the “ACR” designation, clean and re-cap in accordance with ASTM B280. Protect fittings, flanges, and unions by storage inside or by durable, waterproof, above ground packaging.

C. Offsite storage agreements will not relieve the contractor from using proper storage techniques.

D. Storage and protection methods must allow inspection to verify products.

1.06 DESIGN CRITERIA

A. Use only new material, free of defects and scale, and meeting the latest revision of ASTM specifications as listed in this specification.
B. Where ASTM B88, type L hard temper copper tubing is specified, ASTM B88, type K hard temper copper tubing may be substituted at Contractor's option.

PART 2 - PRODUCTS

2.01 REFRIGERANT PIPING

A. ASTM B88 type L hard drawn copper tube, cleaned and capped in accordance with ASTM B280, and marked “ACR,” with ANSI B16.22 wrought copper or forged brass solder-type fittings.

B. Pre-insulated copper line-sets as approved by the AC unit manufacturer. Fittings and joints shall be brazed.

2.02 REFRIGERANT PIPING ACCESSORIES

A. Provide all refrigerant piping specialties with a maximum working pressure of full vacuum to 450 psig and a maximum working temperature of 225 F. For systems using R-410A, provide all refrigerant piping specialties with a maximum working pressure of full vacuum to 700 psig and a maximum working temperature of 225 F.

B. Manufacturers:
 1. Meuller Streamline
 2. Parker Sporlan
 3. Superior HVACR
 4. Prior approved equal.

C. Service Valves: Forged brass body with rupture proof stem, brass cap and auxiliary port. Full port chromium plated ball valve. Copper sweat connections.

D. Flexible pipe connectors: Double braided bronze hose flexible pipe connectors with brazed end connections.

E. Filter Dryers: For circuits 10 tons and over provide angle pattern filter dryers with replaceable core. For circuits below 10 tons provide straight pattern filter dryers without replaceable core.

F. Sight Glasses: Two piece brass construction with brazed end connections. Include color indicator for sensing moisture.
G. Solenoid Valves: Two way normally closed with two piece brass body, full port, stainless steel plug, stainless steel spring, Teflon diaphragm and solder end connections. Provide replaceable coil assembly.

H. Hot Gas Bypass Valves: Provide with integral solenoid valve, external equalizer connection and adjustable pilot assembly.

I. Thermostatic Expansion Valves: Brass body, bronze disc, neoprene seat, bronze bonnet, stainless steel spring and solder end connections.

J. Charging Valves: Provide ¼” SAE brass male flare access ports with finger tight, quick seal caps. Provide 2-inch long copper extension sections.

K. Check Valves: Spring loaded type with bronze body, bronze disc, neoprene seat, bronze bonnet, stainless steel spring and solder end connections.

2.03 REFRIGERANT PIPING SUPPORT

A. Metal pipe hangers must not come in direct contact with the refrigerant piping. Utilize hangers that support the piping on the outside of the insulation, or hangers that incorporate a non-metallic inserts or non-metallic pipe hangers. Do not allow copper refrigeration piping to come in direct contact with dissimilar metals.

2.04 REFRIGERANTS

A. Manufacturers:
 1. DuPont Company
 2. Honeywell, Inc.
 3. INEOS Flour America LLC
 4. As recommended by AC Equipment manufacturer.

B. Refrigerant type, R-134a, R-410c, etc. as required by system.

2.05 REFRIGERANT PIPING COVERS

A. Manufacturers:
 1. Slimduct
 2. Diversitech
3. Prior Approved Equal

2.06 CONDENSATE DRAIN PIPING

A. Cold Condensate-Drain Piping (indoor fan coils, air handlers, etc.)
 1. Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.

PART 3 - EXECUTION

3.01 PIPING APPLICATIONS

A. Liquid & Gas Lines between indoor and outdoor units, or, on VRV systems, between indoor units and Branch Selector (Controller) boxes.
 1. Type L copper ACR, drawn-temper tubing and wrought-copper fittings with brazed joints.
 2. Pre-insulated Type L copper ACR tubing line-sets when specifically allowed by AC unit manufacturer, with wrought-copper fittings with brazed joints.
 a. Flared connections may be used at equipment connections when specifically allowed by AC unit manufacturer.

3.02 GENERAL INSTALLATION REQUIREMENTS

A. Install all piping parallel to building walls and ceilings and at heights that do not obstruct any portion of a window, doorway, stairway, or passageway. Where interferences develop in the field, offset or reroute piping as required to clear such interferences. In all cases, consult drawings for exact location of pipe spaces, ceiling heights, door and window openings, or other architectural details before installing piping.

B. Do not route piping through transformer vaults or above transformers, panel boards, or swtichboards, including the required service space for this equipment, unless the piping is serving this equipment.

C. Install all valves and piping specialties, including items furnished by others, as specified and/or detailed. Make connections to all equipment installed by others where that equipment requires the piping services indicated in this section.

D. Arrange piping to allow service and access to equipment.
3.03 REFRIGERANT PIPING

A. Firms and individuals who are experienced in the installation of refrigeration piping must install such piping.

1. Brazing must be done by qualified technicians.

B. Pipe Joint Construction:

1. All copper joints must be brazed and have a melting point greater than 1,125 degrees F. Filler impurities shall not exceed 0.15%. Tubing to be new and delivered to the job site with the original mill end caps in place. Purge all lines with nitrogen during brazing.

2. Flared fittings may only be used at equipment connections when specifically allowed by the AC unit manufacturer.

C. Hangers and Supports:

1. Support piping and equipment as specified in Division 23 Section “Hangers and Supports for HVAC Piping and Equipment.”

2. Install hangers in accordance with manufacturers recommendations, with spacing in accordance with 2012 ASHRAE Handbook “HVAC Systems & Equipment.”

3. Utilize “cushion clamps” and other non-metallic type hangers to isolate metallic piping from hanger.

D. Pipe Covers and Enclosures:

1. Where refrigerant piping and line-sets are exposed to view within the building, or on the exterior of the building, the piping shall be enclosed in pre-manufactured, decorative type piping covers.

 a. Provide straight sections, elbow, boots, wall penetrations, etc. for a full and clean assembly.

 b. Color: white, unless indicated otherwise.

E. Refrigerant Piping Valves and Accessories:

1. Install piping valves and specialties in accordance with the manufacturer’s instructions and recommendations.

3.04 FIELD QUALITY CONTROL

A. Perform test and inspections and prepare test reports.
B. No refrigerant is to be vented directly to the atmosphere except that which may escape through leaks in the system during leak testing. During evacuation procedures, use equipment designed to recover and allow recycling of the refrigerant.

C. Leak test the system by charging the system to a pressure of 10 psig with an HFC refrigerant, with the compressor suction and discharge valves closed and with all other system valves open. Increase pressure to 550 psig with dry nitrogen. Seal any leaks that may be found and retest. Replace any mechanically attached fittings that leak with new fittings and retest.

1. Test shall be witnessed by an Owner’s Representative. Submit a signed and dated test report for each system tested.

D. After completion of the leak test, evacuate the system with a vacuum pump to an absolute pressure not exceeding 1500 microns while the system ambient temperature is above 60°F. Break the vacuum to 2 psig with the refrigerant to be used in the system. Repeat the evacuation process, again breaking the vacuum with refrigerant. Install a drier of the required size in the liquid line, open the compressor suction and discharge valves, and evacuate to an absolute pressure not exceeding 500 microns. Leave the vacuum pump running for not less than two hours without interruption. Raise the system pressure to 2 psig with refrigerant and remove the vacuum pump.

3.05 SYSTEM CHARGING

A. Charge refrigerant directly from original drums through a combination filter-drier. Each drier may be used for a maximum of three cylinders of refrigerant and then must be replaced with a fresh drier. Charge the system by means of a charging fitting in the liquid line. Weigh the refrigerant drum before charging so that an accurate record can be kept of the weight of refrigerant put in the system. If refrigerant is added to the system through the suction side of the compressor, charge in vapor form only.

3.06 VRV SYSTEM CERTIFICATION

A. Where VRV systems are installed, the entire refrigerant piping network shall be reviewed in the field by the VRV manufacturer’s authorized agent for compliance with the VRV system design requirements. When the manufacturer’s agent is satisfied that the installation is in accordance with their design, he shall provide a letter of certification to the A/E.

END OF SECTION 23 23 15
PART 1 - GENERAL

1.01 SUMMARY:

A. This Section includes metal, round, oval, and rectangular ducts and fittings for supply, return, outside, and exhaust air-distribution systems for 1” to 4” W.G. pressure classes.

1.02 REFERENCES

A. ASTM International:
 2. ASTM A653 – Standard Specification for Steel Sheet, Zinc Coated (Galvanized) or Zinc Iron Alloy Coated (Galvannealed) by the Hot Dip Process.

B. North American Insulation Manufacturers Association (NAIMA):
 1. NAIMA Fiberous Glass Duct Liner Standard

C. NFPA Compliance:
 1. NFPA 90A - "Installation of Air Conditioning and Ventilating Systems."
 2. NFPA 90B - "Installation of Warm Air Heating and Air Conditioning Systems."

D. Sheet Metal and Air Conditioning Contractors National Association (SMACNA):
 1. SMACNA “HVAC Duct Construction Standards – Metal and Flexible”
 2. SMACNA “Duct Cleanliness for New Construction”

E. UL Standards:
1.03 SUBMITTALS:

A. Product Data: Provide product data on duct materials, sealants and pre-manufactured items, such as duct liner, turning vanes, duct flanges, etc., intended to be used for duct construction.

B. Shop Drawings: Show fabrication and installation details for HVAC Ducts.
 1. Penetrations through fire-rated and other partitions.
 2. Duct accessories, including access doors and panels.
 3. Sheet Metal shop standards for duct construction, pressure classes, reinforcing, hanger sizes, flange construction, etc..
 4. Duct liner application and installation details.

1.04 DUCT PRESSURE AND SEALANT CLASS DEFINITIONS:

A. General Sealing Requirements per WA NREC and IMC:
 1. Pressure Class up to 3” w.g. – SMACNA Sealant Class B.
 2. Pressure Class greater than 3” w.g. – SMACNA Sealant Class A.

B. Supply ducts between Terminal Unit and space being served, room return air boots and transfer air ducts:
 1. Pressure Class: 1” W.G.

C. General Exhaust duct system serving Exhaust Fans:
 1. Pressure Class: 1” W.G.

D. Return Air ducts serving all AHUs:
 1. Pressure Class: 2” W.G.

E. Primary Supply Ducts between VAV AHUs and Terminal Units (VAV systems):
 1. Pressure Class: 4” W.G.

F. Primary Supply Ducts between single zone AHUs and air outlets (constant volume systems):
 1. Pressure Class: 2” W.G.
PART 2 - PRODUCTS

2.01 SHEET METAL MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A653 and having G60 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts.

2.02 SEALANT MATERIALS:

A. Water-Based Joint and Seam Sealant: Flexible, adhesive sealant, resistant to UV light when cured, UL 181A-M listed. Maximum Volatile Organic Content shall be 45 gpl (water excluded) or less. Product shall be equal to Hardcast Versa-Grip 181.

2.03 HANGERS AND SUPPORTS

A. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.

1. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

2. Exception: Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

B. Hanger Materials: Galvanized sheet steel or threaded steel rod.

1. Hangers Installed in Corrosive Atmospheres: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
2. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for steel sheet width and thickness and for steel rod diameters.

C. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

D. Trapeze and Riser Supports: Galvanized-steel shapes and plates complying with ASTM A36.

2.04 DUCT FABRICATION:

A. 1” to 2” W.G. Pressure Class:

1. Material shall be galvanized steel with the following exception:
 a. Laboratory exhaust

2. Duct sizes shown on drawings are outside nominal dimensions for sheet metal ductwork. Where ductwork is indicated on the drawings to be lined, an allowance for 1” or 2” thick insulation is included and duct sizes do not need to be increased to compensate for the insulation.

3. Round ducts and fittings: All round ductwork shall be spiral lock seams with spot welded sealed manufactured fittings, galvanized steel.
 a. Manufacturers:
 1) United McGill
 2) Ventline.
 3) Accu Duct.

4. Round or oval ductwork indicated to be lined shall have a perforated liner and shall be equal to United Sheet Metal Acousti-K27. Unless noted otherwise on the drawings, insulation shall be 1” thick.

5. Rectangular to round branch duct connections shall use spin-in fittings: Spin-in fittings shall be DuroDyne or Air Control Products equal to Air Control Products Model S-SM-C with damper for unlined ductwork or Air Control Products Model S-DB-C with damper for lined ductwork.

6. Rectangular to rectangular branch duct connections shall use 45-degree entry. Straight taps are not allowed.
7. Rectangular Elbows: All 90-degree rectangular elbows shall contain turning vanes. See section 23 33 00 "Duct Accessories" for turning vane fabrication requirements.

8. Round Elbows: All round elbows shall be pleated or segmented with a centerline radius of 1.5 times the cross-section diameter.

9. Fabricate ducts, elbows, transitions, offsets, branch connections, and other construction according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" and complying with requirements for metal thickness, reinforcing types and intervals, tie-rod applications, and joint types and intervals.
 a. Lengths: Fabricate rectangular ducts in lengths appropriate to reinforcement and rigidity class required for pressure class.
 b. Deflection: Duct systems shall not exceed deflection limits according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible."

10. Transverse Joints: Prefabricated slide-on joints and components constructed using manufacturer's guidelines for material thickness, reinforcement size and spacing, and joint reinforcement.
 a. Manufacturers:
 1) Ductmate Industries, Inc.

