Addendum No. 1
August 22, 2023

Rogers Orton Store Front Upgrades
Washington State University
Pullman, WA

Project No. 1894-2023
Washington State University
Facilities Services, Capital
Addendum No. 1
August 22, 2023

Rogers Orton Store Front Upgrades
Washington State University
Pullman, WA

Bid Date: August 29, 2023

1. This Addendum forms a part of the Contract Documents and modifies the original Bidding Documents dated July 21, 2023, and any prior addenda, as noted below.

2. Please acknowledge receipt of this addendum on the Form of Proposal.

This Addendum consists of one hundred forty-five total pages including the following Attachments:

<table>
<thead>
<tr>
<th>Pre-Bid Meeting 8/19/23: Meeting Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Bid Meeting 8/19/23: List of Attendees</td>
</tr>
<tr>
<td>Substitution Request: Kawneer 350 Medium or 500 Heavy Stile Door</td>
</tr>
<tr>
<td>Substitution Request: Kawneer 601T Center Set Storefront</td>
</tr>
<tr>
<td>SECTION 007200 General Conditions; Attachment A: Good Faith Hazardous Material Survey; Orton Hall</td>
</tr>
</tbody>
</table>

Changes to prior Addenda:
N/A

Changes to Bidding Requirements:

1-1. SECTION 00 11 13 – Advertisement for Bids

 Item 1. Replace “Rogers Hall and Orton Hall are 12 story student dorms located on the Pullman Campus of Washington State University. WSU Student Housing wants to upgrade the main entry and lobby areas by removing and replacing the store front system at the main entry and removing and replacing the window system at the lobby area. Substantial Completion shall be achieved by June 1, 2024. Proposals MUST BE based on this Contract Time.”

 Make read “Rogers Hall and Orton Hall are 12 story student dorms located on the Pullman Campus of Washington State University. WSU Student Housing wants to upgrade the main entry and lobby areas by removing and replacing the store front system at the main entry and removing and replacing the window system at the lobby area. Substantial Completion shall be achieved by July 11, 2024. Proposals MUST BE based on this Contract Time.”

Changes to Specifications:

SP 1-1. SECTION 00 72 00 – General Conditions
Item 1. Add: Section 00 72 00; Attachment A: Good Faith Hazardous Material Survey; Orton Hall

Approved Substitution Requests:

<table>
<thead>
<tr>
<th>Drawing or Specification</th>
<th>Item</th>
<th>Acceptable Substitution Manufacturer or Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>08 44 13 Page 2 Paragraph 2.01.A</td>
<td>Marlin Windows Inc: System 45T Storefront-2"x6" Thermal Framing System</td>
<td>Kawneer 601T Center Set Storefront</td>
</tr>
<tr>
<td>08 44 13 Page 3 Paragraph 2.03.A</td>
<td>Curtain Wall/Door Framing System, Front Plane, 4 Sided Capture</td>
<td>Kawneer 350 Medium or 500 Heavy Stile Door</td>
</tr>
</tbody>
</table>

Changes to Drawings:
None

END OF ADDENDUM No. 1
PRE-BID MEETING

WSU Project: Rogers/Orton Hall Storefront Upgrades

Facility: Rogers and Orton Hall Project No: 1894-2023
Meeting Date: August 18, 2023 @10am Rogers Hall 1355 SE Olympia Ave
Location: Onsite Ortton Hall 1475 SE Olympia Ave

Recorded by: Kevin Poitra

1. Introductions:
 a. WSU Project Manager: Kevin Poitra
 b. WSU Construction Manager: Kevin Poitra
 c. WSU Customer: Auxiliary Facilities Services-Roxy Holden
 d. Design Team: Palouse Design Associates
 e. Attendance at the pre-bid meeting is encouraged.
 f. The Owner’s meeting minutes will be routed to project plan holders as part of the first addendum.
 g. Send all questions regarding this project to the WSU Project Manager, with copy to the Architect: Palouse Design Associates
 i. All questions must be received no later than 7 days prior to Bid Date August 29th, 2023.
 ii. All requests for substitutions must be received by 7 days prior to Bid Date August 29th, 2023.
 h. Addenda will be forwarded to all plan holders. Addenda will be issued no later than August 22th, 2023.
 i. This is an active campus. There are students, faculty and visitors who either will not be aware of construction or will be distracted. Contractors must routinely work around the pedestrian population on campus as well as control noise and other construction related activities to minimize the effect on the campus. WSU is committed to a completely accessible campus. This means that when construction activities interfere with accessible pathways, that the General Contractor is responsible for putting in place temporary facilities (ramps, pathways, etc..) to assure that all pathways are available. The WSU Pullman campus is a tobacco free campus.

2. Project Description: Rogers and Orton Hall - Remove and Replace the storefront door system at the main entrance, including installing metal clad infill panels at the lower section of the storefront. Reconnect the ada paddles as required. Remove and Replace the windows at the Lobby area, including installing metal clad infill panels at the lower section of the window system and installing drywall/paint at the lower section on the interior side of the window system. Electrical infrastructure work for connecting door hardware system components/Cougar Card and ADA components.
PRE-BID MEETING

Scope of work:
 a. **Expected work by Owner:** Card reader-provided and installed by WSU Cougar Card Services.
 b. **Lay down area, Main Entrance/Lobby Area**
 c. **Access & Haul Routes:** Use Main entrance for access to the work area.
 d. **Occupied Area:** Dining Administration occupies the North area on the first floor of Rogers Hall. Orton Hall not be occupied.
 e. **Existing Hazards:** See Good Faith Survey.
 f. **Schedule Constraints:** Construction start time is 7am-7pm.
 g. **Parking:** Parking permits are required.
 h. **City of Pullman Building Permit:** Permit is ready to be picked up. Permit costs are the responsibility of the Bidders. Bidders to include permit cost in their bids. The permit costs are - Rogers Hall-$2,403.89; Orton Hall-$2,403.89

3. Estimated Base Bid, not including taxes, is approximately: $335,000-$400,000

4. Expected Notice to Proceed date: To be determined

5. Estimated project duration after Notice to Proceed: Substantial Completion is July 11th, 2024

6. Bidders should review the complete version of the bid instructions in the Contract Documents and in any forthcoming addenda. Especially note the following:
 a. Bids shall be made upon the form of proposal in the Contract Documents.
 b. All information requested on the bid form shall be filled out completely and entirely to include:
 i. Base Bid amount
 ii. Alternate amount(s) as required
 iii. Unit Price amount(s) as required
 iv. Acknowledgement of each addendum received
 c. The bid shall include a bid security bond.
 d. Bid proposal format can be found in Section 00 42 13 Form of the Proposal. Bids can be emailed to Contracts@wsu.edu or a hardcopy may be delivered to McCluskey Services Building, 2425 East Grimes Way, Pullman WA 99164.
 e. The bidder is responsible for getting the bid prior to the bid date and time in the Contract Documents. The bid date is August 29th, 2023 at 2:30pm.
 f. Bids opening is August 29th, 2023 at 2:30pm
 g. Attendance in person is not allowed.
 h. **Bidder Responsibility Mandatory Criteria:** It is the intent of the Owner to award a contract to the low responsible bidder. Prior to awarding a contract, the apparent responsive low bidder must submit documentation demonstrating compliance as per
Section 00 21 13, Part 1.17 – Low Responsible Bidder. Be prepared to submit the required documentation within 48 hours of receipt of request.

7. Summary of Construction Administration Requirements:
 a. For complete project administrative requirements refer to Division 1 and the Agreement between Owner and Contractor and addenda.
 b. Prior to starting work; the contractor will be required to submit a schedule of values and a construction progress schedule for review and approval.
 c. Regular progress meetings will be conducted during the course of the project and are on a as needed basis.
 d. Material information and/or shop drawings shall be submitted to the Owner for approval. The construction progress schedule shall include time for the submittal review and distribution process.
 e. O&M Manuals and Record drawings shall be submitted prior to Substantial Completion and the final application for payment and shall be identified as activities on the construction progress schedule.

8. A job-site visit may be scheduled during the course of the meeting.

9. Discussion/Remarks/Concerns:
 1. Contractor Question: Can we use the existing electrical infrastructure for the storefront system?
 WSU Response-Yes: Contractor is responsible for determining if they can use the existing electrical pathway or if a new pathway is needed.

 2. Contractor Question: Can we put in allowance for filling in any holes we find in the soffits?
 WSU Response – Yes, the bidders are responsible for all scope of work related to the removal and replacement of the storefront door system and the window system.

 3. Contractor Question: If we are awarded the bid, can we do some selective exploration demo at the storefront jamb to see how the storefront system is connected to the wall during a Holiday break?
 WSU Response – Our client, Housing Services said they can accommodate this during winter break beginning December 16, 2023. Exact dates to be scheduled through Construction Manager and Housing prior to December 16, 2023.

 4. *Contractor is responsible for all the electrical work associated with the door hardware, and ADA component hardware.*
5. Will there be an Abatement Contractor Removing the Cement and Pebble Crete Panels as Part of the Demo? and will someone be installing a Temp Interior/Exterior Wall? **WSU Response** - *The bidders are responsible for all scope of work related to the removal and replacement of the storefront door system and the window system.*

End of Meeting
Attendee Record

Pre-Bid Meeting

Attendance Record

<table>
<thead>
<tr>
<th>Project Title</th>
<th>Rogers/Orton Hall Storefront Upgrade</th>
<th>No.</th>
<th>1894-2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meeting Location</td>
<td>Rogers Hall and Orton Hall</td>
<td>Date</td>
<td>August 18th, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name and Company</th>
<th>Address</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevin Poitra</td>
<td>PO Box 641150</td>
<td>P: 509-335-4206</td>
<td>kpoitra@wsu.edu</td>
</tr>
<tr>
<td>WSU - FS Capital</td>
<td>Pullman, WA 99164-1150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reese Kuiper</td>
<td>5414 E Broadway Ave</td>
<td>(509) 535-3015</td>
<td>reese@marlinwindows.com</td>
</tr>
<tr>
<td>Marlin Windows, Inc</td>
<td>Spokane Valley, WA 99212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ryan Kirkpatrick</td>
<td>221 Yale Avenue North</td>
<td>(206) 496-4715</td>
<td>ryan_kirkpatrick@skanska.com</td>
</tr>
<tr>
<td>Skanska USA Building Inc</td>
<td>Suite 400 Seattle WA 98109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ian Conley</td>
<td>221 Yale Avenue North</td>
<td>(206) 726-8000</td>
<td>ian.conley@skanska.com</td>
</tr>
<tr>
<td>Skanska USA Building Inc</td>
<td>Suite 400 Seattle WA 98109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabe Huges</td>
<td>221 Yale Avenue North</td>
<td>(206) 379-6117</td>
<td>Gabriel.Hughes@skanska.com</td>
</tr>
<tr>
<td>Skanska USA Building Inc</td>
<td>Suite 400 Seattle WA 98109</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SUBSTITUTION REQUEST

TO: Kevin Poitra, Project Manager, WSU

PROJECT: WSU - Rogers + Horton Hall Storefront Upgrades

SPECIFIED ITEM:

Section 08 44 13 Page 3 Paragraph 2.03.A
Description Curtain Wall/Door Framing System, Front Plane, 4 Sided Capture

PROPOSED SUBSTITUTION: Kawneer 350 Medium or 500 Heavy Stile Door

Attached data includes product description, specifications, drawings, photographs, performance and test data adequate for evaluation of request including identification of applicable data portions.

Attached data also includes description of changes to Contract Documents and proposed substitution requires for proper installation.

Undersigned certifies following items, unless modified by attachments, are correct:

1. Proposed substitution does not affect dimensions shown on drawings.
2. Undersigned pays for changes to building design, including engineering design, detailing, and construction costs caused by proposed substitution.
3. Proposed substitution has no adverse effect on other trades, construction schedule, or specified warranty requirements.
4. Maintenance and service parts available locally or readily obtainable for proposed substitution.

Undersigned further certifies function, appearance, and quality of proposed substitution are equivalent or superior to specified item.

Undersigned agrees, if this page is reproduced, terms and conditions for substitutions found in Bidding Documents apply to this proposed substitution.

Submitted by:
Bud Henson bud@windowtechinc.com
Name (Printed or typed)

Bud Henson
Signature

Window Tech Inc.
Firm Name

6520 212th St SW., Ste 201
Address

Lynnwood, WA 98036
City, State, Zip

August 2, 2023
Date

360-600-0804 Fax:

General Contractor (if after award of Contract)

For use by A/E
☑ Approved ☐ Approved as noted
☐ Not Approved ☐ Received too late

By Craig Beaumont
Date 8/21/23
Remarks

Owner (if after award of Contract)

Date

The Construction Specifications Institute
Northwest Region

Advancement of Construction Technology
FEATURES

2.03.A: Non thermal 350 matches specified Marlin door.
(Kawneer recommends 350T/500T Insulpour Doors to meet WSEC of .50 U Value for swing entrance doors).

** Features **

- 190 narrow stile has 2-1/8" (54) vertical stile, 2-1/4" (57.2) top and 3-7/8" (98.4) bottom rail
- 350 medium stile has 3-1/2" (88.9) vertical stile, 3-1/2" (88.9) top and 6-1/2" (165.1) bottom rail
- 500 wide stile has 5" (127) vertical stile, 5" (127) top and 6-1/2" (165.1) bottom rail
- **Door is 1-3/4" (44.5) deep**
- Dual moment welded corner construction
- Single or double acting
- Infills range from 1/4" (6.4) to 1" (25.4)
- Offset pivots, butt hinges, continuous geared hinge or center pivots
- MS locks or panic hardware
- Surface mounted or concealed closers
- Architects Classic push/pulls
- Adjustable astragal utilizing pile weathering with polymeric fin at meeting stiles
- Polymeric bulb weatherstripping in door frames
- **Permanodic® anodized finishes option**
- Painted finishes in standard and custom choices

Optional Features

- Paneline® exit device or Paneline® MEL exit device
- Wide variety of bottom rail and cross rail

Product Applications

- 190 narrow stile - engineered for moderate traffic in applications such as offices and stores
- 350 medium stile - provides extra strength for schools, institutions and other high traffic applications
- 500 wide stile - creates a monumental visual statement for banks, libraries or buildings that experience heavy traffic conditions

For specific product applications, consult your Kawneer representative.
#1 MECHANICAL FASTENING is accomplished by attaching a 5/16" (7.9) thick extruded aluminum channel clip to the vertical stile with 1/4"x20 heat strengthened bolts and 3/16" thick steel nut plates for a high strength welding base for attachment horizontal member.