11. Formed-On Flanges: Construct according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," Figure 1-4, using corner, bolt, cleat, and gasket details.
 a. Manufacturers:
 1) Ductmate Industries, Inc.
 2) Lockformer.

12. Cross Breaking or Cross Beading: Cross break or cross bead duct sides 19 inches and larger and 0.0359 inch thick or less, with more than 10 sq. ft. of nonbraced panel area unless ducts are lined.

B. 4” W.G. Pressure Class:

1. Ductwork shall be galvanized steel of the US Standard gauges as specified in HVAC Duct Construction Standards, Metal and Flexible, latest Edition as published by SMACNA.

2. Duct sizes shown on drawings are outside nominal dimensions for sheet metal ductwork. Where ductwork is indicated on the drawings to be lined, an allowance for 1” thick insulation is included and duct sizes do not need to be increased to compensate for the insulation.
3. Round or oval ductwork indicated to be lined shall have a perforated liner and shall be equal to United Sheet Metal Acousti-K27. Unless noted otherwise on the drawings, insulation shall be 1" thick.

4. All fittings shall be spot welded with machine formed entrances to branch fittings. No fabricated fittings using screw fasteners will be allowed. All welded seams shall be covered with one coat of rust inhibiting paint applied to both interior and exterior of duct or fitting.

5. Elbows: centerline radius shall be 1.5 times the cross section diameter. Sizes shall be constructed with five pieces for 60 degree through 90 degree turns and three pieces for turns less than 45 degrees, and two pieces for turns less than 30 degrees.

6. Round ducts and fittings: all round ductwork shall be spiral lock seams with spot welded sealed manufactured fittings, galvanized steel. All sealant used shall be water based with a minimum Volatile Organic Content of 45 gpl (water excluded) or less.

7. Joints in duct and fittings up to and including 36" in diameter shall be made with couplings. Larger duct and fittings shall be jointed with companion flanges of United McGill Corp. design. Flat oval ducts and fittings - flat oval ductwork shall be fabricated with spiral lock construction through 24" minor axis.

8. Reinforcing of flat oval ducts shall be in accordance with the recommendations of the United McGill Corp. and as specified in HVAC Duct Construction Standards, Metal and Flexible, latest Edition as published by SMACNA.

9. Joints in oval duct and fittings up to and including 41" wide or 26" high shall be made with coupling.

10. Manufacturers:
 a. United McGill Corp
 b. Accu Duct
 c. Metal Fab

PART 3 - EXECUTION

3.01 DUCT INSTALLATION

A. Construct and install ducts according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible," unless otherwise indicated.
B. Install ducts with fewest possible joints.

C. Take due care to prevent piping, conduit or other building materials from touching ductwork.

D. Install fabricated fittings for changes in directions, size, and shape and for connections. Use spin-in fittings to connect rigid or flexible round ductwork to rectangular duct for pressure class construction of 2" W.G. or less.

E. Install ducts, unless otherwise indicated, vertically and horizontally and parallel and perpendicular to building lines; avoid diagonal runs.

F. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.

G. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.

H. Conceal ducts from view in finished spaces. Do not encase horizontal runs in solid partitions unless specifically indicated. Ducts exposed to view in finished spaces shall be installed with special attention to workmanship and quality control. Symmetry, alignment and quality of fittings shall be judged by their final appearance and corrected if found to have poor workmanship. Sealant on exposed to view joints shall be applied internally to fittings and wiped clean on exterior of ductwork. Contractor's option on exposed ductwork to utilized gasketed fittings equal to McGill Uni-Gasket Fitting.

I. Coordinate layout with suspended ceiling, fire- and smoke-control dampers, lighting layouts, and similar finished work.

J. Seal all joints and seams. Apply sealant to male end connectors before insertion, and afterward to cover entire joint and sheet metal screws.

K. Electrical Equipment Spaces: Route ducts to avoid passing through transformer vaults and electrical equipment spaces and enclosures.

L. Non-Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches.

M. Fire-Rated Partition Penetrations: Where ducts pass through interior partitions and exterior walls, install appropriately rated fire dampers, sleeves, and firestopping sealant.
N. Protect duct interiors from the elements and foreign materials until building is enclosed. Follow SMACNA's "Duct Cleanliness for New Construction."

3.02 SEAM AND JOINT SEALING:

A. Seal duct seams and joints according to SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for duct pressure class indicated.

B. Seal ducts before external insulation is applied.

C. Sealant on ducts exposed to view in occupied spaces shall be applied internally to fittings and wiped clean on exterior of ductwork.

3.03 DUCT LINER INSTALLATION

A. All duct liner shall be installed in accordance with the requirements of the NAIMA Fiberous Glass Duct Liner Standard, or SMACNA HVAC Duct Construction Standard and the project specifications.

B. The liner shall be cut and fitted to assure all joints are neatly and tightly butted with no interruptions or gaps. Where ductwork is indicated on the drawings to be lined, an allowance for 1” or 2” thick insulation is included and duct sizes do not need to be increased to compensate for the insulation.

C. All duct liner products shall be adhered to the sheet metal ductwork using an adhesive meeting the requirements of ASTM C916. The adhesive film coverage shall be a minimum 90% of the metal surface.

D. Additionally, secure ductliner with mechanical fasteners at spacing in accordance with NAIMA or SMACNA standards.

E. All transverse joints shall be edge-coated. Metal nosing on leading or trailing edges is required where lined duct transitions to unlined metal duct.

3.04 HANGING AND SUPPORTING:

A. Duct Supports shall be in accordance with SMACNA’s standards.

B. Support horizontal ducts within 24 inches of each elbow and within 48 inches of each branch intersection.

C. Support vertical ducts at maximum intervals of 16 feet and at each floor.
D. Install upper attachments to structural elements and joists. See structural plans and drawing details for additional limitations and criteria. Do not use eccentric beam clamps on joists. Do not attach duct hangers to bare metal decking (roof decks).

E. Install concrete inserts before placing concrete.

F. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 1. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.

3.05 DUCTWORK PROTECTION:

A. During construction provide temporary closures of metal or taped polyethylene at all openings in ductwork to prevent construction dust from entering ductwork system.

3.06 CONNECTIONS:

A. Make connections to equipment with flexible connectors according to Section 23 33 00 - Air Duct Accessories.

B. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

END OF SECTION 23 31 00
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the following:
 1. Volume dampers.
 2. Duct-mounting access doors.
 3. Flexible connectors.
 4. Duct accessory hardware.

B. See Division 23 Section "Controls and Instrumentation" for electric damper actuators.

1.02 SUBMITTALS

A. Product Data

B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 1. Special fittings.

1.03 QUALITY ASSURANCE

PART 2 - PRODUCTS

2.01 SHEET METAL MATERIALS

A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated.
B. **Galvanized Sheet Steel:** Lock-forming quality; complying with ASTM A 653/A 653M and having G60 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view.

C. **Stainless Steel:** ASTM A 480/A 480M.

D. **Aluminum Sheets:** ASTM B 209, alloy 3003, temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.

E. **Extruded Aluminum:** ASTM B 221, alloy 6063, temper T6.

F. **Reinforcement Shapes and Plates:** Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.

G. **Tie Rods:** Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.02 **MANUAL VOLUME DAMPERS**

A. **Approved Manufacturers:**
 1. Air Balance, Inc.
 2. American Warming and Ventilating.
 3. Nailor Industries Inc.
 4. Penn Ventilation Company, Inc.
 5. Ruskin.

B. **Application:** Manual, non-motorized, volume dampers shall be installed in distribution ductwork to be used for balancing supply, return and exhaust volumes. For automatic modulating type control dampers for temperature control purposes, refer to Section HVAC Controls and Instrumentation.

C. **Performance:** Medium and low pressure duct applications up to 2,000 fpm. Manual volume dampers are not required to have resilient seals unless being applied for shut-off service.

D. **General Description:** Factory fabricated, with required hardware and accessories. 3V style stiffened damper blades for stability. Include locking quadrant device to hold damper blades in a fixed position without vibration. Close duct penetrations for damper components to seal duct consistent with pressure class.
E. Rectangular Volume Dampers: Multiple- or single-blade (9 inch height or less), opposed-blade design, standard leakage rating, with linkage outside airstream, and suitable for horizontal or vertical applications.

1. Steel Frames: Hat-shaped, galvanized sheet steel channels, minimum of 16 gage (0.064 inch thick), with mitered and tabbed or welded corners; frames with face flanges where indicated for attaching directly to walls and box frames where indicated for installing in ducts. Equivalent aluminum framed dampers are acceptable.

2. Roll-Formed Steel Blades: 16 gage (0.064-inch-thick), 3V style galvanized sheet steel.

5. Tie Bars and Brackets: Galvanized steel.

6. Pressure rating: Up to 4” wg at 2000 fpm.

F. Round and Oval Volume Dampers: Up to 24” diameter, single-blade, galvanized steel, 20 gage (0.04”) blade, factory or shop fabricated damper. Provide with galvanized steel square axel, molded nylon bearings, and locking quadrant device.

G. Round Spin-In Fittings: Sheet metal conical spin-in round branch take-off complete with manual volume damper and locking quadrant. Where rectangular duct sizes do not allow a conical fitting, a straight tap shall be allowed.

H. Locking Quadrant Air Flow Balancing Device: Provide locking air-flow balancing device on all manual volume dampers. Device shall Rossi model “Everlock” type positive locking damper handle with spring-loading trigger handle with multi-position notches for incremental air flow balancing with positive, vibration proof, setting. Standard wing-nut style locking quadrants are NOT acceptable. Include elevated 1.5” or 2” platform for insulated duct mounting. Where critical infinite air flow adjustment is noted or called for, provide a Rossi Twistknob sytle locking devices in lieu of the multi-position device.

I. Volume dampers located above ceilings and in non-accessible locations shall be equipped with Young Regulator Co. Bowden cable and worm gear assembly, with ceiling mounted adjustment assembly and stainless steel cover plate.
2.03 DUCT/PLENUM MOUNTED ACCESS DOORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

1. Elmdor.
2. CESCO Products.
3. Ductmate Industries, Inc.
4. Duro Dyne Corp.
5. Greenheck.
7. Nailor Industries Inc.
8. Potterff.

B. General Description: Fabricate in accordance with SMACNA HVAC Duct Construction Standards – Metal and Flexible and suitable for duct pressure class.

C. Fabrication: Rigid and close fitting of galvanized steel with sealing gaskets, quick fastening locking devices, and continuous piano hinge. For insulated ductwork, install minimum 1 inch thick insulation with sheet metal cover.

D. Less than 12 inches square: secure with sash locks.

E. Up to 18 inches square: secure with two sash locks.

F. Up to 24 x 48 inches: secure with two compression latches with outside and inside handles.

G. Access doors with sheet metal screw fasteners are not acceptable.

H. Round Duct Sandwich Type Access Doors: Fully removable dual panel door. 22 gauge galv. steel door panel construction up to 12” diameter ducts, 20 gauge for larger diameter ducts. Closed cell foam gasket. Molded poly handles with metal hardware. Rated +20” wg to -10” wg at -20 deg. F to 200 deg. F.

2.04 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
1. Duro Dyne Corp.

2. Ventfabs, Inc.

B. UL listed fire-retardant neoprene coated woven glass fiber fabric and in compliance with NFPA 90A, approximately 3" wide, crimped into metal edging strip. Weight: 30 oz/sq yd.

2.05 DUCT ACCESSORY HARDWARE

A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness.

B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.01 APPLICATION AND INSTALLATION

A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts.

B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

C. Install manual balancing volume dampers in ducts with acoustic liner in a manner to avoid damage to and erosion of duct liner. Provide edge seals on duct liner before and after damper.

D. Provide manual balancing volume dampers at points on supply, return, and exhaust systems where branch take-offs lead from larger ducts as required for air balancing. If damper is not a part of a manufactured fitting, install at a minimum of two duct widths from branch takeoff.

E. Provide manual balancing volume dampers on ALL duct take-off to diffusers, grilles, and registers, regardless of whether or not separate dampers are specified as a part of the diffuser, grille, or register assembly. Locate volume damper closest to take off point, furthest from diffuser, for sound control purposes. Where volume damper locking quadrant assemblies are not accessible or are located above hard ceilings, provide a Young Regulator Co. Bowden Cable Assembly remote regulator.
F. Provide test holes at fan inlets and outlets and elsewhere as required to balance the system.

G. Install duct access doors to allow for inspecting, adjusting and maintaining accessories as follows:
 1. At motorized control dampers.
 2. At backdraft dampers.
 3. Air flow measuring stations.
 4. Adjacent to fire or smoke dampers, providing access to reset or reinstall fusible links.
 5. As required by code on grease exhaust ducts (generally at changes in direction where duct access is not possible from in the inlet or outlet of the exhaust system).
 6. Duct mounted controls or components, filters, etc. that require internal access for inspection or cleaning.

H. Duct access doors shall be installed in the largest size necessary for access or inspection of the devices served. Locate access door on face of duct most readily accessible for personnel and where clearance from adjacent building services in available.

I. Access doors on grease exhaust ducts shall be located on the tops or sides of the duct, with a minimum of 1.5" lip from the bottom edge of the duct.

J. Label ductwork according to Division 23 Section "Mechanical Identification."

K. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators.

L. Install duct test holes where indicated and required for testing and balancing purposes.

M. Connect supply air outlets to low pressure ducts with maximum 60-inch lengths of flexible duct clamped or strapped in place in locations indicated on the plan. Provide spin-in fittings to connect low pressure round ducts to rectangular ducts.

3.02 ADJUSTING

A. Adjust duct accessories for proper operation. Assure that all dampers rotate smoothly, all access doors are accessible and are easy to open and close. Repair or replace damaged items.
B. Adjust fire and fire-smoke dampers for proper operation. Test all smoke dampers in conjunction with the Fire Alarm System.

C. Final positioning of manual-volume dampers is specified in Division 23 Section "Testing, Adjusting, and Balancing."

END OF SECTION 23 33 00
PART 1 - GENERAL

1.01 SUMMARY
A. This Section includes the following square in-line exhaust fans.

1.02 SUBMITTALS
A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated.
B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
C. Field quality-control start-up test reports.
D. Operation and maintenance data.

1.03 QUALITY ASSURANCE
A. Roof Curbs: Where required or indicated, provide roof curb assemblies compatible with the roofing system indicted on the architectural drawings, allowing for proper pitch, with a minimum height of 12” from top of insulation level to bottom lip of fan assembly.
B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
D. UL Standard: Power ventilators shall comply with UL 705. Power ventilators for Type I kitchen hood exhaust duty shall comply with UL 762.

1.04 PULLEYS AND BELTS
A. Allow for the complete replacement, labor and material, of pulleys and belts for all belt driven equipment as may found to be necessary during Testing and Balancing to achieve final design air flows.
PART 2 - PRODUCTS

2.01 MANUFACTURERS

A. Approved manufacturers: Unless specifically noted otherwise, the following list of manufacturers are approved to furnish power ventilators.

1. Loren Cook Company.
3. Penn Ventilation.
4. Twin City Fan

2.02 EQUIPMENT SCHEDULES

A. Refer to equipment schedules on the drawings for detailed information regarding unit designations, duty, manufacture, model number, performance, and accessories. Where the unit is specified with a defined manufacturer and model number, the characteristics and features of that specific cataloged unit shall take precedence over those indicated here. When accessories and optional features are listed both on the drawing schedules and in the specifications, they shall be assumed to be all required.

2.03 IN-LINE VENTILATORS

A. Description: Centrifugal fans designed for installing in-line with duct.

B. Certifications: Fan shall be manufactured at an ISO 9001 certified facility. Fan shall be listed by Underwriters Laboratories (UL 705). Fan shall bear the AMCA Certified Ratings Seal for Sound and Air Performance.

C. Construction: The fan housing shall be minimum 20 gauge galvanized steel and acoustically insulated. Blower and motor assembly shall be mounted to a minimum 14 gauge reinforcing channel and shall be easily removable from the housing. Motor shall be mounted with vibration isolators. Unit shall be supplied with integral wiring box and disconnect receptacle. Discharge position shall be convertible from right angle to straight through by moving interchangeable panels. The outlet duct collar shall include a reinforced aluminum damper with continuous aluminum hinge rod and brass bushings.

D. Fan Wheel: Wheel shall be centrifugal forward curve type, constructed of galvanized steel. Wheel shall be based balanced in accordance with AMCA Standard 204-96, Balance Quality and Vibration Levels for Fans.
E. Motor: Motor shall be open drip proof type with permanently lubricated bearings, built-in thermal overload protection and disconnect plug or ECM motor as indicated on equipment schedule/model number designation.

F. Electrical Requirements: Junction box for electrical connection on housing and receptacle for motor plug-in.

G. Accessories:
 1. Motorized or gravity backdraft damper as scheduled.
 2. Factory fan speed control switch for direct drive models (field mounted to unit).
 3. Wall or roof outlets with backdraft dampers.

2.04 IN-LINE VENTILATORS

A. Description: Fan shall be an aluminum, square, inline, belt driven or direct drive, centrifugal exhaust ventilator.

B. Certifications: Fan shall be manufactured at an ISO 9001 certified facility. Fan shall be listed by Underwriters Laboratories (UL 705). Fan shall bear the AMCA Certified Ratings Seal for Sound and Air Performance.

C. Construction: The fan shall be of bolted and welded construction utilizing corrosion resistant fasteners. The aluminum structural components shall be constructed of minimum 16 gauge marine alloy aluminum. The motor, bearings and drives shall be mounted on a minimum 14 gauge steel power assembly, isolated from the unit structure with rubber vibration isolators. Lifting lugs shall be provided. Unit shall bear an engraved aluminum nameplate.

D. Wheel: Wheel shall be centrifugal backward inclined, constructed of 100 percent aluminum, including a precision machined cast aluminum hub. Wheel shall be based balanced in accordance with AMCA Standard 204-96, Balance Quality and Vibration Levels for Fans.

E. Direct Drive Units:
 1. General: Motors for direct drive fan applications shall be specifically designed for direct fan wheel mounting, with appropriate hardware and bearings for application.
 2. Poly Phase Motors: Motor shall be heavy duty type with permanently lubricated sealed ball bearings. For VFD applications motors shall be VFD rated.
3. EC Motors: Electrically Commutated motors shall be single or poly phase as scheduled. Provide with integral speed controller for balancing and/or remote input signal control for BAS speed control.

F. Belt Driven Units:

1. General: Motors for belt drive fan applications shall be specifically designed for belt and pulley fan wheel mounting, with appropriate hardware and bearings for application.

2. Poly Phase Motors: Motor shall be heavy duty type with permanently lubricated sealed ball bearings. For VFD applications motors shall be VFD rated.

3. Belts shall be oil and heat resistant, non-static type. Drives shall be a precision machined cast iron type, keyed and securely attached to the wheel and motor shafts. Drives shall be sized for 150 percent of the installed motor horsepower. The variable pitch motor drive must be factory set to the specified fan RPM.

4. Bearings: Bearings construction shall be heavy duty regreaseable ball type in a cast iron pillow block housing selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed.

G. Accessories:

1. Gravity backdraft damper as scheduled.

2. Hanger brackets.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install power ventilators and exhausters generally where indicated on the plans. Coordinate location with nearby equipment and building elements.

B. Install power ventilators level and plumb.

C. Support suspended In-Line units from structure using threaded steel rods. Vibration-control devices are specified in Division 23 Section "Mechanical Vibration Controls."

D. Install units with adequate clearances for service and maintenance.
E. Label units according to requirements specified in Division 23 Section "Mechanical Identification."

F. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Division 23 Section "Duct Accessories."

G. Ducts installed adjacent to power ventilators shall be done in a manner that allows service and maintenance.

3.02 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Verify that shipping, blocking, and bracing are removed.

2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.

3. Verify that cleaning and adjusting are complete.

4. Verify lubrication for bearings and other moving parts.

5. Verify that manual and automatic volume control in connected ductwork systems are in fully open position.

6. Remove and replace malfunctioning units and retest as specified above.

B. Test and adjust controls, safety devices, and backdraft dampers. Replace damaged and malfunctioning controls and equipment.

C. Provide start-up and testing report for each power ventilator. Furnish report in the O & M manual.

D. Make any fan speed adjustments and replace pulleys and belts as directed by the Testing & Balancing Contractor.

END OF SECTION 23 34 23
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes factory-fabricated air-filter devices and media used to remove particulate matter from air for HVAC applications.

1. Filters for air handling equipment.

2. HEPA Filters

3. Filter Housings.

1.02 REFERENCES

A. ASHRAE

1. ASHRAE 52.1 – Air Filter Standard, Dust Spot Efficiency

2. ASHRAE 52.2 – Air Filter Standard, Average Arrestance

C. National Fire Protection Association:

D. Underwriter Laboratories (UL), Inc.

1.03 SUBMITTALS

A. Product Data: Include dimensions; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each unit indicated.

B. Shop Drawings:

1. Show filter rack assembly, dimensions, materials, and methods of assembly of components.
C. Operation and maintenance data.

1.04 QUALITY ASSURANCE

A. Comply with ARI 850.

B. Comply with ASHRAE 52.1 and ASHRAE 52.2 for method of testing and rating air-filter units.

C. Comply with NFPA 90A and NFPA 90B.

PART 2 - PRODUCTS

2.01 FILTERS

A. General:

1. Filters:

2. Filters shall be listed and rated as Class 2 by Underwriters Laboratories, Inc.

3. A complete set of filters shall be supplied for use during construction. A complete set of new filters shall be installed immediately before testing and balancing.

4. Provide two extra sets of all filters supplied on the project.

5. Provide two extra sets of the change out bags and straps.

6. Filter Media & Frames:

7. Rigid Frame with Media support Grid (Medium & High Efficiency Filters):

 1) Filter media: Pleated Cotton and synthetic blend.

 2) Media support grid: Welded wire on 1” centers with an open area not less than 96%.

 a) Bond grid to media to eliminate oscillation and pull away.

 b) Form grid to affect a radial pleat, allowing total use of media.

 3) Frame: Rigid, high wet-strength beverage board, with diagonal support members bonded to the air entering and air exiting side of each pleat.
8. Rigid Frame with Media Blanket bonded to Frame (High Efficiency Filters):
 1) Filter media: Pleated microfine glass media in a uniform high loft media blanket with a synthetic micro mesh media backing.
 2) Media blanket: Formed into uniform tapered radial pleats and bonded to a stiffened backing that is bonded to the downstream side of the media to preclude media oscillation.
 3) Frame: Corrosion resistant galvanized steel. The media pleat configuration shall be maintained by bridge style plastic contour stabilizers. Minimum of four contour stabilizers on the air entering side and four on the air exiting side.
 a) Media to be mechanically and chemically bonded within the frame to prevent air bypass.

9. Coordinate with AHU manufacturer for filter and frame mounting styles to be compatible with AHU filter frame and service access (side or front load).

10. Manufacturers:
 11. Camfil Farr
 12. Flanders
 13. Koch
 14. Or approved equal.

B. Filters for Air Handling Units:
 1. Pre Filters
 3. Minimum MERV rating 8 (30 - 35%) efficiency, when tested in accordance with ASHRAE 52.2.
 4. Initial resistance shall not exceed 0.23” w.g. (1” thick @ 350 fpm), 0.31”w.g. (2” thick @ 500 fpm), 0.31”w.g. (4” thick @ 500 fpm)
 5. 1”/2”/4” thick, pleated disposable type air filters, limited to the two following sizes:
 1) 12” W x 24” H.
 2) 24” W x 24” H.
6. Rigid Frame with Media support Grid, as specified above.

7. Second Stage Filters

9. Minimum MERV rating 13 (80 - 90%) when tested in accordance with ASHRAE 52.2.

10. Initial resistance at 500 fpm shall not exceed 0.47” w.g.

11. 4” thick, pleated disposable type air filters, limited to the two following sizes:

 1) 12” W x 24” H.

 2) 24” W x 24” H.

12. Rigid Frame with Media Support Grid, as specified above.

C. HEPA Filters:

1. Air filters shall be HEPA grade high-capacity air filters with waterproof micro glass fiber media, tapered corrugated aluminum separators, urethane sealant, 16-gauge steel enclosing frame, and (neoprene sealing gasket, polyurethane seamless gasket)*.

2. Sizes shall be as noted on drawings or other supporting materials.

3. Filter media shall be one continuous pleating of micro glass fiber media.

4. Pleats shall be uniformly separated by tapered corrugated aluminum separators incorporating a hemmed edge to prevent damage to the media.

5. The media pack shall be potted into the enclosing frame through the use of a urethane sealant.

6. The enclosing frame of 16-gauge steel with a zinc aluminum alloy finish, shall be bonded to the media pack to form a rugged and durable enclosure. The filter shall be assembled without the use of fasteners to assure no frame penetrations. Overall dimensional tolerance shall be correct within -1/8", +0", and square within 1/8".

7. A poured-in-place seamless gasket shall be included on the downstream side of the enclosing frame to form a positive seal upon installation.

8. The filter shall have a tested efficiency of 99.99% as defined by IEST RP-CC001.
9. Initial resistance to airflow shall not exceed 1.35” w.g. +/-10% at rated capacity.

10. Filter shall be rated by Underwriters Laboratories as UL- 900 and UL-586.

11. The filter shall be capable of withstanding 10” w.g. without failure of the media pack.

12. Manufacturer shall provide evidence of facility certification to ISO 9001:2015.

2.02 HEPA FILTER HOUSING ASSEMBLY:

1. General: The Containment Filter Housing Assemblies shall be Camfil CamContain series housing units that have been fabricated, assembled and pressure decay tested in the same factory. Each system may consist of a combination of the following housing sections and components assembled into a complete containment system:

 a. Inlet isolation damper
 b. Inlet transition
 c. HEPA filter section
 d. Outlet isolation damper
 e. Assembly welded onto a mounting structure
 f. The system shall be designed for the scheduled CFM as indicated on the contract documents at 15 inches water gage and the maximum design temperature shall be 130°F. The furnished system shall be sized not to exceed the scheduled “clean” pressure drop across the containment system from inlet flange to outlet flange, including the inlet and outlet bubble-tight dampers. The scheduled “dirty” pressure drop assumes the “clean” HEPA filter initial pressure drop times two.

2. Sealing Mechanism

 a. All high efficiency filters and adsorbers shall be mechanically sealed by means of a compressible gasket fixed to the filtering device.
 b. The filter sealing mechanism shall be replaceable.
 c. The filter clamping mechanism shall be operated from outside of the housing by means of a standard wrench.
d. The filter clamping mechanism shall be designed with mechanical stops. When the mechanism has reached the mechanical stop, it shall be fully engaged and the clamping shall be exerted solely by means of its pressure compensating springs. The clamping mechanism shall include two pressure channel assemblies with eight (8) springs per filter for full-width filters (nominal 24” wide x 24” high) and shall exert a minimum filter sealing force of 1,400 pounds (20 psi of gasket surface) for full high, full wide filters. The force shall be applied as an even, uniform load along at least 80 percent of the top and bottom of each filter outer frame. The clamping assembly shall penetrate through the housing wall and shall be leak tight.