#2 SIGMA® DEEP PENETRATION PLUG WELDS are made top and bottom after the horizontal is properly positioned over the channel clip to help provide the strongest door corner joint currently available.

#3 SIGMA® FILLET WELDS along both top and bottom webs of the rail extrusion complete the welded corner construction.

* An arc welding process known as Shielded Inert Gas Metal Arc (SIGMA) or also known as Metal Inert Gas (MIG).
Additional information and CAD details are available at www.kawneer.com
Additional information and CAD details are available at www.kawneer.com

STANDARD BOTTOM RAILS
Rail heights shown may be used on 190, 350, and 500 doors.

NOTE:
See Page 19 for available Horizontal Intermediate Members.

OPTIONAL BOTTOM RAILS
Rail heights shown may be used on 190, 350, and 500 doors.
Custom heights available.
Tough yet attractive, Kawneer’s Standard Entrances are designed as a single-source package of door, door frame and hardware that is easily adaptable to custom requirements. Designed to complement new or remodel construction as well as modern or traditional architecture, they are engineered, constructed and tested to make a good first impression while withstanding the rigors of constant use by occupants and visitors.

PERFORMANCE

To resist both lever arm and torsion forces that constantly act on any door, all three entrances feature welded corner construction with Sigma deep penetration and fillet welds plus mechanical fastenings at each corner – a total of 16 welds per door. Each door corner comes with a limited lifetime warranty, good for the life of the door under normal use. It is transferable from building owner to owner and is in addition to the standard two-year warranty covering material and workmanship of each Kawneer door.
1. Thermoplastic elastomer weatherstrip in blade stop of frame jamb, header or transom bar.

2. Integral polymeric fin attached to adjustable astragal, creating an air barrier between pairs of doors.

3. Optional surface-applied bottom weatherstrip with flexible blade gasket. Extruded raised lip on threshold to provide continuous contact for bottom weatherstrip.

4. Standard 1/4" beveled glass stops to sheet water and dirt off without leaving residuum.

5. Available in all finishes offered by Kawneer.

GENERAL
- Heights vary up to 10'; widths range from approximately 3' to 4'
- Door frame face widths range to a maximum of 4", while depths range to 6".
- Door operation is single- or double-acting with maximum security locks or touch bar panic standard.
- Architect's classic 1" round, bent bar push/pull hardware is available in various finishes and sizes.
- Infills range from 1/4" to 1"

FOR THE FINISHING TOUCH
Architectural Class I anodized aluminum finishes are available in clear and Permanodic® color choices.

Painted finishes, including fluoropolymer, that meet AAMA 2605 are offered in many standard choices and an unlimited number of specially designed colors.

Solvent-free powder coatings add the “green” element with high performance, durability and scratch resistance that meet the standards of AAMA 2604.

ECONOMY
Kawneer’s bulb neoprene weatherstripping forms a positive seal around the door frame and provides a substantial reduction in air infiltration, resulting in improved comfort and economies in heating and cooling costs. The system is wear- and temperature-resistant and replaces conventional weatherproofing. The bottom weatherstrip at the interior contains a flexible blade gasket to meet and contact the threshold, enhancing the air and water infiltration performance characteristics.

190 NARROW STILE ENTRANCE
- Is engineered for moderate traffic in applications such as stores, offices and apartment buildings
- Vertical stile measures 2-1/8", top rail 2-1/4" and bottom rail 3-7/8"
- Results in a slim look that meets virtually all construction requirements

200 MEDIUM STILE ENTRANCE
- Provides extra strength for applications such as schools, institutions and other high-traffic applications
- Vertical stiles and top rails measure 3-1/2"
- Bottom rail measures 6-1/2" for extra durability

500 WIDE STILE ENTRANCE
- Creates a monumental visual statement for applications such as banks, libraries and public buildings
- Vertical stiles and top rail measures 5"; bottom rail measures 6-1/2"
- Results in superior strength for buildings experiencing heavy traffic conditions
250T/350T/500T Insulpour® Thermal Entrances

Recommended door system to meet WSEC.

Features

- 250T narrow stile has 2-1/2" (63.5) vertical stile, 2-15/16" (74.6) top and 3-7/8" (98.4) bottom rail
- 350T medium stile has 3-1/2" (88.9) vertical stile, 3-1/2" (88.9) top and 6-1/2" (165.1) bottom rail
- 500T wide stile has 5" (127) vertical stile, 5" (127) top and 6-1/2" (165.1) bottom rail
- Door is 2-1/4" (57.2) deep
- Door has 1/8" (3.2) wall thickness
- Dual moment welded corner construction
- *IsoPour®* thermal break
- Single acting
- Intills include 1" (25.4) and 1-1/2" (38.1)
- Offset pivots, butt hinges, continuous geared hinge
- MS locks or exit device hardware
- Surface mounted or concealed closers
- Architects Classic push/pulls
- Adjustable astragal utilizing pile weathering with polymeric fin at meeting stiles
- Polymeric bulb weatherstripping and secondary weathering in door frames
- *Permanodic®* anodized finishes option
- Painted finishes in standard and custom choices

Optional Features

- Wide variety of bottom rail and cross rail
- Two color finish capability

Product Applications

- 250T narrow stile - engineered for moderate traffic in applications such as offices and stores
- 350T medium stile - provides extra strength for schools, institutions and other high traffic applications
- 500T wide stile - creates a monumental visual statement for banks, libraries or buildings that experience heavy traffic conditions
- Engineered for high performance buildings

For specific product applications, consult your Kawneer representative.
250T/350T/500T Insulpour® Thermal Entrances

PICTORIAL VIEW

#1 MECHANICAL FASTENING is accomplished by attaching a 5/16" (7.9) thick extruded aluminum channel clip to the vertical stile with 1/4"-20 heat strengthened bolts and 3/16" (4.8) thick steel nut plates for a high strength welding base for attachment horizontal member.

#2 SIGMA® DEEP PENETRATION PLUG WELDS are made top and bottom after the horizontal is properly positioned over the channel clip to help provide the strongest outer corner joint currently available.

#3 SIGMA® FILLET WELDS along both top and bottom webs of the rail extrusion complete the welded corner construction.

DUAL MOMENT WELDED CORNER CONSTRUCTION

* An arc welding process known as Shielded Inert Gas Metal Arc (SIGMA) or also known as Metal Inert Gas (MIG).
Additional information and CAD details are available at www.kawneer.com
STANDARD BOTTOM RAILS
Rail heights shown may be used on 250T, 350T, and 500T doors.

NOTE:
See Page 18 for available Horizontal Intermediate Members.

OPTIONAL BOTTOM RAILS
Rail heights shown may be used on 250T, 350T, and 500T doors.
Custom heights available.
Redefining Thermal Entrances with IsoPour™ Technology

Recommended door system to meet WSEC - .60 U Value.

Ask more from your door, and get it all with Kawneer’s new Insulpour® Thermal Entrances, featuring IsoPour™ technology. This innovative product offering gives architects, developers, owners, and glazing contractors the ability to create a true thermally broken entrance system. It’s an ideal solution for high-end commercial and multifamily facilities looking to improve thermal control in common areas with moderate to high traffic.

By merging industry-proven pour and debridge and polymer isolator technologies, Kawneer’s IsoPour™ Thermal Break technology creates thermally broken assemblies for enhanced building energy efficiencies with higher structural performance. Insulpour® Thermal Entrances simultaneously provide additional design flexibility through multiple door cross rail and bottom rail choices along with dual finish capabilities for the door and door frame.
PERFORMANCE, STRENGTH & SECURITY

The door and frame both leverage IsoPour™ Thermal Break technology, enabling high thermal performance. Specifically aimed at quelling concerns about cold spots and thermal bridging from architects and specifiers, Insulpour® Thermal Entrances feature a true thermally broken door header, which significantly mitigates the formation of condensation when used with a concealed overhead closer. Insulating glass unit options of double pane 1" (25.4 mm) or triple pane 1-1/2" (38.1 mm) improve thermal and sound reduction performance.

For added strength, the 2-1/4" (57.2 mm) deep door has a stout 1/8" (3.2 mm) wall thickness, and the dual-welded corner construction of Insulpour® Thermal Entrances adds long-term performance. Each door corner comes with a limited lifetime warranty, good for the life of the door under normal use operation. It is transferable from building owner to owner and is provided in addition to the standard two-year warranty covering material and workmanship of each Kawneer door.

Insulpour® Thermal Entrances meet ASTM E1996 hurricane impact resistant requirements up to Zone 4 and Level U, and have undergone shock tube testing for blast mitigation. Contact your local Kawneer sales representative for limitations and specific application requirements.

AESTHETICS & DESIGN FLEXIBILITY

With sightlines that match standard, non-thermally broken entrances, Insulpour® Thermal Entrances offer 250T narrow, 350T medium and 500T wide stile options.

<table>
<thead>
<tr>
<th>STILE</th>
<th>VERTICAL STILE</th>
<th>TOP</th>
<th>BOTTOM RAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>250T Narrow Stile</td>
<td>2-1/2" (63.5 mm)</td>
<td>2-15/16" (74.6 mm)</td>
<td>3-7/8" (98.4 mm)</td>
</tr>
<tr>
<td>350T Medium Stile</td>
<td>3-1/2" (88.9 mm)</td>
<td>3-1/2" (88.9 mm)</td>
<td>6-1/2" (165.1 mm)</td>
</tr>
<tr>
<td>500T Wide Stile</td>
<td>5" (127 mm)</td>
<td>5" (127 mm)</td>
<td>6-1/2" (165.1 mm)</td>
</tr>
</tbody>
</table>

The unique thermal break design allows for a wider choice of locking option hardware than previous thermal entrance designs. Coupled with various crossrail sizes and multiple bottom rail heights of 7-1/2" (190.5 mm), 10" (254 mm) and 12" (304.8 mm), Insulpour® Thermal Entrances give architects, designers and building owners more opportunities to bring their vision to life.
SUBSTITUTION REQUEST

TO: Kevin Poitra, Project Manager, WSU

PROJECT: WSU - Rogers and Orton Hall Storefront Upgrades

SPECIFIED ITEM:

Section 08 44 13 Page 2 Paragraph 2.01.A
Description Marlin Windows Inc: System 45T Storefront - 2" x 6" Thermal Framing System

PROPOSED SUBSTITUTION: Kawneer 601T Center Set Storefront

Attached data includes product description, specifications, drawings, photographs, performance and test data adequate for evaluation of request including identification of applicable data portions.

Attached data also includes description of changes to Contract Documents and proposed substitution requires for proper installation.

Undersigned certifies following items, unless modified by attachments, are correct:

1. Proposed substitution does not affect dimensions shown on drawings.
2. Undersigned pays for changes to building design, including engineering design, detailing, and construction costs caused by proposed substitution.
3. Proposed substitution has no adverse effect on other trades, construction schedule, or specified warranty requirements.
4. Maintenance and service parts available locally or readily obtainable for proposed substitution.

Undersigned further certifies function, appearance, and quality of proposed substitution are equivalent or superior to specified item.

Undersigned agrees, if this page is reproduced, terms and conditions for substitutions found in Bidding Documents apply to this proposed substitution.

Submitted by:
Bud Henson bud@windowtechinc.com

Name (Printed or typed)

Bud Henson

Signature

Firm Name Window Tech Inc.

Address 6520 212th St. SW, Ste. 201

City, State, Zip Lynnwood, WA 98036

Date August 2, 2023

Tel: 360-600-0803 Fax:

The Construction Specifications Institute
Northwest Region

General Contractor (if after award of Contract)

For use by A/E
☑ Approved □ Approved as noted
□ Not Approved □ Received too late

By Craig Beaumont

Date 8/21/23

Remarks

Owner (if after award of Contract)

Date ___________________________
Features

- Trifab® 601/601T/601UT Framing System is 6" (152.4) deep with a 2" (50.8) sightline
- Center Plane glass applications
- Flush glazed from either the inside or outside
- Screw Spline fabrication
- Dual IsoLock® lanced and debridged thermal break
- Infill options up to 1-1/8" (28.6) thickness
- High performance sill flashing
- Permanodic® anodized finishes option
- Painted finishes in standard and custom choices

Optional Features

- Acoustical rating per AAMA 1801 and ASTM E 1425
- Project specific U-factors (See Thermal Charts)
- Integrates with Versoleil® SunShade Outrigger System and Horizontal Single Blade System
- Profit$Maker® Plus die sets

Product Applications

- Storefront, Ribbon Window or Punched Openings
- Single-span
- Integrated entrance framing allowing Kawneer standard entrances or other specialty entrances to be incorporated
- Kawneer windows, or GLASSvent® Windows for Storefront Framing, or GLASSvent® UT Windows are easily incorporated

For specific product applications, consult your Kawneer representative.
SCREW SPLINE

1. HEAD

2. HORIZONTAL

3. SILL

4. JAMB

5. VERTICAL
Versatility, Ultra-Thermal Performance and More Design Possibilities Front and Center

Kawneer’s Trifab® VersaGlace® 601/601T/601UT Framing System touts the first front set, ultra-thermal 6" storefront system available. By expanding on a proven platform, Trifab® VersaGlace® 601 offers a choice of front and center plane glass applications in non-thermal, thermal and ultra-thermal configurations. Structural silicone glazing (SSG) options allow for an even greater range of design possibilities for specific project requirements and architectural styles.

PERFORMANCE
Flexible enough for a wide range of building projects, the Trifab® VersaGlace® 601/601T/601UT Framing System has a 6" depth, which accommodates higher spans than conventional 4-1/2" storefront framing systems. The 3-in-1 series includes the non-thermal Trifab® 601, the single thermal break Trifab® 601T and the dual thermal break Trifab® 601UT. The greater system depth combined with three thermal performance options and two glass plane options make this one of the most versatile framing systems available. By combining the greater 6" depth with superior thermal performance and versatility, Kawneer is able to bridge the gap between traditional framing systems and low-rise curtain walls.