3. Bagging Ring

a. Each filter housing section shall have a bagging ring around each access port. The bagging rings shall have two (2) continuous ribs to secure the PVC filter change-out and scan bags. The outer edge of the ring shall be hemmed to prevent the PVC bag from tearing.

1. Access Doors

b. The filter access port shall be covered with an access door. Each access port and bagging ring shall be covered by an access door having an extruded silicone gasket that is replaceable (if damaged) after the door has been removed. When closed, the door shall not press against the bag-out port and PVC bag, thus eliminating the possibility of potential leak paths or the bag being cut by pressure from the door to the bag-in bag-out port.

a. Fixed Latches - There shall be four (4) tie down latches per access door. Each latch assembly shall comprise of a 300-series threaded stud and an aluminum star knob. The access door shall provide a means to fit over the threaded stud array and shall be sealed against the filter housing front by tightening the star knobs.

c. Swivel Latches - There shall be four (4) tie down latches per access door. Each latch assembly shall comprise of a 300-series threaded stud and an aluminum star knob. The access door shall provide a means to fit over the threaded stud array and shall be sealed against the filter housing front by tightening the star knobs.

c. Quick Clamp Latches - The filter access doors shall be fastened to the housing using quick connect fasteners and all fasteners shall be an integral part of the door. No loose components shall be used to fasten the door. There shall be four (4) quick clamp draw latches per access door and they shall be manufactured in such a manner that they pivot away from the bag-out port after they are released, therefore, the latches do not impede the filter change-out process. The latch shall be designed to provide proper sealing between the access door and the containment barrier.
as well as incorporate the capability of being locked. The draw latches shall be manufactured from 300 series stainless steel. The use of protruding studs is prohibited to eliminate the hazard of sharp protruding objects.

d. Hinged Door - The filter access door shall be hinged such that it allows the access door to remain connected to the housing during filter change-out. The access doors shall be hinged on the containment housing in such a manner as to prevent inference with the door and the bagging ring during opening and closing of the access door

4. Orientation and Handedness

c. The contract drawings shall determine the filter access side of each housing. The handedness of a housing shall be designated as right hand or left hand. When looking in the direction of airflow (as if standing inside of the housing with the air flow hitting the person’s back) of the HEPA filter, if access is required on the right side, then the housing shall be determined to be right hand access. If access is required on the left side from the above stated vantage, then the housing shall be determined to be left hand access.

5. Filter Removal Rods

c. Multi-wide filter housing sections shall be equipped with a filter removal rod to draw the filters to the change-out position. The removal rod shall be operated from inside the change-out bag and shall remove the filter by pulling against the bottom of the filter frame. There shall not be any penetrations through the pressure boundary of the housing for operation of the removal rod. All change-out operations shall be within the bag so there is always a barrier between the worker and filter.

6. Hardware

c. All hardware on the filter housing such as the filter clamping mechanism components, door handles, door studs, and labels, shall be 300 series stainless steel. The threaded pivot blocks in the gasket filter clamping mechanisms shall be brass. The standard filter access door knobs are cast aluminum (to prevent galling of threads).

7. Flanges

d. The upstream and downstream flanges shall have a 1 ½ inch minimum flange width. Flanges shall be turned to the outside of the air-stream to prevent contamination build-up and allow the customer to connect mating ductwork from outside of the housing. Bolt hole spacing is in accordance with the recommendation in DOE-HDBK-1169-2003, Nuclear Air Cleaning Handbook (4” inches or less on centers).

8. Welding
e. All "pressure retaining" weld joints and seams shall be continuously welded. Joints and seams on items such as reinforcement members, shall be intermittently welded. Housing will be free of all burrs, and sharp edges. All weld joints and seams that are a portion of any gasket sealing surface, (duct connection flanges and filter sealing surfaces), shall be ground smooth and flush with adjacent base metals.

f. All welding procedures, welders, and welder operators shall be qualified in accordance with ASME Boiler and Pressure Vessel Code, Section IX. All welded joints and seams shall be wire brushed to remove heat discoloration. The nondestructive test personal shall be qualified to the requirements of ANST-SNT-TC-1A. All production welds shall be visually inspected by qualified personnel, in accordance with section 5 and 6 of AWS D9.1, "Specification for Welding of Sheet Metal."

9. Quality Assurance

a. The filter housing shall be manufactured under a quality assurance program that has been assessed and independently certified to meet the requirements of ISO 9001:2008 for design, manufacture and distribution of containment and HVAC air filtration products. Additionally, filter housing shall be manufactured under a quality assurance program that meets all of the basic requirements of ASME NQA-1, “Quality Assurance Program Requirements for Nuclear Facilities”. The manufacturer shall submit documented evidence they have been independently audited and successfully passed at least three (3) audits within the last five (5) years to ASME NQA-1 requirements. The final containment filtration system shall be completely fabricated, assembled, tested and cleaned at the manufacturer's facility. Sub-assemblies from outside sources will not be acceptable. The Offeror shall certify their compliance with this paragraph.

g. The filter housing shall be factory tested for filter fit, operation of filter clamping mechanism, and flatness of gasket filter seal surface. Both the filter sealing surface and the complete assembly pressure boundary shall be leak tested by the "pressure decay method" in accordance with N510-1989 (1995 reaffirmed), "Testing of Nuclear Air Cleaning Systems", paragraphs 6 and 7. The filter sealing surface shall be tested at +10" water gage and have a maximum leak rate of 0.0005 cfm per cubic foot of housing volume. The overall system pressure boundary shall be leak tested at +15" water gage and have a maximum leak rate of 0.0005 cfm per cubic foot of housing volume.

10. Service Clearance

A minimum of four (4) feet clearance in front of each access door on the HEPA containment filter assembly shall be reserved for filter replacement and in-place testing.
4. Housing System Components

1. Inlet Isolation Damper
 a. Square Linear-style (This is a more advanced version of the square damper style that eliminates the need for an upstream transition and test section but is limited to having one damper ahead of each filter. Multiple dampers can be connected to a single section but no more than two on one actuator are recommended)

 b. Damper shall be Camfil CamContain Linear Bubble Tight Dish damper, model CF-LBTD series. The damper shall be manufactured from 7 gauge, 14 gauge and 16 gauge type 304/304L stainless steel. The damper shall have a spun stainless steel dish with a receptacle that contains a closed cell silicone sponge gasket. A mating knife-edge shall be installed on the damper so that when the damper is actuated, the knife-edge will seal against the gasket.

 c. Damper shall be high-cycle, low torque linear type design. The damper mechanism shall operate linearly, without rotation or pivoting of the damper dish. The required input torque to operate and adequately seal the damper shall not exceed 25 pound-feet per damper width.

 d. The linear damper design shall be manufactured in accordance with ASME NQA-1 and ISO9001:2008 and qualified by cycle testing the assembly a minimum of 15,000 cycles. A qualified design shall pass the above specified leak test requirements without any adjustments to the assembly, including the gasket, throughout the cycle testing. Evidence of a successfully qualified design shall be furnished prior to bidding.

5. HEPA Filter Section
 (There are four (4) housing styles for a HEPA filter housing. FB and GB designate gel seal and gasket seal clamping mechanisms, xB designates bag-in / bag-out.)

6. The HEPA filter housing shall be side access Camfil CamContain model FB or GB for a bag-in / bag-out style. The housing shall be side servicing for filter installation and change-out. Housing design and filter arrangement shall allow air to enter and exit the housing without changing direction. The housing shall accommodate standard size filters that do not require any special attachments or devices to function properly in the housing. Filters shall be industry standard full 24" by 24" size. The upstream and downstream ductwork connections shall have 1 ½" flanges. Sizes shall be noted on enclosed drawings or other supporting materials.

 a. HOUSING ACCESSORIES
7. Change-out Bags

 a. One (1) PVC change-out bag shall be furnished for each access port. Each bag shall have its stock number rolled in the hem. The PVC bag material shall be 8 mil thick, yellow in color, with a translucent, taffeta textured finish and shall not stick together.

 b. For visibility during filter change-out, this bag shall include approximately 16 inches of clear PVC at the mouth. Three (3) glove sleeves shall be built into the bag to facilitate handling during the filter during change-out.

 c. All PVC bags of this design shall be produced by filter housing manufacturer and shall have been tested by an independent laboratory to prove the bag's operability at extreme temperature ranges of 0°F - 130°F (a test report verifying this test shall be furnished upon request). An elastic shock cord shall be hemmed into the mouth of the bag so that it fits securely when stretched around the bagging ring. To prevent the bag from sliding off the bagging ring during the change-out operation, one (1) nylon security strap shall be provided with each filter access port. Additionally, one (1) nylon cinching strap shall be provided with each access port to tie off the slack in the PVC bag while the ventilation system is operating.

8. Banding Kit

 a. One complete banding kit shall be provided with the filtration unit(s) equipped with a bag-in/bag-out assembly. The banding kit shall provide secure clamping of the bag between the housing and the spent filtration element. Each kit shall contain the following items:

 b. heavy duty tie-banding tool

 c. bag cutting tool

 d. \(\frac{3}{4} \) inch socket ratchet w/ 3 inch long extension

 e. 5/16 inch hex socket

 f. 13 inch cinching strap with buckle fastener

 g. set of ten (10) 100 pound tensile strength 14 inch long plastic ties

 h. set of twenty (20) stainless steel bands

 i. plastic case/apron
j. The banding kit and the change-out bags shall be manufactured by the same manufacturer as the housing. Additional tools required to complete the bag-in/bag-out procedure shall also be provided.

9. Differential Pressure Gages

a. Differential pressure gages shall be Dwyer Series 2000 Magnehelic pressure gage or equal. Unless otherwise indicated select gage scale ranges to read at 75 percent full range (rounded up) at the expected dirty filter pressure drop (0 - 3.0 inches water column).

b. Gages shall be furnished for each filter bank, including gages across each individual filter bank in built-up rack assemblies, suitable for flush mounting in a panel. All sensing tubing shall be ¼ inch O.D. copper tubing or stainless steel tubing.

10. Lifting Lugs

a. Lifting lugs shall be provided on the housing as required. Lifting lugs shall be fabricated from ¼ inch plate of the same material as the housing. Lifting lugs shall have a minimum of 1 ½ inch diameter eyeholes and be located on the top and side of the housing. Lifting lugs shall be capable of supporting the housing (less adsorbers and filters) without causing housing deflection during transport and installation.

b. All portions shall be free of sharp edges and burrs. Six (6) lifting lugs are required on each double HEPA assembly, and four (4) on each single HEPA assembly.

PART 3 - EXECUTION

3.01 INSTALLATION:

A. Clean all dirt, dust and debris that may be in the containment system or attached ductwork during construction and installation.

B. Utilize contractor furnished temporary construction filters during building construction, start-up and testing. Provide clean, new permanent filters upon system acceptance at Substantial Completion, provided area is complete and free of drywall or painting work.

C. Final, clean, permanent filters shall be in place for testing and balancing work. If the areas served are not clean and complete per above, the contractor shall
utilize equivalent (size and rating) clean temporary construction filters during TAB activities.

D. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.

E. Install filters in position to prevent passage of unfiltered air.

F. Coordinate filter installations with duct and air-handling unit installations.

END OF SECTION 23 41 00
PART 1 - GENERAL

1.01 SUMMARY

A. This Section includes the owner-furnished contractor-installed packaged air-cooled condenser for outdoor installation.

1.02 SUBMITTALS:

A. Field quality-control test reports.

B. Operation and Maintenance Data:

1. Owner furnished Operation and Maintenance manual shall be included with the project O&M.

1.03 WARRANTY:

A. Unit will be warranted through the owner’s purchasing agreement.

1.04 COORDINATION

A. Coordinate installation of curbs, supports, and penetrations.

B. Coordinate location of piping and electrical roughins.

PART 2 - PRODUCTS

2.01 CONDENSING UNITS

A. Manufacturer: York/JCI

B. General: The following specifications are provided for coordination and installation purposes as the unit will be owner furnished.

C. Description: Factory assembled and tested; consisting of casing, condenser coils, condenser fans and motors, and unit controls.

D. Condenser Coil: Seamless copper-tube, finned coil; factory tested at 450 psig.

1. Coil Fin: Aluminum
2. Refrigerant Accessories: Provide receiver, pressure control, and solenoid valve for each circuit.

E. Condenser Fans and Drives: Propeller fans with Aluminum fan blades, for vertical air discharge riveted to corrosion resistant steel spider brackets and be dynamically balanced; directly driven totally enclosed motor with permanently lubricated ballbearing motors with integral current- and thermal-overload protection with automatic reset feature.

F. Operating and Safety Controls: Include condenser fan motor thermal and overload cutouts, phase monitor with LED indicator and automatic shutoff upon phase reversal, phase loss and phase unbalance; 115-V control transformer, if required; magnetic contactors for condenser fan motors and a nonfused factory-mounted and -wired disconnect switch for single external electrical power connection.

G. Unit Casings: Galvanized steel treated and finished with manufacturer's standard paint coating, designed for outdoor installation with weather protection for components and controls, and with the following:

1. Removable panels for access to controls, condenser fans, motors, and drives.

2. Stainless-steel fan guards.

3. Lifting eyes.

4. 15 gauge base rail.

2.02 MOTORS

A. General requirements for motors are specified in Division 23 Section "Common Motor Requirements for HVAC Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2. Controllers, Electrical Devices, and Wiring: Electrical devices and connections are specified in Division 26 Sections.

2.03 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate air-cooled condensers according to ARI 460.
B. Testing Requirements: Factory test sound-power-level ratings according to ARI 270.

PART 3 - EXECUTION

3.01 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of air-cooled condensers.

B. Examine roughing-in for refrigerant piping systems to verify actual locations of piping connections before equipment installation.

C. Examine walls, floors, and roofs for suitable conditions where air-cooled condensers will be installed.

D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.02 INSTALLATION

A. Install units level and plumb, firmly anchored in locations indicated; maintain manufacturer's recommended clearances.

B. Install air-cooled condensers on concrete base. Concrete base is specified in Division 23 Section "Common Work Results for HVAC," and concrete materials and installation requirements are specified in Division 03.

C. Concrete Bases:
 1. Install dowel rods to connect concrete base to concrete slab. Unless otherwise indicated, install dowel rods on 18-inch centers around full perimeter of the base.
 2. For equipment supported on structural slab, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 3. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 4. Install anchor bolts to elevations required for proper attachment to supported equipment.
5. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

D. Install roof-mounting units on equipment supports specified in Division 07.

E. Vibration Isolation: Mount air-cooled condensers on rubber pads. Vibration isolation devices and installation requirements are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

F. Vibration Isolation: Mount air-cooled condensers on restrained spring isolators. Vibration isolation devices and installation requirements are specified in Division 23 Section "Vibration and Seismic Controls for HVAC Piping and Equipment."

G. Support suspended units from structure using threaded steel rods.

H. Maintain manufacturer's recommended clearances for service and maintenance.

I. Loose Components: Install electrical components, devices, and accessories that are not factory mounted.

3.03 CONNECTIONS

A. Piping installation requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of piping, fittings, and specialties.

B. Install piping adjacent to machine to allow service and maintenance.

C. Refrigerant Piping: Connect piping to unit with pressure relief, service valve, filter-dryer, and moisture indicator on each refrigerant-circuit liquid line. Refrigerant piping and specialties are specified in Division 23 Section "Refrigerant Piping."

3.04 FIELD QUALITY CONTROL

A. Perform the following field tests and inspections and prepare test reports:

1. Perform electrical test and visual and mechanical inspection.

2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.

3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. Complete manufacturer's starting checklist.
4. Test and adjust controls and safety. Replace damaged and malfunctioning controls and equipment.

5. Verify proper airflow over coils.

B. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

C. Remove and replace malfunctioning air-cooled condensers and retest as specified above.

3.05 STARTUP SERVICE

A. Complete installation and startup checks according to manufacturer's written instructions and perform the following:

1. Inspect for physical damage to unit casing.

2. Verify that access doors move freely and are weathertight.

3. Clean units and inspect for construction debris.

4. Verify that all bolts and screws are tight.

5. Adjust vibration isolation and flexible connections.

6. Verify that controls are connected and operational.

B. Lubricate bearings on fans.

C. Verify that fan wheel is rotating in the correct direction and is not vibrating or binding.

D. Start unit according to manufacturer's written instructions and complete manufacturer's startup checklist.

E. Measure and record airflow over coils.

F. Verify proper operation of capacity control device.

G. Verify that vibration isolation and flexible connections properly dampen vibration transmission to structure.

H. After startup and performance test, lubricate bearings.
3.06 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain air-cooled condensers.

END OF SECTION 23 63 13
PART 1 - GENERAL

1.01 SUMMARY:

A. This Section includes the owner-furnished contractor-installed modular constant volume, air-handling unit for indoor installations with split DX cooling and steam heating coils.

1.02 SUBMITTALS:

A. Operation and Maintenance Data:
 1. Owner furnished Operation and Maintenance manual shall be included with the project O&M.

1.03 WARRANTY:

A. Unit will be warranted through the owner’s purchasing agreement.

1.04 COORDINATION

A. Coordinate installation of curbs, supports, and penetrations.

B. Coordinate location of piping and electrical roughins.

PART 2 - PRODUCTS

2.01 INDOOR MODULAR AIR HANDLING UNIT:

A. Manufacturer: York/JCI

B. General: The following specifications are provided for coordination and installation purposes as the unit will be owner furnished.

 1. Provide modular frame air handling units with construction features as specified below.
 2. Provide units complete with all components and accessories.
 3. Exceptions must be clearly defined and documented. Contractor is responsible for any additional expenses that may occur due to any exception made.
4. Units shall have overall dimensions as indicated on drawings and fit into the space available with adequate clearance for service.

5. Ship in sections to facilitate installation within existing structure. Multiple sectioned units shall be shipped as a single factory assembled piece (except where shipping limitations prevent) de-mounted into modular sections in the field by the contractor.

6. Provide with sufficient gasket and bolts for reassembly in the field by the contractor.

C. Factory Testing:

1. Factory Leak Testing: The unit manufacturer shall perform a factory leak test on units at 8” of differential static pressure across the cabinet exterior walls. Cabinet leakage is not to exceed 1% of specified airflow on the operating side of the unit.

2. Factory Panel Deflection Testing: The unit manufacturer shall perform a factory deflection test on units at 8” of differential static pressure across the cabinet exterior walls. Cabinet deflection shall not exceed L/240 of panel length.

D. Unit Construction:

1. Unit Base/Floor:
 a. Provide a full perimeter welded base frame manufactured with structural steel tubing and C-Channel cross support members on close centers.
 b. Base rails shall be fitted with lifting lugs at the corner of the unit or sections (if demounted).
 c. The base shall include an insulated “double bottom” floor equivalent to the wall construction, with a heavy gauge G-90 galvanized inner walk-on surface.
 d. All floor seams shall be caulked and sealed for an airtight unit.
 e. Where access is provided to the unit interior, floor openings shall be covered with walk on steel safety grating.
 f. Single wall floors with glued and pinned insulation are not acceptable.
 g. Base frame shall be attached to the unit at the factory.
2. Exterior Panel:
 a. All exterior panels including cooling coil sections shall be minimum 2 inch thick G90 galvanized steel.
 b. All panel seams shall be caulked and sealed for an airtight unit.
 c. Leakage rates shall be less than 1% at design static pressure.
 d. The exterior panel finish shall have factory baked enamel finish, manufacturer’s standard color.

3. Double Wall Construction:
 a. Each unit shall have double wall, thermally broken construction with solid galvanized steel liner on the suction side of the fans and perforated liner at the discharge of the fans when indicated on the equipment schedules.

4. Insulation:
 a. Entire unit to be insulated with a full 2 inch thick polyurethane injected foam insulation of not less than R-13.

5. Access Doors:
 a. The unit shall be equipped with 2 inch thick solid double wall insulated, hinged access doors.
 b. The doorframe shall be extruded aluminum with a built in thermal break barrier and full perimeter gasket.
 c. Provide ETL, UL 1995, and CAL-OSHA approved tool operated safety latch on all fan section access doors.
 d. Access doors serving fan compartments (inlet & outlet) shall contain safety interlock which will completely shut down the fan upon opening the door.

6. Fans:
 a. Plug Fan (PF) SWSI fans:
 1) Fan shall be single width single inlet airfoil blade plenum fan as indicated on the schedule.
 2) Fan blades shall be hollow airfoil in shape, welded to the center and wheel side plates.
3) Fan bearings shall be heavy duty, pillow block, self-aligning ball type (roller bearings for all 33” diameter and greater fans).

4) Bearings shall be selected for a minimum L-50 life at 400,000 hours, at maximum horsepower and operating speed for the classification.

5) Fan shaft shall be turned, ground and polished solid steel rated at maximum RPM below critical speed.

6) Fan wheel and sheaves shall be keyed to the shaft.

7) Fan shall be statically and dynamically prior to shipment with motor, sheaves, and belts in place.

8) Fan shall be rated in accordance with AMCA 211 for performance and AMCA 300/301 for sound.

9) Provide with extended grease lubrication lines with fittings on fan base near access door.

b. Plenum fan assembly must have an enclosed safety screen as per OSHA Standards.

c. Fans shall have inlet OSHA approved inlet screens.

d. Fan and motor shall be mounted internally on a steel base. Fan and motor shall be mounted on 2” deflection spring vibration isolator which is anchored to the unit base and frame.

7. Airflow measuring devices:

a. Plenum Fans:

10) Air Monitoring device shall consist of an array of nominal 3” long, differential pressure flow sensors mounted at opposing 90° positions around the inlet of the plenum fan. Flow sensors shall be manifolded together with pneumatic tubing extended to the unit exterior.

11) Each fan and air monitoring device shall have been tested for airflow vs. differential pressure and calibrated in an AMCA Accredited Laboratory.

12) Air monitoring device shall not obstruct the fan inlet or be directly mounted across the fan inlet, or have any effect on fan air performance or sound power levels.

8. Motors

a. Rated for Variable Frequency Drive operation. See section 23 09 26 for VFD drives.

b. NEMA Design B; T-FRAME mounted on an adjustable heavy steel base.
c. Motors shall be tested to IEEE standard 112 test method B and NEMA MG 12.58.2 and 12.59 table 12-10.

d. Meet the energy policy act (EPAct) regulations.

e. Meet the electrical characteristics as specified for voltage, rpm, and efficiencies in Section 23 05 13.

9. Variable Frequency Drives (VFD):

a. Each fan shall be provided with a variable frequency drive (VFD) that is shipped loose along with a lockable enclosure to be field installed separate from the air handler.

10. Condensate Drain Pan: Provide under all cooling coils sections as shown on drawings.

a. Fabricated from 304 stainless steel, sloped for complete drainage with no standing water in the unit. They shall be insulated minimum 3-inch "Double Bottom" construction with welded corners.

b. Provide stainless steel, 1-1/4” MPT drain connection extended to the exterior of the unit base rail.

11. Filter Section

a. Provide filters per Section 23 41 00. Factory fabricated filter sections shall be of the same construction and finish as the unit. Face loaded pre and final filters shall have Type 8 frames as manufactured by FARR. Side service filter sections shall include hinged access doors on both sides of the unit. Internal blank-offs shall be provided by the air unit manufacturer as required to prevent air bypass around the filters.

12. Blender Section

a. Provide a blender/air mixer section to provide for proper air mixing and distribution of outside air and return air streams, so as to minimize thermal stratification. Provide proper upstream and downstream spacing for optimum performance.

13. Steam Coils
a. Vertical integral face and bypass coils as manufactured by L.J. Wing, to heat air using steam as the heating medium. Performance shall be as shown in the schedule. Each heating coil shall consist of series of finned heating elements and bypasses with interlocked dampers controlled by electric damper motor(s). Other controls by the controls contractor. Dampers are to be arranged so as to completely enclose and isolate the heating coil passes when no temperature rise is required. Each coil shall be capable of maintaining a constant discharge air temperature regardless of variations in entering air temperatures with full steam pressure at all times. Actuators are to be side-mounted.

b. Finned heating elements shall be fabricated of seamless 5/8\" o.d. copper tubes of 0.049\" wall thickness with aluminum fins. Fins shall not be spaced closer than 12 fins per inch. Each tube shall be secured to the copper headers by a brazed joint with provision for 3/8\" inch individual tube expansion and contraction by means of an optional flexible connector. Finned elements shall be factory tested with 500 psig hydrostatic pressure.

c. Coil casing and dampers shall be fabricated of heavy gauge galvanized steel and dampers.

d. Painted Finish – Coil casing shall be fabricated of galvannealed steel; dampers shall be formed from cold-rolled steel. Both casing and dampers shall be painted inside and out with an air-dried alkyd enamel finish.

e. Raised face flanges shall be supplied on the header connections.

f. Headers shall be insulated with one-inch thick, 1.5-lb fiberglass insulation then covered with sheet metal to reduce temperature override.

g. Flexible Connector Required to provide a minimum of 3/8\" expansion and contraction of the free-floating bottom header(s).

h. Anti-Stratification baffles to allow reduction of the downstream mixing length from 36\" to 24\".

14. Supply-Air Refrigerant Coil:

a. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.

b. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan.
c. **Coil Split:** Interlaced.

d. **Condensate Drain Pan:** Non-corrosion material formed with pitch and drain connections complying with ASHRAE 62.

15. **Damper Actuators:** Provided and installed under Section 23 09 23 Temperature Controls.

16. **Filter Gauges:**
 a. Provide Dwyer 2000 magnehelic gauges, one gauge per filter bank, recessed into cabinet casing.

17. **Electrical:**
 a. Provide and mount an external junction box with motor leads extended through conduit for field wiring.
 b. Motor circuits shall be pre-wired at the factory.
 c. External disconnect devices by Division 26 – Electrical.

PART 3 - EXECUTION

3.01 **INSTALLATION:**

A. Install air-handling units with the following vibration-control devices specified in Section 23 05 48 "Mechanical Vibration Controls."

 1. **Units with Internally Isolated Fans:** Support on concrete bases using neoprene pads. Secure units to anchor bolts installed in concrete bases.

B. Arrange installation of units to provide access space around air-handling units for service and maintenance.

C. Install units on a flat surface level within 1/8 inch and of sufficient strength to support the unit.

D. Install in strict accordance with manufacturer’s requirements, shop drawings, and Contract Documents.

E. Contractor shall include in their bid all labor and materials necessary to install air handling units (i.e. work resulting from shipping splits, etc).

F. Coordinate with air handling unit manufacturer all field work required with each air handling unit. This shall include all work required by other trades (i.e. elec-
rical, controls, pipe fitters, sheet metal, structural, etc.) necessary to complete the installation of the air handling units.

G. Adjust in alignment on concrete foundations, sole plates or other supporting structure. Level, grout, and bolt in place.