2.01.A.1: Matches specified Marlin 45T Center Plane Storefront Framing System.

2.02.A: Will match specified Class II clear anodized finish. See attached color chart.
The Trifab® 601/601T/601UT Framing System is perfect for projects where an economical alternative to a low-rise curtain wall is desired. These systems meet the same high standards for air and water infiltration and thermal performance that are traditionally found in Kawneer products. The Trifab® 601/601T/601UT Framing System also has a high-performance sill design. The sill attaches to the sill flashing by way of a raceway and eliminates the troublesome blind seal method used on many flashing systems. The sill includes a screw-applied end dam, which ensures positive and tight joints between the sill flashing and end dam.

PERFORMANCE TEST STANDARDS

<table>
<thead>
<tr>
<th>Performance Test Standard</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Performance</td>
<td>AS1M E283</td>
</tr>
<tr>
<td>Water Performance</td>
<td>ASTM E331</td>
</tr>
<tr>
<td>Uniform Static Structural</td>
<td>ASTM E330</td>
</tr>
<tr>
<td>Sound Transmission Class (STC)</td>
<td>AAMA 1801 and in accordance with ASTM E1425</td>
</tr>
<tr>
<td>Condensation Resistance (CRF)</td>
<td>AAMA 1503 and CAN/CSA-A440</td>
</tr>
<tr>
<td>Thermal Transmittance (U-Value)</td>
<td>AAMA 1503.1</td>
</tr>
<tr>
<td>U-Value Simulations for Other Glazing Options</td>
<td>AAMA 507, NFRC 100, NFRS 200, NFRC 500 and CAN/CSA-A440.2</td>
</tr>
</tbody>
</table>

DIVERSE FABRICATION AND INSTALLATION METHODS

The Trifab® 601/601T/601UT Framing System employs various joinery construction types for efficient fabrication and installation.

<table>
<thead>
<tr>
<th>Glass Plane</th>
<th>Center Set</th>
<th>Front Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framing Type</td>
<td>401</td>
<td>601T</td>
</tr>
<tr>
<td>Thermal Level</td>
<td>Non-Thermal</td>
<td>Thermal</td>
</tr>
<tr>
<td>Screw Splint Fabrication</td>
<td>● ● ●</td>
<td>● ●</td>
</tr>
<tr>
<td>Shear Block Fabrication</td>
<td>– – –</td>
<td>● ●</td>
</tr>
<tr>
<td>Stick Fabrication</td>
<td>– – –</td>
<td>● ●</td>
</tr>
<tr>
<td>Stick Fabrication SSA</td>
<td>– – –</td>
<td>● ●</td>
</tr>
</tbody>
</table>

The framing can be specified for glazing from either the inside or outside. Inside glazing can help reduce field labor costs by eliminating the need for exterior scaffolding or swing stages for installation on floors above the ground level. In addition, the frames have a two-piece receptor option that easily accommodates attachment of air-barrier systems.

AESTHETICS AND VERSATILITY

The Trifab® 601/601T/601UT Framing System is designed with cost and flexibility in mind. With a 2” × 6” frame profile, the sightline is consistent with current framing systems and the glass pockets are aligned to 4-1/2” deep Trifab® framing systems. This allows for a shallow horizontal member that not only lowers overall metal costs, but also provides flexibility to accommodate interior finishes, such as blinds, that can span the full uninterrupted elevation height. The flexibility of the 3-in-1 series provides a pre-designed solution for non-thermal as well as thermal entrances. Framing options include non-thermal and thermally broken door framing members to accommodate 1-3/4”-deep and 2-1/4”-deep entrance doors, an expansion mullion and a two-piece head and jamb receptor. The 6” depth accommodates higher spans than conventional 4-1/2” storefront framing systems, and an optional 2-1/4” wide vertical mullion allows for internal steel reinforcement for projects with greater structural performance requirements.
KAWNEER ANODIZED FINISHES

Kawneer gives you a wide variety of anodized finishes with attractive alternatives. The benefit of a durable, anodized finish is married to the beauty of some very dynamic and exciting colors.

At the start of every design, there’s a choice of how you want to ‘finish. Contact your Kawneer sales rep for the information on these and other finishes available from Kawneer.

<table>
<thead>
<tr>
<th>KAWNEER FINISH NO.</th>
<th>COLOR</th>
<th>ALUMINUM ASSOCIATION SPECIFICATION</th>
<th>OTHER COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>#14</td>
<td>CLEAR</td>
<td>AA-M10C21A41</td>
<td>Architectural Class I (0.7 mils minimum)</td>
</tr>
<tr>
<td>#17</td>
<td>CLEAR</td>
<td>AA-M10C21A31</td>
<td>Architectural Class II (0.4 mils minimum)</td>
</tr>
<tr>
<td>#40</td>
<td>DARK BRONZE</td>
<td>AA-M10C21A44</td>
<td>Architectural Class I (0.7 mils minimum)</td>
</tr>
<tr>
<td>#29</td>
<td>BLACK</td>
<td>AA-M10C21A44</td>
<td>Architectural Class I (0.7 mils minimum)</td>
</tr>
</tbody>
</table>
Good Faith Survey
Orton Hall (#0087)
Washington State University
Pullman, Washington

June 23, 2020

Prepared by:
Stephan Gilley
WSU Environmental Health and Safety
AHERA Building Inspector # BIR 20200430-08 (exp. April 30, 2021)
TABLE OF CONTENTS

1 INTRODUCTION ... 1
 1.1 LIMITATIONS OF THE ASSESSMENT ... 1

2 METHODOLOGY .. 1
 2.1 ASBESTOS BULK SAMPLING ... 1
 2.2 LIMITED LEAD PAINT/COATINGS SAMPLING ... 2

3 RESULTS .. 2
 3.1 VISUAL INSPECTION ... 2
 3.2 ASBESTOS .. 3
 Table 1 – ACMs and Assumed ACMs ... 3
 Table 2 – Materials That Contain <1% Asbestos ... 4
 3.3 LEAD PAINTS AND COATINGS ... 5

4 CONCLUSIONS ... 5
 4.1 ASBESTOS-CONTAINING MATERIALS ... 5
 4.2 LEAD-CONTAINING PAINTS/COATINGS ... 6

FIGURES
Figure 1 – Basement Floor – ACM Locations
Figure 2 – First Floor – Sample Locations
Figure 3 – First Floor – ACM Locations
Figure 4 – Second Floor – Sample and ACM Locations
Figure 5 – Third Floor – Sample and ACM Locations
Figure 6 – Fourth Floor – Sample and ACM Locations
Figure 7 – Fifth Floor – Sample and ACM Locations
Figure 8 – Sixth Floor – Sample and ACM Locations
Figure 9 – Seventh Floor – Sample and ACM Locations
Figure 10 – Eighth Floor – Sample and ACM Locations
Figure 11 – Ninth Floor – Sample and ACM Locations
Figure 12 – Tenth Floor – Sample and ACM Locations
Figure 13 – Eleventh Floor – Sample and ACM Locations
Figure 14 – Twelfth Floor – Sample and ACM Locations
Figure 15 – Thirteenth Floor – Sample and ACM Locations

APPENDICES
Appendix A – Photographic Log
Appendix B – Table Summary of Asbestos Sampling and Analytical Results
Appendix C – Table Summary of Lead Paint Sampling
Appendix D – Asbestos and Lead Chain of Custody Forms and Laboratory Analytical Results
Appendix E – Previous Roof Sampling and Abatement Letter
Appendix F – Laboratory Accreditations and Certificates
Appendix G – Building Inspector Training Certificates
1 INTRODUCTION
Washington State University (WSU) Environmental Health and Safety (EH&S) conducted a “Good Faith” asbestos and limited lead in painted coatings survey of Orton Hall (Orton) in May 2020. Orton is located at 1475 Southeast Olympia Avenue at the west end of WSU’s campus in Pullman, Washington. The facility was originally constructed in 1964 and serves as a men’s and women’s dormitory. This survey was conducted to meet Washington Administrative Code (WAC) 296-62-07721 Good Faith survey requirements for construction, renovation, demolition, and maintenance projects at Orton with the following limitations.

1.1 Limitations of the Assessment
The conclusions herein are professional opinions based solely upon visual site observations and interpretations of analytical data as described in this report. The survey excluded areas of the building which were inaccessible or would have caused damage to the building if sampled. Locations where inspectors would have been exposed to hazards were not evaluated (e.g., operating HVAC or building mechanical systems). Typical construction techniques can render building portions inaccessible. As a result, additional asbestos-containing materials (ACM) may be present in inaccessible areas (e.g., wall cavities, within energized systems). Suspect regulated materials within inaccessible areas should be presumed to contain asbestos until characterized. The following specific areas were excluded from this survey: Locked rooms 217T, 417T, 617T, 817T, 1017T, and 1402 (elevator machine room).

The opinions presented herein apply to the site conditions existing at the time of the investigation and interpretation of current regulations pertaining to asbestos and lead. Opinions and recommendations provided herein may not apply to future site conditions. Regulatory requirements in effect at the time of the work should be verified prior to any work impacting regulated materials. This report represents the findings of this survey only, and is not intended to establish scope or contractual terms supporting regulated material disturbance, abatement or disposal.

2 METHODOLOGY
This good faith survey was conducted by Stephan Gilley with WSU EH&S, AHERA Building Inspector #BIR20200430-08 (exp. April 30, 2021) in April 2020. The asbestos survey was performed referencing the “Good Faith” survey requirements outlined in WAC 296-62-07721.

To identify suspect ACM, EH&S walked through accessible locations in Orton, noting building materials and construction. Not all concealed areas or sub-surface suspect materials may have been surveyed (see Limiting Conditions in Section 1.1). Approximate suspect material quantities were estimated based upon field observations, measurements, and scaled building drawings provided by WSU Facilities Services. Quantities given are intended for order of magnitude information only and must be field verified to support project bidding or estimates.

2.1 Asbestos Bulk Sampling
Suspect ACM was grouped into homogeneous sampling areas (HSA) and categorized referencing 40 CFR 763, as thermal systems insulation (TSI), surfacing material, or miscellaneous material. The sampling plan included, at a minimum, the collection and analysis of samples as follows:

Thermal System Insulation
- In a distributive manner, a minimum of three samples of each HSA that was not presumed to contain asbestos.
- At least one bulk sample from each homogeneous area of patched TSI if the patch was less than 6 square feet.
- In a manner sufficient to determine whether the material is ACM, samples were collected from plaster/mudded pipe fitting insulation.
Surfacing Material

- In a distributive manner, a minimum of three samples collected from each homogeneous area that was 1,000 square feet or less.
- A minimum of five samples collected from each homogeneous area that was greater than 1,000 square feet but less than or equal to 5,000 square feet.
- A minimum of seven samples collected from each homogeneous area that was greater than 5,000 square feet.

Miscellaneous Material

In a distributive manner as deemed sufficient by the Inspector. At least one sample was collected of each suspect miscellaneous material not presumed to contain asbestos.

Non-Suspect Materials

Fiberglass, wood, metal, structural concrete or other generally recognized non-ACM were not sampled.

A set of suspect asbestos building material samples including plaster and ceramic tile were collected in January 2017 and ceiling texture was collected in November 2018 for a bathroom renovation project. These samples are included in the table summary of Appendix B and relied upon in this report.

Asbestos bulk samples and chain-of-custody forms were delivered to NVL Laboratories (NVL) in Seattle, Washington for analysis. In addition, two control samples were delivered to Environmental Hazard Services, LLC (EHS) in Richmond, Virginia. Each sample was analyzed by Polarized Light Microscopy (PLM) with dispersion staining referencing EPA Method 600/R-93/116. The detection limit for this type of analysis is approximately one percent (by visual estimate). Materials containing more than one percent asbestos are considered ACM.

2.2 Limited Lead Paint/Coatings Sampling

This lead survey was performed to assist employers’ efforts to comply with the Washington Labor and Industries (LNI) lead standard for the construction industry (WAC 296-155-176) during renovation/demolition activities. Paint evaluation was limited to large homogeneous surfaces. Paint chip samples were collected from representative surfaces throughout the building and analyzed by flame atomic absorption spectrophotometry (FAAS) referencing EPA Method SW846 7000B. Paint chip results are reported by milligrams per kilogram of lead by weight. Any detection of lead in paint is reported as a lead-containing paint.

3 RESULTS

The following section details WSU EHS’ asbestos sampling and lead in painted coatings sampling results. Asbestos and lead sample locations are identified on figures 1 through 15.

3.1 Visual Inspection

Orton is a thirteen-story rectangular shaped structure constructed in 1964 with mechanical rooms at the penthouse level, first floor, and basement levels. The first floor houses a reception desk, hall-director apartment suite, mail room, general storage rooms and laundry facilities. A central passenger elevator provides service from the first floor to the twelfth floor.

The second through eleventh floors are constructed near identically with 25 dormitory rooms and a centrally located bathroom, shower, a laundry room, custodial closet and study lounge near the elevator lobby of each floor. Stairwells are located the north, south and center sections of each floor.
A twelfth floor houses two lounges at the north and south ends as well as storage rooms, custodial closets, and a hall director suite. The thirteenth floor mechanical space contains air handling equipment and a heat exchanger tank associated with the steam heating system.

The building interior is mainly finished with: 9-inch and 12-inch vinyl tile, concrete, carpet flooring, plaster walls, textured ceiling paint/coatings and 12-inch ceiling tiles. Asbestos-containing vinyl floor was removed during renovation and abatement projects on floors 2 through 11. The building’s exterior is finished with painted concrete, pebble-coated paneling, and exposed structural concrete columns.

3.2 Asbestos

Table 1 summarizes confirmed ACMs and assumed ACMs identified (bold font) during the survey.

Photographs referenced in the tables are provided in Appendix A. Quantities are estimated for order of magnitude information only and not intended for bidding purposes or fee estimates for construction or renovation projects.