H. Coordinate electrical installation with electrical contractor.

I. Coordinate controls with control contractor.

J. Provide all appurtenances required to ensure a fully operational and functional system.

K. Fan mounted Air Measuring Stations to be factory provided under this section of specification. Coordinate control interface with Section 23 09 23.

L. Damper actuators noted on Temperature Control Diagrams shall be factory mounted on unit in accessible locations. See Section 23 09 23 for actuator specification. Control wiring shall be performed in field by Section 23 09 23.

3.02 CONNECTIONS:

A. On units without internally isolated fans, install flexible connections between fan inlet and discharge ductwork. Ensure metal bands of connectors are parallel with minimum 1 inch flex between ductwork and fan while running.

B. Piping installation requirements are specified in other Division 23 Sections.

C. Install piping adjacent to machine to allow service and maintenance.

D. Connect condensate drain pans using NPS 1-1/4, Type M copper tubing. Extend to nearest equipment or floor drain. Construct trap at connection to drain pan and install cleanouts at changes in direction.

E. Comply with applicable requirements in Section 23 22 13 Steam and Condensate Piping. Connect to coil tappings with union or flange at each connection.

F. Duct installation and connection requirements are specified in other Division 23 Sections.

G. Electrical: Comply with applicable requirements in Division 26 Sections for power wiring, switches, and motor controls.

H. Ground equipment according to Division 26 Section "Grounding and Bonding."
3.03 COORDINATION:

A. Coordinate installation of variable frequency drives with Section 23 09 26 – Variable Frequency Drives, and Division 26.

3.04 START-UP:

A. Do not operate units until ductwork is clean, filters are in place, bearings lubricated, condensate properly trapped, piping connections verified and leak tested, belts aligned and tensioned, all shipping braces have been removed, and fan has been test run under observation.

B. Factory Start-Up Services: Start-up is to be supervised by the unit manufacturer or a manufacturer certified service organization. Physical connections and start-up are provided by the installing contractor. Start-up services shall be provided for as long a period of time as is necessary to ensure proper operation of the unit. The start-up engineer shall conduct such operating tests as required to ensure that the unit is operating in accordance with design. Complete testing of all safety and emergency control devices shall be made. The start-up engineer shall submit a written report to the owner and manufacturer containing all test data recorded as required above and a letter certifying that the unit is operating properly.

END OF SECTION 23 73 13
PART 1 - GENERAL

1.01 SUBMITTALS

PART 2 - PRODUCTS

2.01 MATERIALS AND EQUIPMENT
 A. Materials and equipment for patching and extending work: As specified in individual sections.

PART 3 - EXECUTION

3.01 PREPARATION
 A. Provide temporary wiring and connections to maintain existing systems in service during construction. When work must be performed on energized equipment or circuits, use personnel experienced in such operations.
 B. Existing Electrical Service: Maintain existing system in service until new system is complete and ready for service. Disable system only to make switchovers and connections. Minimize outage duration.
 C. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Minimize outage duration.

END OF SECTION 26 05 05
PART 1 - GENERAL

1.01 SUBMITTALS

A. Product Data: Provide manufacturer's standard catalog pages and data sheets for conductors and cables, including detailed information on materials, construction, ratings, listings, and available sizes, configurations, and stranding.

1.02 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 CONDUCTOR AND CABLE APPLICATIONS

A. Do not use conductors and cables for applications other than as permitted by NFPA 70 and product listing.

B. Provide single conductor building wire installed in suitable raceway unless otherwise indicated, permitted, or required.

1. Exceptions:

 a. Use variable-frequency drive cable for connection between variable-frequency motor controllers and associated motors.

2.02 CONDUCTOR AND CABLE GENERAL REQUIREMENTS

A. Provide products that comply with requirements of NFPA 70.

B. Provide products listed, classified, and labeled as suitable for the purpose intended.

C. Unless specifically indicated to be excluded, provide all required conduit, boxes, wiring, connectors, etc. as required for a complete operating system.

D. Comply with NEMA WC 70.

E. Thermoplastic-Insulated Conductors and Cables: Listed and labeled as complying with UL 83.
F. Thermoset-Insulated Conductors and Cables: Listed and labeled as complying with UL 44.

G. Conductors and Cables Installed Exposed in Spaces Used for Environmental Air (only where specifically permitted): Plenum rated, listed and labeled as suitable for use in return air plenums.

H. Conductor Material:

1. Provide copper conductors only. Aluminum conductors are not acceptable for this project. Conductor sizes indicated are based on copper.

2. Copper Conductors: Soft drawn annealed, 98 percent conductivity, uncoated copper conductors complying with ASTM B3, ASTM B8, or ASTM B787/B787M unless otherwise indicated.

3. Tinned Copper Conductors: Comply with ASTM B33.

I. Minimum Conductor Size:

1. Branch Circuits: 12 AWG.

J. Conductor Color Coding:

1. Color code conductors as indicated unless otherwise required by the authority having jurisdiction. Maintain consistent color coding throughout project.

2. Color Coding Method: Integrally colored insulation.

3. Color Code:

 a. 208Y/120 V, 3 Phase, 4 Wire System:

 1) Phase A: Black.

 2) Phase B: Red.

 3) Phase C: Blue.

 4) Neutral/Grounded: White.

2.03 SINGLE CONDUCTOR BUILDING WIRE

A. Description: Single conductor insulated wire.
B. Conductor Stranding:

1. Feeders and Branch Circuits:
 b. Size 8 AWG and Larger: Stranded.

C. Insulation Voltage Rating: 600 V.

D. Insulation:

1. Copper Building Wire: Type THHN/THWN or THHN/THWN-2, except as indicated below.

2.04 VARIABLE-FREQUENCY DRIVE CABLE

A. Description: Flexible motor supply cable listed and labeled as complying with UL 2277 in accordance with NFPA 79; specifically designed for use with variable frequency drives and associated nonlinear power distortions.

B. Conductor Stranding: Stranded.

C. Insulation Voltage Rating: 1000 V.

D. Insulation: Use only thermoset insulation types; thermoplastic insulation types are not permitted.

E. Grounding: Full-size integral equipment grounding conductor or symmetrical arrangement of multiple conductors of equivalent size.

F. Provide metallic shielding.

G. Jacket: PVC or Chlorinated Polyethylene (CPE).

2.05 WIRING CONNECTORS

A. Description: Wiring connectors appropriate for the application, suitable for use with the conductors to be connected, and listed as complying with UL 486A-486B or UL 486C as applicable.

B. Do not use insulation-piercing or insulation-displacement connectors designed for use with conductors without stripping insulation.
2.06 ACCESSORIES

A. Electrical Tape:

1. Vinyl Insulating Electrical Tape: Complying with ASTM D3005 and listed as complying with UL 510; minimum thickness of 7 mil (0.18 mm); resistant to abrasion, corrosion, and sunlight; conformable for application down to 0 degrees F (-18 degrees C) and suitable for continuous temperature environment up to 221 degrees F (105 degrees C).

B. Wire Pulling Lubricant:

1. Listed and labeled as complying with UL 267.

2. Suitable for use with conductors/cables and associated insulation/jackets to be installed.

3. Suitable for use at installation temperature.

C. Cable Ties: Material and tensile strength rating suitable for application.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Circuiting Requirements:

1. Maintain separation of wiring for emergency systems in accordance with NFPA 70.

B. Install products in accordance with manufacturer's instructions.

C. Perform work in accordance with NECA 1 (general workmanship).

D. Secure and support conductors and cables in accordance with NFPA 70 using suitable supports and methods approved by the authority having jurisdiction. Provide independent support from building structure. Do not provide support from raceways, piping, ductwork, or other systems.

E. Variable-Frequency Drive Cable: Terminate shielding at both variable-frequency motor controller and associated motor using glands or termination kits recommended by manufacturer.
F. Install conductors with a minimum of 12 inches (300 mm) of slack at each outlet.

G. Make wiring connections using specified wiring connectors.

H. Insulate splices and taps that are made with uninsulated connectors using methods suitable for the application, with insulation and mechanical strength at least equivalent to unspliced conductors.

I. Install firestopping to preserve fire resistance rating of partitions and other elements, using materials and methods specified in Section 078400.

J. Unless specifically indicated to be excluded, provide final connections to all equipment and devices, including those furnished by others, as required for a complete operating system.

END OF SECTION 26 05 19
PART 1 - GENERAL

1.01 QUALITY ASSURANCE
 A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 GROUNDING AND BONDING REQUIREMENTS
 A. Do not use products for applications other than as permitted by NFPA 70 and product listing.
 B. Unless specifically indicated to be excluded, provide all required components, conductors, connectors, conduit, boxes, fittings, supports, accessories, etc. as necessary for a complete grounding and bonding system.
 C. Where conductor size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
 D. Bonding and Equipment Grounding:
 1. Provide bonding for equipment grounding conductors, equipment ground busses, metallic equipment enclosures, metallic raceways and boxes, device grounding terminals, and other normally non-current-carrying conductive materials enclosing electrical conductors/equipment or likely to become energized as indicated and in accordance with NFPA 70.
 2. Provide insulated equipment grounding conductor in each feeder and branch circuit raceway. Do not use raceways as sole equipment grounding conductor.
 3. Where circuit conductor sizes are increased for voltage drop, increase size of equipment grounding conductor proportionally in accordance with NFPA 70.
 4. Unless otherwise indicated, connect wiring device grounding terminal to branch circuit equipment grounding conductor and to outlet box with bonding jumper.
 5. Terminate branch circuit equipment grounding conductors on solidly bonded equipment ground bus only. Do not terminate on neutral (grounded) or isolated/insulated ground bus.
6. Provide bonding jumper across expansion or expansion/deflection fittings provided to accommodate conduit movement.

2.02 GROUNDING AND BONDING COMPONENTS

A. General Requirements:

1. Provide products listed, classified, and labeled as suitable for the purpose intended.

2. Provide products listed and labeled as complying with UL 467 where applicable.

B. Conductors for Grounding and Bonding, in Addition to Requirements of Section 260526:

1. Use insulated copper conductors unless otherwise indicated.

 a. Exceptions:

 1) Use bare copper conductors where installed underground in direct contact with earth.

C. Connectors for Grounding and Bonding:

1. Description: Connectors appropriate for the application and suitable for the conductors and items to be connected; listed and labeled as complying with UL 467.

2. Unless otherwise indicated, use exothermic welded connections for underground, concealed and other inaccessible connections.

3. Unless otherwise indicated, use mechanical connectors, compression connectors, or exothermic welded connections for accessible connections.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Perform work in accordance with NECA 1 (general workmanship).

C. Make grounding and bonding connections using specified connectors.
1. Remove nonconductive paint, enamel, or similar coating at threads, contact points, and contact surfaces.
PART 1 - GENERAL

1.01 SUBMITTALS
 A. Installer's qualification statement.

1.02 QUALITY ASSURANCE
 A. Installer Qualifications for Powder-Actuated Fasteners: Certified by fastener system manufacturer with current operator’s license.

PART 2 - PRODUCTS

2.01 SUPPORT AND ATTACHMENT COMPONENTS
 A. General Requirements:
 1. Comply with the following. Where requirements differ, comply with most stringent.
 a. NFPA 70.
 b. Applicable building code.
 c. Requirements of authorities having jurisdiction.
 2. Provide required hangers, supports, anchors, fasteners, fittings, accessories, and hardware as necessary for complete installation of electrical work.
 3. Provide products listed, classified, and labeled as suitable for purpose intended, where applicable.
 4. Where support and attachment component types and sizes are not indicated, select in accordance with manufacturer’s application criteria as required for load to be supported with minimum safety factor of [______]. Include consideration for vibration, equipment operation, and shock loads where applicable.
 5. Do not use products for applications other than as permitted by NFPA 70 and product listing.
a. Zinc-Plated Steel: Electroplated in accordance with ASTM B633.

b. Galvanized Steel: Hot-dip galvanized after fabrication in accordance with ASTM A123/A123M or ASTM A153/A153M.

B. Conduit and Cable Supports: Straps and clamps suitable for conduit or cable to be supported.
 1. Conduit Straps: One-hole or two-hole type; steel or malleable iron.
 2. Conduit Clamps: Bolted type unless otherwise indicated.

C. Metal Channel/Strut Framing Systems:
 1. Description: Factory-fabricated, continuous-slot, metal channel/strut and associated fittings, accessories, and hardware required for field assembly of supports.
 2. Comply with MFMA-4.

D. Hanger Rods: Threaded, zinc-plated steel unless otherwise indicated.

E. Anchors and Fasteners:
 1. Unless otherwise indicated and where not otherwise restricted, use anchor and fastener types indicated for specified applications.
 2. Post-Installed Concrete and Masonry Anchors: Evaluated and recognized by ICC Evaluation Service, LLC (ICC-ES) for compliance with applicable building code.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install hangers and supports in accordance with NECA 1.

C. Install anchors and fasteners in accordance with ICC Evaluation Services, LLC (ICC-ES) evaluation report conditions of use where applicable.

D. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.

E. Unless specifically indicated or approved by owner, do not provide support from suspended ceiling support system or ceiling grid.
F. Do not penetrate or otherwise notch or cut structural members without approval of Structural Engineer.

G. Equipment Support and Attachment:

1. Use metal, fabricated supports or supports assembled from metal channel/strut to support equipment as required.

2. Use metal channel/strut secured to studs to support equipment surface mounted on hollow stud walls when wall strength is not sufficient to resist pull-out.

3. Use metal channel/strut to support surface-mounted equipment in wet or damp locations to provide space between equipment and mounting surface.