Table 1 – ACMs and Assumed ACMs

<table>
<thead>
<tr>
<th>Material</th>
<th>Location(s) of ACM</th>
<th>Photo #</th>
<th>Approximate Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I – Thermal System Insulation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe insulation (muddled/plaster elbows and either magnesia block insulation or fiberglass straight pipe runs)</td>
<td>Steam and domestic water lines throughout building including tunnel access, radiator heating loops, and vertical plumbing pipe chases</td>
<td>1</td>
<td>2,500 LF, 500 EA (fittings)</td>
</tr>
<tr>
<td>Tank insulation</td>
<td>Mechanical room 1302 - gray heat exchanger tank</td>
<td>2</td>
<td>50 SF</td>
</tr>
<tr>
<td>Class I – Surfacing Materials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceiling texture – thin white paint coating on concrete deck (ridge-flat pattern)</td>
<td>119, 121N, 121S, 125, 127</td>
<td>3</td>
<td>2,500 SF</td>
</tr>
<tr>
<td>Ceiling texture - white lumpy pattern applied to gray plaster</td>
<td>2nd-11th floor student dormitory rooms: 218-242, 317-342, 418-442, 517-552, 618-652, 717-752, 818-852, 917-952, 1018-1052, 1117-1142 and 1226</td>
<td>4</td>
<td>40,000 SF</td>
</tr>
<tr>
<td>Ceiling texture - white thick fibrous applied to gray plaster</td>
<td>1st floor: 102, 102S, 102A, 102B, 107, 114 12th floor: 1215, 1217, 1219, 1219A</td>
<td>5</td>
<td>4,000 SF</td>
</tr>
</tbody>
</table>
Class II – Miscellaneous Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Location(s) of ACM</th>
<th>Approximate Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*Indicates material is under carpet</td>
<td>3,750 SF</td>
</tr>
<tr>
<td>9-inch orange with brown and white streak vinyl floor tile and associated black mastic</td>
<td>119 and 1210</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 SF</td>
</tr>
<tr>
<td>Tan-yellow pebble pattern sheet vinyl shelving with gray paper backing and yellow mastic</td>
<td>Janitor rooms: 119 and 1210</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 SF</td>
</tr>
<tr>
<td>Tan-yellow linoleum with brown adhesive (newer) and residual black mastic</td>
<td>113</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50 SF</td>
</tr>
<tr>
<td>Sink undercoat (all colors)</td>
<td>117, 209, 309, 409, 509, 609, 709, 809, 909, 1009, 1109, 1211</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 EA</td>
</tr>
<tr>
<td>Reflective heat shield paper in round lights (assumed)</td>
<td>12th floor corridors Note: All round light fixtures in Orton must be inspected to confirm presence of heat shield prior to disturbance</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 EA</td>
</tr>
<tr>
<td>Mirror mastic behind 2 ft. by 5.5 ft. mirrors (assumed)</td>
<td>Elevator lobbies and rooms: 200, 300, 400, 500, 600, 617T, 700, 718, 800, 817T, 900, 918, 1000, 1017T, 1100, 1118, 1200 and 1208 bathroom entrance</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>175 SF</td>
</tr>
<tr>
<td>White-gray cement asbestos board panels in wall sections and behind pebble-texture panels (assumed)</td>
<td>Lower wall panels at east and west facades</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 ft. by 4 ft. (36 EA) 2 ft. by 2 ft. (88 EA)</td>
</tr>
<tr>
<td>Yellow mastic under plastic wall panel (assumed)</td>
<td>102A (elevator lobby)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 ft. by 5 ft. (1 EA)</td>
</tr>
<tr>
<td>Fire rated doors (assumed)</td>
<td>Metal entrance doors and stairwell doors labeled with fire rating</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 EA</td>
</tr>
</tbody>
</table>

Table 2 – Materials That Contain <1% Asbestos

<table>
<thead>
<tr>
<th>Material</th>
<th>Location(s) of ACM</th>
<th>Photo #</th>
<th>Approximate Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown brittle mastic associated with green, brown and tan cove base system on plaster</td>
<td>Main hallways, corridors, and central areas throughout building</td>
<td>15</td>
<td>3,000 SF</td>
</tr>
</tbody>
</table>

Note: **Bold** indicates material that contains asbestos within description

Appendix B details asbestos survey sample numbers, material descriptions, sample locations and laboratory analytical results. Specific observations concerning ACMs are discussed below.
Thermal System Insulation
Magnesia-block type ACM pipe insulation (4-inch to 12-inch diameter) is located on steam and domestic water system piping that originates in the WSU steam tunnel which enters the building in mechanical rooms B-1 and B-2 and into mechanical rooms 165 and 165A as shown on figures 1 and 3. The larger diameter steam pipes transition into the smaller diameter wall-radiator loops on each floor by vertical plumbing chases located in the central portion of each floor (first through twelfth floors).

Ceiling Textures
Three styles of asbestos-containing ceiling texture were identified in Orton. A white thin painted texture applied to the concrete decking (ridge-flat pattern) was observed in rooms 119, 121N, 121S, 125, 127 on the first floor. The second ceiling texture consists of a white lumpy texture over a soft gray non-asbestos plaster layer. The texture is located in the student dormitory rooms on the 2nd through 11th floors and in a twelfth floor student lounge (room 1226). The third ceiling surfacing material consists of white thick fibrous texture over a soft gray non-asbestos plaster layer. The texture is located in rooms 102, 102S, 102A, 102B, 107, and 114 on the first floor and in rooms 1215, 1217, 1219, 1219A on the twelfth floor.

Floor Tile:
Asbestos-containing 9-inch floor tile was previously sampled on floors two through eleven for three renovation projects. The 9-inch ACM floor tile was abated in the student dormitory rooms and hallways. During the full building survey, carpeted rooms were checked for tile on floors 1, 10, 11, and 12. Storage rooms on the first and twelfth floors (rooms 121N, 1206, and 1215) have asbestos-containing floor tile and black mastic underneath carpet.

Roofing
AI Central collected five roofing samples in February 2010 and attached in Appendix E of this report. Three of the five samples contain asbestos black felt and asphaltic materials beneath the top layer. The ACM roof was reportedly abated and replaced with a new rubber EPDM membrane roof that was observed on all roofing fields during this survey.

3.3 Lead Paints and Coatings
Appendix C details lead paint/coatings sample numbers, descriptions, sample locations, and lead paint chip results collected during the survey. The samples from the white and tan plaster ceiling and walls (samples collected in 111 and 127) and the white concrete wall (sample collected at exterior east wall) contain a detectable quantity of lead. The tan and white coatings applied to plaster walls and ceilings throughout Orton and the exterior structural concrete walls are considered lead-containing paints.

4 CONCLUSIONS
A copy of this report must be provided to any entity bidding on work at Orton Hall. A copy of this report must also be on site during any demolition, renovation and/or construction activities.

4.1 Asbestos-containing Materials
Regulated ACMs are identified in Table 1. Construction, renovation and maintenance activities involving the disturbance or removal of ACM must be conducted in accordance with WAC 296-62-077. Asbestos abatement must be performed by a Washington State licensed asbestos abatement contractor.

Materials that contain <1% asbestos
Although not regulated under the asbestos rule as an asbestos project, disturbing materials with <1% asbestos require the use of basic asbestos work practices outlined in WAC 296-62-017712(2); asbestos awareness training for workers outlined in WAC 296-62-07722(5); and use of respiratory protection in the absence of a negative exposure assessment to comply with the permissible exposure limit (PEL). A competent person must also be assigned and trained under the requirements of WAC 296-62-07728.

Contractors should use caution during construction even after asbestos abatement activities, as concealed ACM that has not previously been evaluated for asbestos may be encountered. Inaccessible
concealed spaces (e.g., wall and ceiling spaces enclosed by wallboard, internal components of energized systems etc. that have not been surveyed for ACM, and should be presumed to contain asbestos until destructive sampling is performed in those areas.

4.2 Lead-containing Paints/Coatings
Materials that have been shown to contain detectable levels of lead are regulated due to the potential for occupational exposure to lead if these materials are disturbed. Projects that may disturb lead require employers to evaluate worker/project personnel exposure to lead and prevent exposure above the permissible exposure limit (PEL).
ACM Key

- Pipe insulation (4-inch to 12-inch) and domestic water lines (hard mag-type with mudded fittings along walls).

Legend
P-## = Asbestos sample location (red)
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases and in radiator heating loop.
2. Tan-yellow pebble pattern countertop with yellow adhesive and gray backing in room 119.
3. Sink undercoat in laundry rooms throughout building.
4. Metal entrance and stairwell doors labeled with fire rating (assumed).
5. Mirror mastic behind 2 ft. by 5.5 ft. mirror in lobby (assumed).
6. Yellow mastic under plastic wall panel in room 102A.

<table>
<thead>
<tr>
<th>ACM Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceiling texture: white thick fibrous over gray plaster in offices, lobby and corridors</td>
</tr>
<tr>
<td>Ceiling texture: thin white paint coating on concrete decking (ridge-flat pattern)</td>
</tr>
<tr>
<td>9-inch asbestos vinyl tile under carpet</td>
</tr>
<tr>
<td>9-inch white and gray streak vinyl tile and associated black mastic</td>
</tr>
<tr>
<td>9-inch light orange with brown and white streak vinyl tile and associated black mastic</td>
</tr>
<tr>
<td>Tan-yellow linoleum with brown adhesive, paper backing, and black mastic</td>
</tr>
</tbody>
</table>
Figure 4

Second Floor – Sample and ACM Locations

Additional ACMs/Assumed ACMs:

1. Pipe insulation in vertical plumbing pipe chases (211A, 212A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 200 and 217T (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key

- **Ceiling texture: white lumpy pattern** applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (311A, 312A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 300 (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (411A, 412A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 400 and 417T (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Figure 7

Fifth Floor – Sample and ACM Locations

Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (511A, 512A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 500 (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key

- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (611A, 612A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 600 and 617T (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key

Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (711A, 712A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 700 and 718 (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms

Not to scale
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (811A, 812A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 800 and 817T (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (911A, 912A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 900 and 918 (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (1011A, 1012A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 1000 and 1017T (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases (1111A, 1112A) and in radiator heating loop.
2. Sink undercoat in laundry rooms throughout building.
3. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 1100 and 1118 (assumed).
4. Metal entrance and stairwell doors labeled with fire rating (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
Additional ACMs/Assumed ACMs:
1. Pipe insulation in vertical plumbing pipe chases and in radiator heating loop.
2. Tan-yellow pebble pattern countertop with yellow adhesive and gray backing in room 1210.
3. Sink undercoat in room 1211.
4. Mirror mastic behind 2 ft. by 5.5 ft. mirror at 1200 and 1208 (assumed).
5. Metal entrance and stairwell doors labeled with fire rating (assumed).
6. Reflective heat shield paper in round lights in 1200 corridors (assumed).

ACM Key
- Ceiling texture: white lumpy pattern applied to gray plaster in dormitory rooms
- Ceiling texture: white thick fibrous over gray plaster in lounge and storage rooms
- 9-inch asbestos vinyl tile under carpet
- 9-inch white and gray streak vinyl tile and associated black mastic
- 9-inch light orange with brown and white streak vinyl tile and associated black mastic
ACM Key

- Pipe insulation (4-inch to 12-inch) and domestic water lines (hard mag-type with mudded fittings along walls).

Legend
- P-## = Asbestos sample location (red)
APPENDIX A
Photographic Log
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Room 127</td>
<td>Pipe insulation (mudded/plaster elbows and either magnesia block insulation or fiberglass straight pipe runs).</td>
</tr>
<tr>
<td>2</td>
<td>Mechanical room 1302</td>
<td>Tank insulation on gray heat exchanger.</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>3</td>
<td>Room 121N.</td>
<td>Ceiling texture– thin white paint coating on concrete deck (ridge-flat pattern).</td>
</tr>
<tr>
<td>4</td>
<td>Lounge 1226</td>
<td>Ceiling texture - white lumpy pattern applied to gray plaster.</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Lobby 102</td>
<td>Ceiling texture - white thick fibrous applied to gray plaster.</td>
</tr>
<tr>
<td>6</td>
<td>107 corridor</td>
<td>9-inch gray-white vinyl floor tile and associated black mastic. The 9-inch tile is also under carpet in some rooms.</td>
</tr>
<tr>
<td>Photo No. 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Location:</td>
<td>Room 1210</td>
<td></td>
</tr>
<tr>
<td>Description:</td>
<td>9-inch orange with brown and white streak vinyl floor tile and associated black mastic.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo No. 8</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
<td>Room 119</td>
</tr>
<tr>
<td>Description:</td>
<td>Tan-yellow pebble pattern sheet vinyl countertops and shelves with gray paper backing and yellow mastic</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location: Room 113</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>Photo No. 9</td>
<td>Description: Tan-yellow linoleum with brown adhesive and residual black mastic.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location: Laundry room 309</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. 10</td>
<td>Description: Black sink undercoat</td>
</tr>
</tbody>
</table>
PHOTOGRAPHIC LOG