4. Securely fasten floor-mounted equipment. Do not install equipment such that it relies on its own weight for support.

END OF SECTION 26 05 29
PART 1 - GENERAL

1.01 SUBMITTALS

A. Product Data: Provide manufacturer's standard catalog pages and data sheets for conduits and fittings.

PART 2 - PRODUCTS

2.01 CONDUIT APPLICATIONS

A. Do not use conduit and associated fittings for applications other than as permitted by NFPA 70, manufacturer's instructions, and product listing.

B. Unless otherwise indicated and where not otherwise restricted, use conduit types indicated for specified applications. Where more than one listed application applies, comply with most restrictive requirements. Where conduit type for particular application is not specified, use galvanized steel rigid metal conduit.

C. Exposed, Interior, Not Subject to Physical Damage: Use galvanized steel rigid metal conduit (RMC), galvanized steel intermediate metal conduit (IMC), or galvanized steel electrical metallic tubing (EMT).

D. Exposed, Exterior, Not Subject to Severe Physical Damage: Use galvanized steel rigid metal conduit (RMC) or galvanized steel intermediate metal conduit (IMC).

E. Flexible Connections to Vibrating Equipment:
 1. Dry Locations: Use flexible metal conduit (FMC).
 2. Damp, Wet, or Corrosive Locations: Use liquidtight flexible metal conduit (LFMC).
 3. Maximum Length: 6 feet (1.8 m) unless otherwise indicated.

2.02 CONDUIT - GENERAL REQUIREMENTS

A. Comply with NFPA 70.

B. Provide conduit, fittings, supports, and accessories required for complete raceway system.
C. Provide products listed, classified, and labeled as suitable for purpose intended.

D. Minimum Conduit Size, Unless Otherwise Indicated:
 1. Branch Circuits: 3/4-inch (21 mm) trade size.

E. Where conduit size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

2.03 GALVANIZED STEEL RIGID METAL CONDUIT (RMC)

A. Description: NFPA 70, Type RMC galvanized steel rigid metal conduit complying with ANSI C80.1 and listed and labeled as complying with UL 6.

B. Fittings:
 1. Nonhazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B or UL 6.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use threaded type fittings only. Threadless fittings, including set screw and compression/gland types, are not permitted.

2.04 GALVANIZED STEEL INTERMEDIATE METAL CONDUIT (IMC)

A. Description: NFPA 70, Type IMC galvanized steel intermediate metal conduit complying with ANSI C80.6 and listed and labeled as complying with UL 1242.

B. Fittings:
 1. Nonhazardous Locations: Use fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B or UL 1242.
 2. Material: Use steel or malleable iron.
 3. Connectors and Couplings: Use threaded type fittings only. Threadless fittings, including set screw and compression/gland types, are not permitted.

2.05 FLEXIBLE METAL CONDUIT (FMC)

A. Description: NFPA 70, Type FMC standard-wall steel flexible metal conduit listed and labeled as complying with UL 1, and listed for use in classified firestop systems.
B. Fittings:

1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.

2. Material: Use steel or malleable iron.

2.06 LIQUIDTIGHT FLEXIBLE METAL CONDUIT (LFMC)

A. Description: NFPA 70, Type LFMC polyvinyl chloride (PVC) jacketed steel flexible metal conduit listed and labeled as complying with UL 360.

B. Fittings:

1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.

2. Material: Use steel or malleable iron.

2.07 GALVANIZED STEEL ELECTRICAL METALLIC TUBING (EMT)

A. Description: NFPA 70, Type EMT galvanized steel electrical metallic tubing complying with ANSI C80.3 and listed and labeled as complying with UL 797.

B. Fittings:

1. Description: Fittings complying with NEMA FB 1 and listed and labeled as complying with UL 514B.

2. Material: Use steel or malleable iron.

 a. Do not use indenter type connectors and couplings.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install conduit in accordance with NECA 1.

C. Install galvanized steel rigid metal conduit (RMC) in accordance with NECA 101.
D. Install intermediate metal conduit (IMC) in accordance with NECA 101.

E. Conduit Routing:
 1. Arrange conduit to provide no more than equivalent of four 90-degree bends between pull points.
 2. Arrange conduit to provide no more than 150 feet (46 m) between pull points.
 3. Arrange conduit to prevent moisture traps. Provide drain fittings at low points and at sealing fittings where moisture may collect.

F. Conduit Support:
 1. Secure and support conduits in accordance with NFPA 70 using suitable supports and methods approved by authorities having jurisdiction; see Section 260529.
 2. Provide independent support from building structure. Do not provide support from piping, ductwork, or other systems.

G. Connections and Terminations:
 1. Use approved zinc-rich paint or conduit joint compound on field-cut threads of galvanized steel conduits prior to making connections.
 2. Where two threaded conduits must be joined and neither can be rotated, use three-piece couplings or split couplings. Do not use running threads.
 3. Provide drip loops for liquidtight flexible conduit connections to prevent drainage of liquid into connectors.
 4. Terminate threaded conduits in boxes and enclosures using threaded hubs or double lock nuts for dry locations and raintight hubs for wet locations.
 5. Provide insulating bushings, insulated throats, or listed metal fittings with smooth, rounded edges at conduit terminations to protect conductors.

H. Penetrations:
 1. Do not penetrate or otherwise notch or cut structural members, including footings and grade beams, without approval of Structural Engineer.
 2. Provide sleeves for penetrations as indicated or as required to facilitate installation. Set sleeves flush with exposed surfaces unless otherwise indicated or required.
3. Where conduits penetrate waterproof membrane, seal as required to maintain integrity of membrane.

4. Make penetrations for roof-mounted equipment within associated equipment openings and curbs where possible to minimize roofing system penetrations. Where penetrations are necessary, seal as indicated or as required to preserve integrity of roofing system and maintain roof warranty.

5. Install firestopping to preserve fire resistance rating of partitions and other elements.

I. Underground Installation:

1. Minimum Cover, Unless Otherwise Indicated or Required:
 a. Underground, Exterior: 18 inches (460 mm).

J. Conduit Movement Provisions: Where conduits are subject to movement, provide expansion and expansion/deflection fittings to prevent damage to enclosed conductors or connected equipment. This includes, but is not limited to:

1. Where conduits cross structural joints intended for expansion, contraction, or deflection.

2. Where conduits are subject to earth movement by settlement or frost.

K. Conduit Sealing:

1. Use foam conduit sealant to prevent entry of moisture and gases. This includes, but is not limited to:
 a. Where conduits enter building from outside.
 b. Where service conduits enter building from underground distribution system.
 c. Where conduits enter building from underground.
 d. Where conduits may transport moisture to contact live parts.

2. Where conduits cross barriers between areas of potential substantial temperature differential, use foam conduit sealant at accessible point near penetration to prevent condensation. This includes, but is not limited to:
 a. Where conduits pass from outdoors into conditioned interior spaces.
b. Where conduits pass from unconditioned interior spaces into conditioned interior spaces.

L. Provide pull string in each empty conduit and in conduits where conductors and cables are to be installed by others. Leave minimum slack of 12 inches (300 mm) at each end.

END OF SECTION 26 05 33.13
PART 1 - GENERAL

1.01 SUBMITTALS

A. Product Data: Provide manufacturer's standard catalog pages and data sheets for cabinets and enclosures and underground boxes/enclosures.

1.02 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 BOXES

A. General Requirements:

1. Do not use boxes and associated accessories for applications other than as permitted by NFPA 70 and product listing.

2. Provide all boxes, fittings, supports, and accessories required for a complete raceway system and to accommodate devices and equipment to be installed.

3. Provide products listed, classified, and labeled as suitable for the purpose intended.

4. Where box size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.

5. Provide grounding terminals within boxes where equipment grounding conductors terminate.

B. Outlet and Device Boxes Up to 100 cubic inches (1,650 cu cm), Including Those Used as Junction and Pull Boxes:

1. Use sheet-steel boxes for dry locations unless otherwise indicated or required.

2. Use cast iron boxes or cast aluminum boxes for damp or wet locations unless otherwise indicated or required; furnish with compatible weatherproof gasketed covers.

3. Use suitable masonry type boxes where flush-mounted in masonry walls.
4. Use raised covers suitable for the type of wall construction and device configuration where required.

5. Do not use "through-wall" boxes designed for access from both sides of wall.

6. Sheet-Steel Boxes: Comply with NEMA OS 1, and list and label as complying with UL 514A.

7. Cast Metal Boxes: Comply with NEMA FB 1, and list and label as complying with UL 514A; furnish with threaded hubs.

C. Cabinets and Enclosures, Including Junction and Pull Boxes Larger Than 100 cubic inches (1,650 cu cm):
 1. Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E, or UL 508A.
 2. Junction and Pull Boxes Larger Than 100 cubic inches (1,650 cu cm):
 a. Provide screw-cover or hinged-cover enclosures unless otherwise indicated.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Install boxes in accordance with NECA 1 (general workmanship) and, where applicable, NECA 130, including mounting heights specified in those standards where mounting heights are not indicated.

C. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

D. Unless otherwise indicated, provide separate boxes for line voltage and low voltage systems.

E. Unless otherwise indicated, boxes may be surface-mounted where exposed conduits are indicated or permitted.

F. Box Supports:
1. Secure and support boxes in accordance with NFPA 70 and Section 260529 using suitable supports and methods approved by the authority having jurisdiction.

2. Provide independent support from building structure except for cast metal boxes (other than boxes used for fixture support) supported by threaded conduit connections in accordance with NFPA 70. Do not provide support from piping, ductwork, or other systems.

G. Install boxes as required to preserve insulation integrity.

H. Install permanent barrier between ganged wiring devices when voltage between adjacent devices exceeds 300 V.

I. Install firestopping to preserve fire resistance rating of partitions and other elements.

END OF SECTION 26 05 33
PART 1 - GENERAL

1.01 QUALITY ASSURANCE
 A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 RACEWAY REQUIREMENTS
 A. Provide all components, fittings, supports, and accessories required for a complete raceway system.
 B. Provide products listed, classified, and labeled as suitable for the purpose intended.
 C. Do not use raceways for applications other than as permitted by NFPA 70 and product listing.

2.02 SURFACE RACEWAY SYSTEMS
 A. Surface Metal Raceways: Listed and labeled as complying with UL 5.

2.03 WIREWAYS
 A. Description: Lay-in wireways and wiring troughs with removable covers; listed and labeled as complying with UL 870.
 B. Wireway Type, Unless Otherwise Indicated:
 1. Indoor Clean, Dry Locations: NEMA 250, Type 1, painted steel with screw-cover.
 C. Finish for Painted Steel Wireways: Manufacturer's standard grey unless otherwise indicated.
 D. Minimum Wireway Size: 4 by 4 inches (100 by 100 mm) unless otherwise indicated.
 E. Where wireway size is not indicated, size to comply with NFPA 70 but not less than applicable minimum size requirements specified.
PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer’s instructions.

B. Perform work in accordance with NECA 1 (general workmanship).

C. Install raceways plumb and level.

D. Arrange wireways and associated raceway connections to comply with NFPA 70, including but not limited to requirements for deflected conductors and wireways used as pullboxes. Increase size of wireway where necessary.

E. Secure and support raceways in accordance with Section 260529 at intervals complying with NFPA 70 and manufacturer's requirements.

F. Close unused raceway openings.

END OF SECTION 26 05 33.23
PART 1 - GENERAL

1.01 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 IDENTIFICATION REQUIREMENTS

A. Identification for Equipment:

1. Use identification nameplate to identify each piece of electrical distribution and control equipment and associated sections, compartments, and components.

 a. Panelboards:

 1) Identify power source and circuit number. Include location when not within sight of equipment.

 2) Use typewritten circuit directory to identify load(s) served for panelboards with a door. Identify spares and spaces using pencil.

 3) For power panelboards without a door, use identification nameplate to identify load(s) served for each branch device. Do not identify spares and spaces.

 b. Enclosed switches, circuit breakers, and motor controllers:

 1) Identify voltage and phase.

 2) Identify power source and circuit number. Include location when not within sight of equipment.

 3) Identify load(s) served. Include location when not within sight of equipment.

2. Use identification nameplate to identify disconnect location for equipment with remote disconnecting means.

3. Arc Flash Hazard Warning Labels: Use warning labels to identify arc flash hazards for electrical equipment, such as switchboards, panelboards, industrial control panels, meter socket enclosures, and motor control
centers that are likely to require examination, adjustment, servicing, or maintenance while energized.

a. Minimum Size: 3.5 by 5 inches (89 mm by 127 mm).

b. Legend: Include orange header that reads "WARNING", followed by the word message "Arc Flash and Shock Hazard; Appropriate PPE Required; Do not operate controls or open covers without appropriate personal protection equipment; Failure to comply may result in injury or death; Refer to NFPA 70E for minimum PPE requirements" or approved equivalent.

B. Identification for Conductors and Cables:

1. Color Coding for Power Conductors 600 V and Less: Comply with Section 260519.

2. Use identification nameplate or identification label to identify color code for ungrounded and grounded power conductors inside door or enclosure at each piece of feeder or branch-circuit distribution equipment when premises has feeders or branch circuits served by more than one nominal voltage system.

C. Identification for Boxes:

1. Use voltage markers to identify highest voltage present.

2. Use identification labels or handwritten text using indelible marker to identify circuits enclosed.

2.02 IDENTIFICATION NAMEPLATES AND LABELS

A. Identification Nameplates:

1. Materials:

a. Indoor Clean, Dry Locations: Use plastic nameplates.

b. Outdoor Locations: Use plastic, stainless steel, or aluminum nameplates suitable for exterior use.