Good Faith Survey
Orton Hall
Date: May 2020

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Corridor 1200.</td>
<td>Reflective heat shield paper in round lights (assumed).</td>
</tr>
<tr>
<td>12</td>
<td>200 elevator.</td>
<td>Mirror mastic behind 2 ft. by 5.5 ft. mirrors (assumed).</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location: Exterior west end.</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Description: White-gray cement board panels in wall sections and behind pebble-texture panels (assumed).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location: 102A elevator.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Description: Yellow mastic under plastic wall panel (assumed).</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Location:</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>15</td>
<td>Room 1017T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Location:</th>
<th>Description:</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Corridor 449</td>
<td>Dorm room corridors have been refinished since original construction. ACM 9-inch floor tiles were removed and replaced with carpeting shown.</td>
</tr>
</tbody>
</table>
APPENDIX B
Table Summary of Asbestos Sampling and Analytical Results
<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Build. #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM ?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>119</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>Sample PC-01-D contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>PC-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>121N</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>Sample PC-01-D contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>PC-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>127</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>Sample PC-01-D contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>PC-01-D</td>
<td>Orton</td>
<td>0087</td>
<td>121S</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>-</td>
<td>2% CHR</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>PC-01-E</td>
<td>Orton</td>
<td>0087</td>
<td>125</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>Sample PC-01-D contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>PC-01-F</td>
<td>Orton</td>
<td>0087</td>
<td>125</td>
<td>Ceiling texture</td>
<td>White-tan thin paint coating (ridge-flat pattern)</td>
<td>Surf.</td>
<td>2,500</td>
<td>SF</td>
<td>Sample PC-01-D contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>119, 121N, 121S, 125, 127</td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Build. #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------</td>
<td>----------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>RTHTEXT-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>107 North end</td>
<td>Ceiling texture</td>
<td>White thick fibrous ceiling texture</td>
<td>Surf.</td>
<td>4,000</td>
<td>SF</td>
<td>Plaster base</td>
<td>4% CHR</td>
<td>Yes</td>
<td>1st floor: 102, 102S, 102A, 102B, 107, 114 12th floor: 1215, 1217, 1219, 1219A</td>
</tr>
<tr>
<td>RTHTEXT-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>102S South end</td>
<td>Ceiling texture</td>
<td>White thick fibrous ceiling texture</td>
<td>Surf.</td>
<td>4,000</td>
<td>SF</td>
<td>Plaster base</td>
<td>5% CHR</td>
<td>Yes</td>
<td>1st floor: 102, 102S, 102A, 102B, 107, 114 12th floor: 1215, 1217, 1219, 1219A</td>
</tr>
<tr>
<td>RTHTEXT-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>1219</td>
<td>Ceiling texture</td>
<td>White thick fibrous ceiling texture</td>
<td>Surf.</td>
<td>4,000</td>
<td>SF</td>
<td>Plaster base</td>
<td>8% CHR</td>
<td>Yes</td>
<td>1st floor: 102, 102S, 102A, 102B, 107, 114 12th floor: 1215, 1217, 1219, 1219A</td>
</tr>
</tbody>
</table>
| 12CT-01-A | Orton | 0087 | 1210 | Ceiling tile | Layer 1: 12-inch white fibrous multi small dot ceiling tile
Layer 2: Brown hard puck mastic | Misc. | - | SF | - | Layer 1: ND
Layer 2: ND | No | 2nd – 11th floors hallways and 12th floor |
| 12CT-01-B | Orton | 0087 | 407 | Ceiling tile | Layer 1: 12-inch white fibrous multi small dot ceiling tile
Layer 2: Brown hard puck mastic | Misc. | - | SF | - | Layer 1: ND
Layer 2: ND | No | 2nd – 11th floors hallways and 12th floor |
| YTLN-01-A | Orton | 0087 | 113 | Linoleum flooring | Layer 1: Tan-yellow linoleum
Layer 2: Brown adhesive
Layer 3: Paper backing and black mastic | Misc. | 50 | SF | Residual black mastic | Layer 1: ND
Layer 2: ND
Layer 3: 2% CHR | Yes | 113 |
| CPTMY-01-A | Orton | 0087 | 125 | Carpet mastic | Yellow soft mastic | Misc. | SF | - | ND | No | Carpeted rooms: 1st – 12th floors |
| CPTMY-01-B | Orton | 0087 | 1142 | Carpet mastic | Yellow soft mastic | Misc. | SF | - | ND | No | Carpeted rooms: 1st – 12th floors |

FLOORING FINISHES
<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Build. #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>12VFT-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>@ 811</td>
<td>Vinyl floor tile</td>
<td>Layer 1: 12-inch light gray with tan vinyl floor tile</td>
<td>Misc.</td>
<td>SF</td>
<td>-</td>
<td></td>
<td>Layer 1: ND</td>
<td>No</td>
<td>2nd – 11th floors: Central area hallways</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Yellow mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: White mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: Gray float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: ND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THERMAL SYSTEM INSULATION

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Build. #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSI-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>1302</td>
<td>Heat exchanger</td>
<td>White-gray fibrous insulation</td>
<td>TSI</td>
<td>50</td>
<td>SF</td>
<td>End of tank</td>
<td>23% CHR</td>
<td>Yes</td>
<td>1302: Mechanical room</td>
</tr>
<tr>
<td>TSI-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>1302</td>
<td>Heat exchanger</td>
<td>White-gray fibrous insulation</td>
<td>TSI</td>
<td>50</td>
<td>SF</td>
<td>Top of tank</td>
<td>27% CHR</td>
<td>Yes</td>
<td>1302: Mechanical room</td>
</tr>
</tbody>
</table>

WALL FINISHES

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Build. #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM?</th>
<th>Homogenous Material Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAS-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>1215</td>
<td>Plaster system</td>
<td>Layer 1: White skim coat</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>109</td>
<td>Plaster system</td>
<td>Layer 1: White skim coat</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Tan mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>165A</td>
<td>Plaster system</td>
<td>Layer 1: White skim coat</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-D</td>
<td>Orton</td>
<td>0087</td>
<td>926</td>
<td>Plaster system</td>
<td>Layer 1: Tan soft mastic</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Brown mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: White skim coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-E</td>
<td>Orton</td>
<td>0087</td>
<td>812</td>
<td>Plaster system</td>
<td>Layer 1: White skim coat</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-F</td>
<td>Orton</td>
<td>0087</td>
<td>@641</td>
<td>Plaster system</td>
<td>Layer 1: Tan soft mastic</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: White skim coat and scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLAS-01-G</td>
<td>Orton</td>
<td>0087</td>
<td>501</td>
<td>Plaster system</td>
<td>Layer 1: Brown mastic</td>
<td>Surf.</td>
<td>40,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Dominant wall system throughout the building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: White skim coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPPLAS-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>900@ elevator</td>
<td>Plaster system</td>
<td>Layer 1: Tan mastic</td>
<td>Surf.</td>
<td>30,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Lobbies, student dormitory rooms, and lounges throughout building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Tan-yellow burlap</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: White mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: White skim coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 5: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 5: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPPLAS-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>1031</td>
<td>Plaster system</td>
<td>Layer 1: White wallpaper and tan mastic</td>
<td>Surf.</td>
<td>30,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Lobbies, student dormitory rooms, and lounges throughout building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: White skim coat and gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPPLAS-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>1226</td>
<td>Plaster system</td>
<td>Layer 1: Blue wallpaper with yellow mastic</td>
<td>Surf.</td>
<td>30,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Lobbies, student dormitory rooms, and lounges throughout building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: Brown mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: White skim coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WPPLAS-01-D</td>
<td>Orton</td>
<td>0087</td>
<td>609</td>
<td>Plaster system</td>
<td>Layer 1: Tan mastic</td>
<td>Surf.</td>
<td>30,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND</td>
<td>No</td>
<td>Lobbies, student dormitory rooms, and lounges throughout building</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: White wallpaper</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 2: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: White skim coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 3: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: Gray scratch coat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Layer 4: ND</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Build. #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>WPPLAS-01-E</td>
<td>Orton</td>
<td>0087</td>
<td>224</td>
<td>Plaster system</td>
<td>Layer 1: White wallpaper
Layer 2: Tan mastic
Layer 3: White skim coat
Layer 4: Gray scratch coat</td>
<td>Surf.</td>
<td>30,000</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: ND
Layer 3: ND
Layer 4: ND</td>
<td>No</td>
<td>Lobbies, student dormitory rooms, and lounges throughout building</td>
</tr>
<tr>
<td>4GRECB-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>@ 1140</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch green cove base
Layer 2: Tan soft mastic
Layer 3: Brown brittle mastic
Layer 4: Yellow mastic
Layer 5: Gray plaster</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: ND
Layer 3: < 1% ANTH
Layer 4: ND
Layer 5: ND</td>
<td>No</td>
<td>Hallways: 2nd through 11th floors</td>
</tr>
<tr>
<td>4BRCB-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>121S</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch brown cove base
Layer 2: Brown brittle mastic
Layer 3: White skim coat</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: < 1% ANTH
Layer 3: ND</td>
<td>No</td>
<td>No
1st floor, 2nd-11th floors central rooms, 12th floor</td>
</tr>
<tr>
<td>4BRCB-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>812</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch brown cove base
Layer 2: Brown brittle mastic
Layer 3: White skim coat</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: < 1% ANTH
Layer 3: ND</td>
<td>No</td>
<td>No
1st floor, 2nd-11th floors central rooms, 12th floor</td>
</tr>
<tr>
<td>4BLCB-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>926 @ door</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch black cove base
Layer 2: Brown brittle mastic
Layer 3: Tan soft mastic</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: ND
Layer 3: ND
Layer 4: ND</td>
<td>No</td>
<td>No
1st floor and 2nd-11th floor student dormitory rooms</td>
</tr>
<tr>
<td>4TCB-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>1226</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch tan cove base
Layer 2: Brown brittle mastic
Layer 3: Gray plaster</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: < 1% ANTH
Layer 3: ND</td>
<td>No</td>
<td>No
12th floor</td>
</tr>
<tr>
<td>4GRCB-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>102S</td>
<td>Cove base system</td>
<td>Layer 1: 4-inch gray cove base with mastic
Layer 2: White skim coat</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: ND
Layer 3: ND
Layer 4: ND</td>
<td>No</td>
<td>No
1st floor</td>
</tr>
<tr>
<td>4TCERT-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Ceramic tile system</td>
<td>Layer 1: Tan ceramic tile
Layer 2: White caulk
Layer 3: Gray plaster
Layer 4: Gray mortar</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>Layer 1: ND
Layer 2: ND
Layer 3: ND
Layer 4: ND</td>
<td>No</td>
<td>No
123 and bathrooms</td>
</tr>
<tr>
<td>MISCELLANEOUS FINISHES</td>
<td></td>
</tr>
<tr>
<td>SU-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>809</td>
<td>Sink undercoat</td>
<td>White sink undercoat</td>
<td>Misc.</td>
<td>13</td>
<td>EA</td>
<td>Sample SU-01-B contains 2% CHR</td>
<td>ND</td>
<td>Yes</td>
<td>117, 209, 309, 409, 509, 609, 709, 809, 909, 1009, 1109, 1211</td>
</tr>
<tr>
<td>SU-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>1211</td>
<td>Sink undercoat</td>
<td>Black sink undercoat</td>
<td>Misc.</td>
<td>13</td>
<td>EA</td>
<td>-</td>
<td>2% CHR</td>
<td>Yes</td>
<td>117, 209, 309, 409, 509, 609, 709, 809, 909, 1009, 1109, 1211</td>
</tr>
<tr>
<td>HVM-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>1302</td>
<td>Mastic</td>
<td>Layer 1: Yellow foam insulation
Layer 2: Black mastic</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>HVAC system: unit #1</td>
<td>Layer 1: ND
Layer 2: ND</td>
<td>No</td>
<td>1302: Mechanical room</td>
</tr>
<tr>
<td>Sample #</td>
<td>Building Name</td>
<td>Build. #</td>
<td>Sample Location</td>
<td>Material</td>
<td>Material Description/color</td>
<td>Type</td>
<td>Quantity</td>
<td>Quantity Descriptor</td>
<td>Comments</td>
<td>Sample Results</td>
<td>ACM ?</td>
<td>Homogenous Material Location</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------------------</td>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>HVM-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>1302 north</td>
<td>Mastic</td>
<td>Yellow foam insulation, mastic and foil</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>HVAC system: unit #2</td>
<td>ND</td>
<td>No</td>
<td>1302: Mechanical room</td>
</tr>
<tr>
<td>TFC-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>119</td>
<td>Duct connector</td>
<td>Tan-gray woven fabric and paint</td>
<td>Misc.</td>
<td>-</td>
<td>SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
<td>HVAC/diffusers throughout building</td>
</tr>
<tr>
<td>VCT-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>119</td>
<td>Vinyl counter tops</td>
<td>Layer 1: Tan-yellow pebble pattern vinyl Layer 2: Yellow adhesive and gray backing</td>
<td>Misc.</td>
<td>150</td>
<td>SF</td>
<td>Countertop shelving Layer 1: ND Layer 2: 36% CHR</td>
<td>Yes</td>
<td>119 and 1210</td>
<td></td>
</tr>
</tbody>
</table>

PREVIOUS SAMPLING: WSU EH&S JANUARY 2017 AND NOVEMBER 2018

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Build. #</th>
<th>Sample Location</th>
<th>Material</th>
<th>Material Description/color</th>
<th>Type</th>
<th>Quantity</th>
<th>Quantity Descriptor</th>
<th>Comments</th>
<th>Sample Results</th>
<th>ACM ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>*PLAS-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Plaster system</td>
<td>White skim coat with gray scratch coat</td>
<td>Surf.</td>
<td>50</td>
<td>SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
</tr>
<tr>
<td>*PLAS-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Plaster system</td>
<td>White skim coat with gray scratch coat</td>
<td>Surf.</td>
<td>50</td>
<td>SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
</tr>
<tr>
<td>*PLAS-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Plaster system</td>
<td>White skim coat with gray scratch coat</td>
<td>Surf.</td>
<td>50</td>
<td>SF</td>
<td>-</td>
<td>ND</td>
<td>No</td>
</tr>
<tr>
<td>CT-01-A</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Ceramic tile system</td>
<td>Layer 1: Tan ceramic tile Layer 2: Gray scratch coat Layer 3: White caulk Layer 4: Yellow mastic</td>
<td>Misc.</td>
<td>50</td>
<td>SF</td>
<td>South wall Layer 1: ND Layer 2: ND Layer 3: ND Layer 4: 5% CHR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CT-01-B</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Ceramic tile system</td>
<td>Layer 1: Tan ceramic tile Layer 2: Gray scratch coat Layer 3: White caulk Layer 4: Yellow mastic</td>
<td>Misc.</td>
<td>50</td>
<td>SF</td>
<td>South wall Layer 1: ND Layer 2: ND Layer 3: ND Layer 4: 5% CHR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>CT-01-C</td>
<td>Orton</td>
<td>0087</td>
<td>123</td>
<td>Ceramic tile system</td>
<td>Layer 1: Tan ceramic tile Layer 2: Gray scratch coat Layer 3: White caulk Layer 4: Yellow mastic</td>
<td>Misc.</td>
<td>50</td>
<td>SF</td>
<td>South wall Layer 1: ND Layer 2: ND Layer 3: ND Layer 4: 5% CHR</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>P03955</td>
<td>Orton</td>
<td>0087</td>
<td>102</td>
<td>Ceiling texture</td>
<td>White ceiling texture</td>
<td>Surf.</td>
<td>500</td>
<td>SF</td>
<td>-</td>
<td>4% CHR</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:
- CHR = Chrysotile asbestos
- AMO = Amosite asbestos
- ANTH = Anthophyllite asbestos
- NA = Not Analyzed
- ND = Asbestos was not detected in sample
- SF = Square feet
- EA = Each
- LF = Linear feet
- Misc. = Miscellaneous material
- Surf. = Surfacing material
- TSI = Thermal systems insulation
- ACM = Asbestos-containing material
- Bold = Sample contains asbestos
APPENDIX C
Table Summary of Lead Paint Sampling
TABLE SUMMARY OF LEAD PAINT SAMPLING
ORTON HALL

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Building Name</th>
<th>Building #</th>
<th>Sample Location (Room #)</th>
<th>Paint Color</th>
<th>Substrate</th>
<th>Component</th>
<th>Results (mg/kg)</th>
<th>Reporting limit (mg/kg)</th>
<th>Lead-containing</th>
</tr>
</thead>
<tbody>
<tr>
<td>PB-01</td>
<td>Orton</td>
<td>0087</td>
<td>401S stairwell</td>
<td>White</td>
<td>Metal</td>
<td>Door frame</td>
<td>< 180</td>
<td>180</td>
<td>No</td>
</tr>
<tr>
<td>PB-02</td>
<td>Orton</td>
<td>0087</td>
<td>755 stairwell</td>
<td>White</td>
<td>Concrete</td>
<td>Wall</td>
<td>< 73</td>
<td>73</td>
<td>No</td>
</tr>
<tr>
<td>PB-03</td>
<td>Orton</td>
<td>0087</td>
<td>111</td>
<td>White-cream</td>
<td>Plaster</td>
<td>Ceiling</td>
<td>680</td>
<td>48</td>
<td>Yes</td>
</tr>
<tr>
<td>PB-04</td>
<td>Orton</td>
<td>0087</td>
<td>127</td>
<td>Tan</td>
<td>Plaster</td>
<td>Wall</td>
<td>850</td>
<td>48</td>
<td>Yes</td>
</tr>
<tr>
<td>PB-05</td>
<td>Orton</td>
<td>0087</td>
<td>Exterior west</td>
<td>White-cream</td>
<td>Concrete</td>
<td>Wall</td>
<td>< 190</td>
<td>190</td>
<td>No</td>
</tr>
<tr>
<td>PB-06</td>
<td>Orton</td>
<td>0087</td>
<td>Exterior east</td>
<td>White-cream</td>
<td>Concrete</td>
<td>Wall</td>
<td>100</td>
<td>49</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Results by EPA Method SW 846-3051 analysis are reported in mg/kg lead
APPENDIX D
Asbestos and Lead Chain-of-Custody Forms and Laboratory Analytical Results
May 13, 2020

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 2007998.00

Client Project: 6543-7358
Location: Orton Hall

Dear Mr. McKibbin,

Enclosed please find test results for the 23 sample(s) submitted to our laboratory for analysis on 5/5/2020.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results
Lab ID: 20059501
Client Sample #: PC-01-A

<table>
<thead>
<tr>
<th>Location:</th>
<th>Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: Thin white crumbly material</td>
</tr>
<tr>
<td>Non-Fibrous Materials: Paint/Binder, Fine particles</td>
<td>Other Fibrous Materials:% None Detected ND</td>
</tr>
<tr>
<td>Asbestos Type: % None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059502
Client Sample #: PC-01-B

<table>
<thead>
<tr>
<th>Location:</th>
<th>Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: Thin white crumbly material</td>
</tr>
<tr>
<td>Non-Fibrous Materials: Paint/Binder, Fine particles</td>
<td>Other Fibrous Materials:% None Detected ND</td>
</tr>
<tr>
<td>Asbestos Type: % None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059503
Client Sample #: PC-01-C

<table>
<thead>
<tr>
<th>Location:</th>
<th>Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White brittle material with paint</td>
</tr>
<tr>
<td>Non-Fibrous Materials: Binder/Filler, Fine particles, Paint</td>
<td>Other Fibrous Materials:% None Detected ND</td>
</tr>
<tr>
<td>Asbestos Type: % None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059504
Client Sample #: PC-01-D

<table>
<thead>
<tr>
<th>Location:</th>
<th>Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: Trace amount of white compacted powdery material with paint</td>
</tr>
<tr>
<td>Non-Fibrous Materials: Binder/Filler, Fine grains, Fine particles</td>
<td>Other Fibrous Materials:% None Detected ND</td>
</tr>
<tr>
<td>Asbestos Type: % Chrysotile 2%</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059505
Client Sample #: PC-01-E

| Location: | Orton Hall |

Sampled by: Client
Analyzed by: Akane Yoshikawa
Reviewed by: Matt Macfarlane

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 1 of 1
Description: White brittle material with paint
Non-Fibrous Materials:
- Binder/Filler, Fine grains, Fine particles
Other Fibrous Materials:
- None Detected
Asbestos Type:
- ND

<table>
<thead>
<tr>
<th>Lab ID: 20059506</th>
<th>Client Sample #: RTHTEXT-01-A</th>
<th>Location: Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White lumpy material with paint</td>
<td></td>
</tr>
</tbody>
</table>
| **Non-Fibrous Materials:**
- Binder/Filler, Fine grains, Fine particles | **Non-Fibrous Materials:**
- Paint | **Asbestos Type:**
- Chrysotile 4% |

<table>
<thead>
<tr>
<th>Lab ID: 20059507</th>
<th>Client Sample #: RTHTEXT-01-B</th>
<th>Location: Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White lumpy material with paint</td>
<td></td>
</tr>
</tbody>
</table>
| **Non-Fibrous Materials:**
- Binder/Filler, Fine grains, Fine particles | **Non-Fibrous Materials:**
- Glass fibers | **Asbestos Type:**
- Chrysotile 5% |

<table>
<thead>
<tr>
<th>Lab ID: 20059508</th>
<th>Client Sample #: RTHTEXT-01-C</th>
<th>Location: Orton Hall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White lumpy material with paint</td>
<td></td>
</tr>
</tbody>
</table>
| **Non-Fibrous Materials:**
- Binder/Filler, Fine grains, Fine particles | **Non-Fibrous Materials:**
- Glass fibers | **Asbestos Type:**
- Chrysotile 8% |

<table>
<thead>
<tr>
<th>Lab ID: 20059509</th>
<th>Client Sample #: 12CT-01-A</th>
<th>Location: Orton Hall</th>
</tr>
</thead>
</table>

Sampled by: Client
Analyzed by: Akane Yoshikawa
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

ASB-02
Lab ID: 20059510
Client Sample #: 12CT-01-B
Location: Orton Hall

| Layer 1 of 2 | Description: Off-white fibrous material with paint
Non-Fibrous Materials: | Other Fibrous Materials:%
Binder/Filler, Glass beads, Paint | Glass fibers 93%
Asbestos Type: %
None Detected ND |
| Layer 2 of 2 | Description: Brown brittle mastic
Non-Fibrous Materials: | Other Fibrous Materials:%
Mastic/Binder, Fine particles | Glass fibers 3%
Asbestos Type: %
None Detected ND |

Lab ID: 20059511
Client Sample #: YTLN-01-A
Location: Orton Hall

| Layer 1 of 3 | Description: Beige/yellow vinyl
Non-Fibrous Materials: | Other Fibrous Materials:%
Vinyl/Binder, Fine particles | None Detected ND |
| Layer 2 of 3 | Description: White fibrous material with yellow adhesive
Non-Fibrous Materials: | Other Fibrous Materials:%
Binder/Filler, Fine grains, Fine particles | Cellulose 39%
Asbestos Type: %
None Detected ND |

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 3 of 3

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trace amount of black asphaltic mastic</td>
<td>Asphalt/Binder, Fine grains, Fine particles</td>
<td>Cellulose</td>
<td>4%</td>
</tr>
</tbody>
</table>

Lab ID: 20059512
Client Sample #: CPTMY-01-A
Location: Orton Hall

Layer 1 of 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow soft adhesive</td>
<td>Adhesive/Binder, Fine particles</td>
<td>Cellulose</td>
<td>2%</td>
</tr>
</tbody>
</table>

Lab ID: 20059513
Client Sample #: CPTMY-01-B
Location: Orton Hall

Comments: Unable to separate mastics for analysis.

Layer 1 of 1

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown brittle mastic with yellow soft mastic</td>
<td>Mastic/Binder, Fine grains, Fine particles</td>
<td>Cellulose</td>
<td>2%</td>
</tr>
</tbody>
</table>

Lab ID: 20059514
Client Sample #: 12VFT-01-A
Location: Orton Hall

Layer 1 of 4

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray vinyl tile</td>
<td>Vinyl/Binder, Fine grains, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 2 of 4

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow soft mastic</td>
<td>Mastic/Binder, Fine grains, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 3 of 4

<table>
<thead>
<tr>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>White soft material</td>
<td>Binder/Filler, Fine grains, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Akane Yoshikawa
Reviewed by: Matt Macfarlane

Date: 05/12/2020
Date: 05/13/2020

Matt Macfarlane, Asbestos Lab Supervisor
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Samples Received: 23
Date Received: 5/5/2020
Samples Analyzed: 23
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Layer 4 of 4
Description: Thin gray crumbly material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine grains, Fine particles Cellulose <1%
Asbestos Type: % None Detected ND

Lab ID: 20059515
Client Sample #: SV-01-A
Location: Orton Hall

Layer 1 of 1
Description: Gray flaky material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine grains, Fine particles None Detected ND
Asbestos Type: % None Detected ND

Lab ID: 20059516
Client Sample #: SV-01-B
Location: Orton Hall

Layer 1 of 1
Description: Black asphaltic flaky material
Non-Fibrous Materials: Other Fibrous Materials:%
Asphalt/Binder, Fine grains, Fine particles None Detected ND
Asbestos Type: % None Detected ND

Lab ID: 20059517
Client Sample #: HVM-01-A
Location: Orton Hall

Layer 1 of 2
Description: Yellow fibrous material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler Glass fibers 96%
Asbestos Type: % None Detected ND
Layer 2 of 2
Description: Black asphaltic fibrous material
Non-Fibrous Materials: Other Fibrous Materials:%
Asphalt/Binder, Fine particles Glass fibers 29%
Asbestos Type: % None Detected ND

Lab ID: 20059518
Client Sample #: HVM-01-B
Location: Orton Hall

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Akane Yoshikawa
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Matt Macfarlane, Asbestos Lab Supervisor

ASB-02

page 6 of 23
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Batch #: 2007998.00
Client Project #: 6543-7358
Date Received: 5/5/2020
Samples Received: 23
Samples Analyzed: 23
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black asphaltic fibrous material with silver foil</td>
<td>Asphalt/Binder, Fine particles, Metal foil</td>
<td>Glass fibers 23%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 20059519
Client Sample #: TFC-01-A
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer 1 of 1</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Black rubbery material embedded with white fibrous mesh and paint</td>
<td>Binder/Filler, Fine particles, Paint</td>
<td>Glass fibers 18%</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Lab ID: 20059520
Client Sample #: VCT-01-A
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beige vinyl</td>
<td>Vinyl/Binder, Fine grains, Fine particles</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
<tr>
<td>Layer 2 of 2</td>
<td>Description</td>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Asbestos Type:</td>
</tr>
<tr>
<td></td>
<td>White fibrous material with yellow mastic</td>
<td>Binder/Filler, Fine grains, Fine particles</td>
<td>None Detected ND</td>
<td>Chrysotile 36%</td>
</tr>
</tbody>
</table>

Lab ID: 20059521
**Client Sample #: **HB-01-A
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Asbestos Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gray brittle material</td>
<td>Binder/Filler, Fine grains, Fine particles</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
<tr>
<td>Layer 2 of 2</td>
<td>Description</td>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Asbestos Type:</td>
</tr>
<tr>
<td></td>
<td>Clear soft material</td>
<td>Binder/Filler, Fine particles</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Akane Yoshikawa
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

ASB-02
<table>
<thead>
<tr>
<th>Lab ID: 20059522</th>
<th>Client Sample #: TSI-01-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White flaky material</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Binder/Filler, Glass beads, Fine grains</td>
<td>Glass fibers 12%</td>
</tr>
<tr>
<td>Fine particles</td>
<td>Cellulose 8%</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>Chrysotile 23%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: 20059523</th>
<th>Client Sample #: TSI-01-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1 of 1</td>
<td>Description: White flaky material</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
</tr>
<tr>
<td>Binder/Filler, Glass beads, Fine grains</td>
<td>Glass fibers 14%</td>
</tr>
<tr>
<td>Fine particles</td>
<td>Cellulose 4%</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td>Chrysotile 27%</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Company: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311

NVL Batch Number: 2007998.00
TAT: 5 Days
AH: No
Due Date: 5/12/2020
Time: 4:00 PM
Fax: (509) 730-5548
Email: mrmckibbin@wsu.edu

Project Name/Number: 6543-7358
Project Location: Orton Hall

Subcategory: PLM Bulk
Item Code: ASB-02
**EPA 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples: 23

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20059501</td>
<td>PC-01-A</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>20059502</td>
<td>PC-01-B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>20059503</td>
<td>PC-01-C</td>
<td>A</td>
</tr>
<tr>
<td>4</td>
<td>20059504</td>
<td>PC-01-D</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>20059505</td>
<td>PC-01-E</td>
<td>A</td>
</tr>
<tr>
<td>6</td>
<td>20059506</td>
<td>RTHTEXT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>7</td>
<td>20059507</td>
<td>RTHTEXT-01-B</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>20059508</td>
<td>RTHTEXT-01-C</td>
<td>A</td>
</tr>
<tr>
<td>9</td>
<td>20059509</td>
<td>12CT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>20059510</td>
<td>12CT-01-B</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>20059511</td>
<td>YTLN-01-A</td>
<td>A</td>
</tr>
<tr>
<td>12</td>
<td>20059512</td>
<td>CPTMY-01-A</td>
<td>A</td>
</tr>
<tr>
<td>13</td>
<td>20059513</td>
<td>CPTMY-01-B</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>20059514</td>
<td>12VFT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>15</td>
<td>20059515</td>
<td>SV-01-A</td>
<td>A</td>
</tr>
<tr>
<td>16</td>
<td>20059516</td>
<td>SV-01-B</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>20059517</td>
<td>HVM-01-A</td>
<td>A</td>
</tr>
<tr>
<td>18</td>
<td>20059518</td>
<td>HVM-01-B</td>
<td>A</td>
</tr>
</tbody>
</table>