2. Plastic Nameplates: Two-layer or three-layer laminated acrylic or electrically non-conductive phenolic with beveled edges; minimum thickness of 1/16 inch (1.6 mm); engraved text.

3. Stainless Steel Nameplates: Minimum thickness of 1/32 inch (0.8 mm); engraved or laser-etched text.
4. Aluminum Nameplates: Anodized; minimum thickness of 1/32 inch (0.8 mm); engraved or laser-etched text.

B. Identification Labels:

1. Materials: Use self-adhesive laminated plastic labels; UV, chemical, water, heat, and abrasion resistant.

2. Text: Use factory pre-printed or machine-printed text. Do not use handwritten text unless otherwise indicated.

C. Format for Equipment Identification:

1. Minimum Size: 1 inch (25 mm) by 2.5 inches (64 mm).

2. Legend:
 a. Equipment designation or other approved description.

3. Text: All capitalized unless otherwise indicated.

4. Minimum Text Height:
 a. Equipment Designation: 1/2 inch (13 mm).

5. Color:

2.03 VOLTAGE MARKERS

A. Markers for Boxes and Equipment Enclosures: Use factory pre-printed self-adhesive vinyl or self-adhesive vinyl cloth type markers.

B. Minimum Size:

1. Markers for Pull Boxes: 1 1/8 by 4 1/2 inches (29 by 110 mm).

2. Markers for Junction Boxes: 1/2 by 2 1/4 inches (13 by 57 mm).

C. Legend:

1. Markers for Voltage Identification: Highest voltage present.

D. Color: Black text on orange background unless otherwise indicated.
2.04 WARNING SIGNS AND LABELS

A. Comply with ANSI Z535.2 or ANSI Z535.4 as applicable.

B. Warning Signs:
 1. Materials:
 a. Indoor Dry, Clean Locations: Use factory pre-printed rigid plastic or self-adhesive vinyl signs.
 b. Outdoor Locations: Use factory pre-printed rigid aluminum signs.
 2. Minimum Size: 7 by 10 inches (178 by 254 mm) unless otherwise indicated.

C. Warning Labels:
 1. Materials: Use factory pre-printed or machine-printed self-adhesive polyester or self-adhesive vinyl labels; UV, chemical, water, heat, and abrasion resistant; produced using materials recognized to UL 969.
 3. Minimum Size: 2 by 4 inches (51 mm by 102 mm) unless otherwise indicated.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Secure nameplates to exterior surfaces of enclosures using stainless steel screws and to interior surfaces using self-adhesive backing or epoxy cement.

C. Secure rigid signs using stainless steel screws.

END OF SECTION 26 05 53
PART 1 - GENERAL

1.01 SUBMITTALS

A. Shop Drawings: Submit to NEMA ICS 1 indicating control panel layouts, wiring connections and diagrams, dimensions, support points.

B. Product Data: Provide for each component showing electrical characteristics and connection requirements.

1.02 QUALITY ASSURANCE

A. Comply with requirements of NFPA 70.

PART 2 - PRODUCTS

2.01 COMPONENTS

A. Control Switches and Stations:
 1. Contacts: NEMA ICS 2, Form Z.
 2. Contact Ratings: NEMA ICS 2, A150.

B. Magnetic Control Relays: NEMA ICS 2, Class A300.

 1. Contacts: NEMA ICS 2, Form Z.
 2. Contact Ratings: NEMA ICS 2, Class A150.
 3. Coil Voltage: 24 volts, 60 Hz, AC.

D. Control Power Transformers: Machine tool transformer with isolated secondary winding.
 1. Voltage Rating: 120 volts primary; 24 volts secondary.

2.02 ENCLOSURES

A. Control Station Enclosures: NEMA ICS 6; Type 1.
Table of Contents

B. Relay Enclosures: NEMA ICS 6; Type 1.

C. Fabrication: Shop fabricate control panels to NEMA ICS 1, using cabinets and terminal blocks furnished in accordance with Section 260533.16.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install in accordance with manufacturer's instructions.

B. Install individual relays and time-delay relays in enclosures.

END OF SECTION 26 09 16
PART 1 - GENERAL

1.01 SUBMITTALS

A. Product Data: Provide manufacturer's standard catalog pages and data sheets for panelboards, enclosures, overcurrent protective devices, and other installed components and accessories.

B. Project Record Documents: Record actual installed locations of panelboards and actual installed circuiting arrangements.

PART 2 - PRODUCTS

2.01 PANELBOARDS - GENERAL REQUIREMENTS

A. Provide products listed, classified, and labeled as suitable for the purpose intended.

B. Short Circuit Current Rating:
 1. Provide panelboards with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.

C. Mains: Configure for top or bottom incoming feed as indicated or as required for the installation.

D. Bussing: Sized in accordance with UL 67 temperature rise requirements.
 1. Provide fully rated neutral bus unless otherwise indicated, with a suitable lug for each feeder or branch circuit requiring a neutral connection.
 2. Provide solidly bonded equipment ground bus in each panelboard, with a suitable lug for each feeder and branch circuit equipment grounding conductor.

E. Conductor Terminations: Suitable for use with the conductors to be installed.

F. Enclosures: Comply with NEMA 250, and list and label as complying with UL 50 and UL 50E.
 1. Boxes: Galvanized steel unless otherwise indicated.
 a. Provide wiring gutters sized to accommodate the conductors to be installed.
2. Lockable Doors: All locks keyed alike unless otherwise indicated.

G. Future Provisions: Prepare all unused spaces for future installation of devices including bussing, connectors, mounting hardware and all other required provisions.

2.02 LIGHTING AND APPLIANCE PANELBOARDS

A. Description: Panelboards complying with NEMA PB 1, lighting and appliance branch circuit type, circuit breaker type, and listed and labeled as complying with UL 67; ratings, configurations and features as indicated on the drawings.

B. Conductor Terminations:
 1. Main and Neutral Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.
 2. Main and Neutral Lug Type: Mechanical.

C. Bussing:
 1. Phase and Neutral Bus Material: Aluminum.

D. Circuit Breakers: Thermal magnetic bolt-on type unless otherwise indicated.

E. Enclosures:
 1. Provide surface-mounted or flush-mounted enclosures as indicated.
 2. Provide clear plastic circuit directory holder mounted on inside of door.

2.03 OVERCURRENT PROTECTIVE DEVICES

A. Molded Case Circuit Breakers:
 1. Description: Quick-make, quick-break, over center toggle, trip-free, trip-indicating circuit breakers listed and labeled as complying with UL 489, and complying with FS W-C-375 where applicable; ratings, configurations, and features as indicated on the drawings.

 2. Interrupting Capacity:
 a. Provide circuit breakers with interrupting capacity as required to provide the short circuit current rating indicated, but not less than:
1) 10,000 rms symmetrical amperes at 240 VAC or 208 VAC.

b. Fully Rated Systems: Provide circuit breakers with interrupting capacity not less than the short circuit current rating indicated.

3. Conductor Terminations:
 a. Lug Material: Aluminum, suitable for terminating aluminum or copper conductors.

4. Thermal Magnetic Circuit Breakers: For each pole, furnish thermal inverse time tripping element for overload protection and magnetic instantaneous tripping element for short circuit protection.
 a. Provide field-adjustable magnetic instantaneous trip setting for circuit breaker frame sizes 225 amperes and larger.

5. Provide the following circuit breaker types where indicated:
 a. Ground Fault Circuit Interrupter (GFCI) Circuit Breakers: Listed as complying with UL 943, class A for protection of personnel.
 b. Ground Fault Equipment Protection Circuit Breakers: Designed to trip at 30 mA for protection of equipment.

6. Provide multi-pole circuit breakers for multi-wire branch circuits as required by NFPA 70.

PART 3 - EXECUTION

3.01 INSTALLATION
 A. Perform work in accordance with NECA 1 (general workmanship).
 B. Install products in accordance with manufacturer's instructions.
 C. Install panelboards in accordance with NECA 407 and NEMA PB 1.1.
 D. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.
 E. Provide required support and attachment in accordance with Section 260529.
 F. Mount panelboards such that the highest position of any operating handle for circuit breakers or switches does not exceed 79 inches (2000 mm) above the floor or working platform.
 G. Provide grounding and bonding in accordance with Section 260526.
H. Provide filler plates to cover unused spaces in panelboards.

END OF SECTION 26 24 16
PART 1 - GENERAL

1.01 SUBMITTALS

A. Shop Drawings: Indicate dimensions, voltage, controller sizes, short circuit current ratings, conduit entry locations, conductor terminal information, and installed features and accessories.

1. Include dimensioned plan and elevation views of enclosed controllers and adjacent equipment with all required clearances indicated.

2. Include wiring diagrams showing all factory and field connections.

3. Clearly indicate whether proposed short circuit current ratings are fully rated or, where acceptable, series rated systems.

PART 2 - PRODUCTS

2.01 ENCLOSED CONTROLLERS

A. Provide products listed, classified, and labeled as suitable for the purpose intended.

B. Description: Enclosed controllers complying with NEMA ICS 2, and listed and labeled as complying with UL 60947-1 and UL 60947-4-1; ratings, configurations and features as indicated on the drawings.

C. Service Conditions:

1. Provide controllers and associated components suitable for operation at indicated ratings under the service conditions at the installed location.

D. Short Circuit Current Rating:

1. Provide controllers with listed short circuit current rating not less than the available fault current at the installed location as indicated on the drawings.

E. Conductor Terminations: Suitable for use with the conductors to be installed.

F. Enclosures:

2. Environment Type per NEMA 250: Unless otherwise indicated, as specified for the following installation locations:
 a. Indoor Clean, Dry Locations: Type 1 or Type 12.

G. Magnetic Motor Starters: Combination or noncombination type as indicated.
 1. Combination Magnetic Motor Starters: NEMA ICS 2, Class A combination motor controllers with magnetic contactor(s), externally operable disconnect and overload relay(s).
 2. Noncombination Magnetic Motor Starters: NEMA ICS 2, Class A noncombination motor controllers with magnetic contactor(s) and overload relay(s).
 3. Configuration: Full-voltage non-reversing unless otherwise indicated.
 4. Minimum Starter Size: NEMA Size 0.
 5. Disconnects: Circuit breaker type.
 a. Circuit Breakers: Motor circuit protectors (magnetic-only) unless otherwise indicated or required.
 b. Provide auxiliary interlock for disconnection of external control power sources where applicable.
 6. Overload Relays: Solid-state type unless otherwise indicated.

2.02 OVERCURRENT PROTECTIVE DEVICES

A. Overload Relays:
 1. Provide overload relays and, where applicable, associated current elements/heaters, selected according to actual installed motor nameplate data, in accordance with manufacturer’s recommendations and NFPA 70; include consideration for motor service factor and ambient temperature correction, where applicable.
 2. Inverse-Time Trip Class Rating: Class 20 unless otherwise indicated or required.
 3. Resettable.
 a. Employ manual reset unless otherwise indicated.
 b. Do not employ automatic reset with two-wire control.
4. Bimetallic Thermal Overload Relays:
 a. Adjustable trip; plus/minus 10 percent of nominal, minimum.

5. Solid-State Overload Relays:
 a. Adjustable full load current.
 b. Phase loss protection.
 c. Phase imbalance protection.
 d. Thermal memory.
 e. Provide isolated alarm contact.

B. Fusible Disconnect Switches:

1. Description: Quick-make, quick-break, dead-front fusible switch units complying with NEMA KS 1, and listed and labeled as complying with UL 98; ratings, configurations, and features as indicated on the drawings.

2. Fuse Clips: As required to accept indicated fuses.

C. Circuit Breakers:

1. Motor Circuit Protectors:
 a. Description: Instantaneous-trip circuit breakers furnished with magnetic instantaneous tripping elements for short circuit protection, but not with thermal inverse time tripping elements for overload protection; UL 489 recognized only for use as part of a listed combination motor controller with overload protection; ratings, configurations, and features as indicated on the drawings.
 b. Provide field-adjustable magnetic instantaneous trip setting.

2.03 CONTROL ACCESSORIES

A. Auxiliary Contacts:

1. Comply with NEMA ICS 5.

2. Provide number and type of contacts indicated or required to perform necessary functions, including holding (seal-in) circuit and interlocking, plus one normally open (NO) and one normally closed (NC) spare contact for each magnetic motor starter, minimum.
B. Pilot Devices:
 1. Comply with NEMA ICS 5; heavy-duty type.
 2. Pushbuttons: Unless otherwise indicated, provide momentary, non-illuminated type with flush button operator; normally open or normally closed as indicated or as required.
 3. Selector Switches: Unless otherwise indicated, provide maintained, non-illuminated type with knob operator; number of switch positions as indicated or as required.
 4. Indicating Lights: Push-to-test type unless otherwise indicated.
 5. Provide LED lamp source for indicating lights and illuminated devices.

C. Control and Timing Relays:
 1. Comply with NEMA ICS 5.

D. Control Power Transformers:
 1. Size to accommodate burden of contactor coil(s) and all connected auxiliary devices, plus [_____] VA spare capacity.
 2. Include primary and secondary fuses.

PART 3 - EXECUTION

3.01 INSTALLATION

A. Install products in accordance with manufacturer's instructions.

B. Arrange equipment to provide minimum clearances in accordance with manufacturer's instructions and NFPA 70.

C. Provide required support and attachment in accordance with Section 260529.

D. Provide fuses complying with Section 262813 for fusible switches as indicated.

E. Where accessories are not self-powered, provide control power source as indicated or as required to complete installation.

F. Set field-adjustable controllers and associated components according to installed motor requirements, in accordance with manufacturer's recommendations and NFPA 70.
END OF SECTION 26 29 13