Print Name:
Signature:
Company:
Date:
Time:

Sampled by: Client
Relinquished by: Federal Express

Office Use Only:
Print Name:
Signature:
Company:
Date:
Time:

Received by: Fatima Khan
Company: NVL
Date: 5/5/20
Time: 1600

Analyzed by: Akane Yoshikawa
Company: NVL
Date: 5/12/20

Date: 5/5/2020
Time: 4:17 PM
Entered By: Fatima Khan
Project Name/Number: 6543-7358 \hspace{1cm} **Project Location:** Orton Hall

Subcategory: PLM Bulk
Item Code: ASB-02
EPA 600/R-93-116 Asbestos by PLM <bulk>

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>20059519</td>
<td>TFC-01-A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20059520</td>
<td>VCT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>20059521</td>
<td>HB-01-A</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>20059522</td>
<td>TSI-01-A</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>20059523</td>
<td>TSI-01-B</td>
<td>A</td>
</tr>
</tbody>
</table>

Total Number of Samples: 23
Rush Samples: No

Print Name: Fatima Khan
Signature:
Company: NVL
Date: 5/5/20
Time: 1600

Print Name: Akane Yoshikawa
Signature:
Company: NVL
Date: 5/12/20
Time:

Office Use Only

<table>
<thead>
<tr>
<th>Received by</th>
<th>Signature</th>
<th>Company</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatima Khan</td>
<td></td>
<td>NVL</td>
<td>5/5/20</td>
<td>1600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analyzed by</th>
<th>Signature</th>
<th>Company</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akane Yoshikawa</td>
<td></td>
<td>NVL</td>
<td>5/12/20</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results Called by</th>
<th>Faxed</th>
<th>Emailed</th>
</tr>
</thead>
</table>

Special Instructions:

Date: 5/5/2020
Time: 4:17 PM
Entered By: Fatima Khan

Note: This document is a sample document provided by ASBESTOS LABORATORY SERVICES for demonstration purposes. Actual documents may vary in structure and content.
ASBESTOS
CHAIN OF CUSTODY

Company
Washington St. University EH&S
PO Box 641172
Pullman, WA 99164
Phone 509-335-5604

Project Manager
Matt McKibbin
Cell (509) 730-5548
Email mmckibbin@wsu.edu, stephan.gilley@wsu.edu

Project Name/Number
6543-7358

Project Location
ORTON HALL

- PCM Air (NIOSH 7400)
- PLM (EPA 600/R-93-116)
- Asbestos Friable/Non-Friable (EPA 600/R-93/116)

- TEM (NIOSH 7402)
- EPA 400 Points (600/R-93-116)
- Asbestos in Vermiculite (EPA 600/R-04/004)

- TEM (AHERA)
- EPA 1000 Points (600/R-93-116)
- Asbestos in Sediment (EPA 1900 Points)

Reporting Instructions
- Call ()
- Fax ()
- Email mmckibbin@wsu.edu stephan.gilley@wsu.edu

Total Number of Samples

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEE ATTACHED SHEETS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Printed by
Stephan Gilley

Signature

Company
WSU EH&S

Date
4-30-2020

Time
14:00

Relinquish by
Stephan Gilley

Company
WSU EH&S

Date
5-1-2020

Time
13:30

Office Use Only

Received by

Analyzed by

Called by

Faxed/Email by

4708 Aurora Ave N, Seattle, WA 98103 | p 206.547.0100 | f 206.634.1936 | www.nvlabs.com

page 11 of 23
<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-01</td>
<td>Thin paint on concrete ceiling - honeycomb</td>
<td>Surf.</td>
<td>2,500 SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: white - tan paint texture</td>
<td>119</td>
<td>YES</td>
<td>Honeycomb ceiling</td>
</tr>
<tr>
<td>B</td>
<td>Layer 1:</td>
<td>121N</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Layer 1:</td>
<td>127</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Layer 1:</td>
<td>121S</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Layer 1:</td>
<td>125</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations: 119, 121S, 121N, 125, 127

2007998
Asbestos Sampling Data Sheet

Building: 6543-7358
ORTON HALL
Inspector: S. GILLEY
Date: APRIL/MAY 2020

Material

- **White thick fibrous stand ridge cell texture**

Type (TSI, Surfacing, Misc.)

- **Surf.**

Estimated Quantity

- **4,000 SF**

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **A** | Layer 1: **white thick ridge-fibrous cell texture**
Layer 2:
Layer 3: | 107 | YES |
| Layer 1:
Layer 2:
Layer 3: | N. end | NO |
| **B** | Layer 1:
Layer 2:
Layer 3: | 1028
5. 2nd | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| **C** | Layer 1:
Layer 2:
Layer 3: | 1219 | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| Layer 1:
Layer 2:
Layer 3: |
Layer 1:
Layer 2:
Layer 3: | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| Layer 1:
Layer 2:
Layer 3: |
Layer 1:
Layer 2:
Layer 3: | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| Layer 1:
Layer 2:
Layer 3: |
Layer 1:
Layer 2:
Layer 3: | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| Layer 1:
Layer 2:
Layer 3: |
Layer 1:
Layer 2:
Layer 3: | YES |
| Layer 1:
Layer 2:
Layer 3: | NO |
| Layer 1:
Layer 2:
Layer 3: |
Layer 1:
Layer 2:
Layer 3: | YES |
| **Locations** | 1st floor: 102, 1025, 1028, 114, 102A, 107
12th floor: 1215, 1217, 1219, 1219a | | |

2007998
Asbestos Sampling Data Sheet

Building: 6543-7358
Inspector: S. GILLEY
Date: APRIL/MAY 2020

<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>YTLN-01</td>
<td>Yellow tan linoleum flooring</td>
<td>Misc.</td>
<td>50 SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
</table>
| **A** | Layer 1: tan yellow linoleum
Layer 2: brown adhesive
Layer 3: paper backing | 113 BT | **YES** | **NO** |
| Layer 1:
Layer 2:
Layer 3: | | | **YES** | **NO** |
| Layer 1:
Layer 2:
Layer 3: | | | **YES** | **NO** |
| Layer 1:
Layer 2:
Layer 3: | | | **YES** | **NO** |
| Layer 1:
Layer 2:
Layer 3: | | | **YES** | **NO** |
| Layer 1:
Layer 2:
Layer 3: | | | **YES** | **NO** |

Locations: 113 Bathroom

2007998
<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPTmY-01</td>
<td>Carpet mastic under carpet</td>
<td>Misc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yellow mastic</td>
<td>125</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Yellow mastic</td>
<td>1142</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Locations: Under carpeted rooms: 1st, 2nd, 11th, 12th floor
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: 12-mil light grey w/tan</td>
<td>811</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations 2nd-11th floors: central hallway

2007998
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: White sink undercoat</td>
<td>809</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Layer 1: Black sink undercoat</td>
<td>1211</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations: 50 - 12th Floor: Kitchen, Laundry

2007998
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: yellow foam insulation</td>
<td>1302 south</td>
<td>YES</td>
<td>Unit #1</td>
</tr>
<tr>
<td></td>
<td>Layer 2: black mastic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Layer 1:</td>
<td>1302 north</td>
<td>YES</td>
<td>Unit #2</td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations 1302 mechanical room

2007998
<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFC-01</td>
<td>HVAC flex connector</td>
<td>Misc</td>
<td>250SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Layer 1: fan - gray</td>
<td>119</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3: fan paint</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations: HVAC/flex connectors throughout building
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Layer 1:</td>
<td>6/1</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gray Brick</td>
<td></td>
<td>NO</td>
<td>furnace exterior</td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

Locations: 6/1 mechanical room

Estimated Quantity: 25 SF
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: white-grey fibrous insulation</td>
<td>1302</td>
<td>YES</td>
<td>End of tank</td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Layer 1:</td>
<td>1302</td>
<td>YES</td>
<td>top of tank</td>
</tr>
<tr>
<td></td>
<td>Layer 2:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations 1302: Mechanical Room
May 13, 2020

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Bulk Asbestos Fiber Analysis; NVL Batch # 2007995.00

Client Project: 6543-7358
Location: Orton Hall

Dear Mr. McKibbin,

Enclosed please find test results for the 28 sample(s) submitted to our laboratory for analysis on 5/5/2020.

Examination of these samples was conducted for the presence of identifiable asbestos fibers using polarized light microscopy (PLM) with dispersion staining in accordance with both EPA 600/M4-82-020, Interim Method for the Determination of Asbestos in Bulk Insulation Samples and EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials.

For samples containing more than one separable layer of materials, the report will include findings for each layer (labeled Layer 1 and Layer 2, etc. for each individual layer). The asbestos concentration in the sample is determined by calibrated visual estimation.

For those samples with asbestos concentrations between 1 and 10 percent based on visual estimation, the EPA recommends a procedure known as point counting (NESHAPS, 40 CFR Part 61). Point counting is a statistically more accurate means of quantification for samples with low concentrations of asbestos.

The detection limit for the calibrated visual estimation is <1%, 400 point counts is 0.25% and 1000 point counts is 0.1%

Samples are archived for two weeks following analysis. Samples that are not retrieved by the client are discarded after two weeks.

Thank you for using our laboratory services. Please do not hesitate to call if there is anything further we can assist you with.

Sincerely,

Matt Macfarlane, Asbestos Lab Supervisor

Enc.: Sample Results
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

<table>
<thead>
<tr>
<th>Lab ID: 20059467</th>
<th>Client Sample #: PLAS-01-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Orton Hall</td>
<td></td>
</tr>
<tr>
<td>Comments: Insufficient sample amount for further analysis in layer 1 of this sample.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: Trace thin brown brittle mastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>Wollastonite 2%</td>
</tr>
</tbody>
</table>

| Asbestos Type: % | None Detected ND |

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: White brittle textured material with cream textured paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
</tr>
<tr>
<td>Binder/Filler, Fine grains, Fine particles</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

| Asbestos Type: % | None Detected ND |

<table>
<thead>
<tr>
<th>Lab ID: 20059468</th>
<th>Client Sample #: PLAS-01-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Orton Hall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description: Off-white thin soft mastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
</tr>
<tr>
<td>Calcareous particles, Mastic/Binder</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

| Asbestos Type: % | None Detected ND |

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description: Yellow brittle mastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>None Detected ND</td>
</tr>
</tbody>
</table>

| Asbestos Type: % | None Detected ND |

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description: White brittle textured material with beige paint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:%</td>
</tr>
<tr>
<td>Binder/Filler, Fine particles, Mineral grains</td>
<td>Synthetic fibers <1%</td>
</tr>
<tr>
<td>Paint</td>
<td></td>
</tr>
</tbody>
</table>

| Asbestos Type: % | None Detected ND |

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

ASB-02
page 2 of 27
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Batch #: 2007995.00
Client Project #: 6543-7358
Date Received: 5/5/2020
Samples Received: 28
Samples Analyzed: 28
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

<table>
<thead>
<tr>
<th>Layer 1 of 2</th>
<th>Description: White brittle textured material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Binder/Filler, Fine particles</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 2</th>
<th>Description: Off-white sandy/brittle material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Binder/Filler, Mica, Mineral grains</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sand</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059470
Client Sample #: PLAS-01-D
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer 1 of 4</th>
<th>Description: Yellow soft mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fine particles, Mastic/Binder</td>
<td>Synthetic fibers <1%</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 4</th>
<th>Description: Brown brittle/soft mastic</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mastic/Binder</td>
<td>Wollastonite 3%</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Talc fibers 2%</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 4</th>
<th>Description: White brittle material with cream paint</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
<td>ND</td>
<td>None Detected</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 4 of 4</th>
<th>Description: Off-white sandy/brittle material</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Binder/Filler, Granules, Mica</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mineral grains, Sand</td>
<td>None Detected</td>
<td>ND</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Lab ID: 20059471
Location: Orton Hall

Layer 1 of 2
Description: White brittle textured material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine particles None Detected ND

Layer 2 of 2
Description: Off-white sandy/brittle material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Mica, Mineral grains None Detected ND
Sand

Lab ID: 20059472
Location: Orton Hall

Layer 1 of 2
Description: Gold soft mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder Synthetic fibers <1%

Layer 2 of 2
Description: Off-white compacted powdery material with paint
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Calcareous particles, Fine particles None Detected ND
Paint

Lab ID: 20059473
Location: Orton Hall

Layer 1 of 3
Description: Brown brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder Wollastonite 4%
Talc fibers 2%

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 2 of 3

Description: White brittle textured material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 3 of 3

Description: Off-white sandy/brittle material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Granules, Mica</td>
<td>Cellulose</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Sand</td>
<td>Synthetic fibers</td>
<td><1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hair</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059474
Client Sample #: WPPLAS-01-A
Location: Orton Hall

Layer 1 of 5

Description: Off-white soft material with blue coating

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Calcareous particles, Mastic/Binder</td>
<td>None Detected</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 2 of 5

Description: Tan woven fibrous material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler</td>
<td>Wood fibers</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>

Layer 3 of 5

Description: Cream soft mastic

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine particles, Mastic/Binder</td>
<td>None Detected</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 4 of 5

Description: White brittle textured material with paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 5 of 5

Description: Off-white sandy/brittle material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Granules, Mica</td>
<td>None Detected</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Client Project #: 6543-7358
Samples Received: 28

Samples Analyzed: 28
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Sand

Lab ID: 20059475
Client Sample #: WPPLAS-01-B
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 2</td>
<td>Off-white fibrous material with off-white soft mastic</td>
<td>Binder/Filler, Calcareous particles, Mastic/Binder</td>
<td>Synthetic fibers</td>
<td>None Detected</td>
<td>ND</td>
</tr>
<tr>
<td>2 of 2</td>
<td>White brittle textured material with trace thin tan brittle mastic</td>
<td>Binder/Filler, Fine particles, Mastic/Binder</td>
<td>Synthetic fibers</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Lab ID: 20059476
Client Sample #: WPPLAS-01-C
Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer</th>
<th>Description</th>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type:</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 of 4</td>
<td>Blue and brown wall vinyl with woven mesh and yellow brittle mastic</td>
<td>Mastic/Binder, Vinyl/Binder</td>
<td>Synthetic fibers</td>
<td>None Detected</td>
<td>ND</td>
</tr>
<tr>
<td>2 of 4</td>
<td>Brown brittle mastic</td>
<td>Mastic/Binder</td>
<td>Wollastonite</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>3 of 4</td>
<td>White brittle textured material with paint</td>
<td>Binder/Filler, Fine particles, Paint</td>
<td>Synthetic fibers</td>
<td>None Detected</td>
<td>ND</td>
</tr>
<tr>
<td>4 of 4</td>
<td>Off-white sandy/brittle material</td>
<td>Binder/Filler, Granules, Mica</td>
<td>Synthetic fibers</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

<table>
<thead>
<tr>
<th>Lab ID: 20059477</th>
<th>Client Sample #: WPPLAS-01-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Orton Hall</td>
<td>Description: Yellow soft mastic</td>
</tr>
<tr>
<td>Layer 1 of 4</td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Calcareous particles, Mastic/Binder Cellulose <1%</td>
</tr>
<tr>
<td>Layer 2 of 4</td>
<td>Description: White wall vinyl with woven fibrous mesh and mastic</td>
</tr>
<tr>
<td></td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Mastic/Binder, Vinyl/Binder, Starch grains Synthetic fibers 19%</td>
</tr>
<tr>
<td>Layer 3 of 4</td>
<td>Description: White brittle textured material</td>
</tr>
<tr>
<td></td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Fine particles None Detected ND</td>
</tr>
<tr>
<td>Layer 4 of 4</td>
<td>Description: Off-white sandy/brittle material</td>
</tr>
<tr>
<td></td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Granules, Mica None Detected ND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab ID: 20059478</th>
<th>Client Sample #: WPPLAS-01-E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location: Orton Hall</td>
<td>Description: White woven fibrous material with mastic</td>
</tr>
<tr>
<td>Layer 1 of 4</td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Binder/Filler, Mastic/Binder Synthetic fibers 65%</td>
</tr>
<tr>
<td>Layer 2 of 4</td>
<td>Description: Tan soft mastic</td>
</tr>
<tr>
<td></td>
<td>Non-Fibrous Materials: Other Fibrous Materials:%</td>
</tr>
<tr>
<td></td>
<td>Fine particles, Mastic/Binder None Detected ND</td>
</tr>
</tbody>
</table>

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Batch #: 2007995.00

Client Project #: 6543-7358
Date Received: 5/5/2020
Samples Received: 28
Samples Analyzed: 28
Method: EPA/600/R-93/116 & EPA/600/M4-82-020

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 3 of 4

Description: White brittle textured material
Non-Fibrous Materials:
Binder/Filler, Fine particles
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Layer 4 of 4

Description: Trace thin off-white sandy/brittle material
Non-Fibrous Materials:
Binder/Filler, Granules, Sand
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Lab ID: 20059479
Client Sample #: 4GRECB-01-A
Location: Orton Hall

Layer 1 of 5

Description: Blue rubbery material with trace white paint
Non-Fibrous Materials:
Paint, Rubber/Binder
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Layer 2 of 5

Description: Off-white soft mastic
Non-Fibrous Materials:
Calcereous particles, Mastic/Binder
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Layer 3 of 5

Description: Brown brittle mastic with white paint
Non-Fibrous Materials:
Mastic/Binder, Paint
Other Fibrous Materials:
Asbestos Type:
Wollastonite 5%
Talc fibers 2%

Layer 4 of 5

Description: Yellow brittle mastic
Non-Fibrous Materials:
Mastic/Binder
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Layer 5 of 5

Description: White brittle textured material with paint
Non-Fibrous Materials:
Binder/Filler, Fine particles, Paint
Other Fibrous Materials:
Asbestos Type:
None Detected ND

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

ASB-02
page 8 of 27
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Lab ID: 20059480
Client Sample #: 4GRECB-01-B
Location: Orton Hall

| Layer 1 of 5 | Description: Blue rubbery material
Non-Fibrous Materials: Other Fibrous Materials:%
Rubber/Binder: None Detected ND
Asbestos Type: |
| Layer 2 of 5 | Description: Yellow soft mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder: None Detected ND
Asbestos Type: |
| Layer 3 of 5 | Description: Off-white compacted powdery material with paint
Calcereous binder, Calcareous particles, Paint
Non-Fibrous Materials: Other Fibrous Materials:%
Asbestos Type: |
| Layer 4 of 5 | Description: White brittle textured material
Non-Fibrous Materials: Other Fibrous Materials:%
Binder/Filler, Fine particles: None Detected ND
Asbestos Type: |
| Layer 5 of 5 | Description: Brown brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:%
Mastic/Binder: Wollastonite 3%
Talc fibers 2%
Asbestos Type: |

Lab ID: 20059481
Client Sample #: 4BRCB-01-A
Location: Orton Hall

| Layer 1 of 3 | Description: Brown rubbery material
Non-Fibrous Materials: Other Fibrous Materials:%
Calcareous particles, Rubber/Binder: None Detected ND
Asbestos Type: |

Sampled by: Client
Analized by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 2 of 3
Description: Brown brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:
Mastic/Binder Wollastonite 5%
Talc fibers Anthophyllite <1%

Layer 3 of 3
Description: White brittle textured material with cream paint
Non-Fibrous Materials: Other Fibrous Materials:
Binder/Filler, Fine particles, Paint None Detected ND

Lab ID: 20059482
Location: Orton Hall

Layer 1 of 3
Description: Brown rubbery material
Non-Fibrous Materials: Other Fibrous Materials:
Calcareous particles, Rubber/Binder None Detected ND

Layer 2 of 3
Description: Brown brittle mastic
Non-Fibrous Materials: Other Fibrous Materials:
Mastic/Binder Wollastonite 5%

Layer 3 of 3
Description: Trace white brittle textured material with paint
Non-Fibrous Materials: Other Fibrous Materials:
Binder/Filler, Fine particles, Paint None Detected ND

Lab ID: 20059483
Location: Orton Hall

Layer 1 of 4
Description: Black rubbery material
Non-Fibrous Materials: Other Fibrous Materials:
Calcareous particles, Rubber/Binder None Detected ND

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020

Matt Macfarlane, Asbestos Lab Supervisor

ASB-02
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

<table>
<thead>
<tr>
<th>Layer 2 of 4</th>
<th>Description: Off-white soft mastic</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 3 of 4</td>
<td>Description: Brown brittle mastic</td>
<td>Asbestos Type: %</td>
</tr>
<tr>
<td>Layer 4 of 4</td>
<td>Description: White brittle skim coat material with paint</td>
<td>Asbestos Type: %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Mastic/Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcareous particles, Mastic/Binder</td>
<td>Wollastonite</td>
<td>3%</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>Wollastonite</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Layer 1 of 3	Description: Black rubbery material	Asbestos Type: %
Layer 2 of 3	Description: Brown brittle/soft mastic	Asbestos Type: %
Layer 3 of 3	Description: Off-white soft mastic with trace white compacted powdery material	Asbestos Type: %

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Mastic/Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcareous particles, Rubber/Binder</td>
<td>None Detected</td>
<td>ND</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>Wollastonite</td>
<td>6%</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Calcareous binder, Calcareous particles, Mastic/Binder</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Lab ID: 20059484
Client Sample #: 4BLCB-01-B
Location: Orton Hall

Layer 1 of 3	Description: Black rubbery material	Asbestos Type: %
Layer 2 of 3	Description: Brown brittle/soft mastic	Asbestos Type: %
Layer 3 of 3	Description: Off-white soft mastic with trace white compacted powdery material	Asbestos Type: %

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
<th>Mastic/Binder</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcareous particles, Rubber/Binder</td>
<td>None Detected</td>
<td>ND</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Mastic/Binder</td>
<td>Wollastonite</td>
<td>6%</td>
</tr>
<tr>
<td>Non-Fibrous Materials:</td>
<td>Other Fibrous Materials:</td>
<td>Mastic/Binder</td>
</tr>
<tr>
<td>Calcareous binder, Calcareous particles, Mastic/Binder</td>
<td>None Detected</td>
<td>ND</td>
</tr>
</tbody>
</table>

Lab ID: 20059485
Client Sample #: 4TCB-01-A
Location: Orton Hall

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane
Date: 05/12/2020
Date: 05/13/2020
Matt Macfarlane, Asbestos Lab Supervisor

ASB-02
page 11 of 27
Bulk Asbestos Fibers Analysis
By Polarized Light Microscopy

<table>
<thead>
<tr>
<th>Layer 1 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tan rubbery material with trace thin off-white soft mastic</td>
<td>Calcareous particles, Mastic/Binder, Rubber/Binder</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 2 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brown brittle mastic</td>
<td>Mastic/Binder</td>
<td>Wollastonite 5%</td>
<td>Anthophyllite <1%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer 3 of 3</th>
<th>Description</th>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:%</th>
<th>Asbestos Type: %</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>White/off-white brittle textured material</td>
<td>Binder/Filler, Fine particles, Mineral grains</td>
<td>None Detected ND</td>
<td>None Detected ND</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059486
Client Sample #: 4GRCB-01-A
Location: Orton Hall
Layer 1 of 2
Description: Yellow brittle mastic with clear soft adhesive
Non-Fibrous Materials:
- Adhesive/Binder, Fine particles, Mastic/Binder
Other Fibrous Materials:
- Cellulose <1%
Asbestos Type: %
Notes: None Detected ND

Layer 2 of 2
Description: White brittle textured material with paint
Non-Fibrous Materials:
- Binder/Filler, Fine particles, Paint
Other Fibrous Materials:
- None Detected ND
Asbestos Type: %
Notes: None Detected ND

Lab ID: 20059487
Client Sample #: 4TCERT-01-A
Location: Orton Hall
Layer 1 of 4
Description: Off-white ceramic tile with cream surface and trace white paint
Non-Fibrous Materials:
- Ceramic/Binder, Paint, Quartz
Other Fibrous Materials:
- None Detected ND
Asbestos Type: %
Notes: None Detected ND

Layer 2 of 4
Description: Light gray brittle material
Non-Fibrous Materials:
- Cement/Binder, Fine particles
Other Fibrous Materials:
- None Detected ND
Asbestos Type: %
Notes: None Detected ND

Sampled by: Client
Date: 05/12/2020
Analyzed by: Alla Prysyazhnyuk
Date: 05/13/2020
Reviewed by: Matt Macfarlane
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Bulk Asbestos Fibers Analysis

By Polarized Light Microscopy

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

Layer 3 of 4
Description: White brittle textured material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Granules</td>
<td>None Detected</td>
</tr>
<tr>
<td>Mineral grains</td>
<td>Asbestos Type:</td>
</tr>
</tbody>
</table>

Layer 4 of 4
Description: White brittle material

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Calcareous particles</td>
<td>None Detected</td>
</tr>
<tr>
<td>Asbestos Type:</td>
<td></td>
</tr>
</tbody>
</table>

Lab ID: 20059488
Client Sample #: WRCT-01-A
Location: Orton Hall

Layer 1 of 1
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Calcareous particles, Fine particles</td>
<td>None Detected</td>
</tr>
<tr>
<td>Vermiculite, Paint</td>
<td>Asbestos Type: Chrysotile 5%</td>
</tr>
</tbody>
</table>

Lab ID: 20059489
Client Sample #: WRCT-01-B
Location: Orton Hall

Layer 1 of 1
Description: Off-white textured powdery material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Paint</td>
<td>None Detected</td>
</tr>
<tr>
<td>Perlite</td>
<td>Asbestos Type: Chrysotile 12% Anthophyllite <1%</td>
</tr>
</tbody>
</table>

Lab ID: 20059490
Client Sample #: WRCT-01-C
Location: Orton Hall

Layer 1 of 1
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials:</th>
<th>Other Fibrous Materials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Mica</td>
<td>Wollastonite 2%</td>
</tr>
<tr>
<td>Asbestos Type: Chrysotile 3%</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Alla Prysyazhnyuk
Reviewed by: Matt Macfarlane

Date: 05/12/2020
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Vermiculite, Paint

Lab ID: 20059491
Location: Orton Hall
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Mica</td>
<td>Wollastonite <1%</td>
<td></td>
</tr>
<tr>
<td>Vermiculite, Paint, Perlite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile 8%

Lab ID: 20059492
Location: Orton Hall
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Mica</td>
<td>None Detected ND</td>
<td></td>
</tr>
<tr>
<td>Vermiculite, Paint, Perlite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile 7%

Lab ID: 20059493
Location: Orton Hall
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Mica</td>
<td>None Detected ND</td>
<td></td>
</tr>
<tr>
<td>Vermiculite, Paint, Perlite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile 8%

Lab ID: 20059494
Location: Orton Hall
Description: White powdery/micaceous material with white paint

<table>
<thead>
<tr>
<th>Non-Fibrous Materials</th>
<th>Other Fibrous Materials: %</th>
<th>Asbestos Type: %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binder/Filler, Fine particles, Mica</td>
<td>None Detected ND</td>
<td></td>
</tr>
<tr>
<td>Vermiculite, Paint, Perlite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asbestos Type: Chrysotile 6%

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Vermiculite, Paint, Perlite

Sampled by: Client
Date: 05/12/2020

 Analyzed by: Alla Prysyazhnyuk
Date: 05/12/2020

Reviewed by: Matt Macfarlane
Date: 05/13/2020

Note: If samples are not homogeneous, then subsamples of the components were analyzed separately. All bulk samples are analyzed using both EPA 600/R-93/116 and 600/M4-82-020 Methods with the following measurement uncertainties for the reported % Asbestos (1%=0-3%, 5%=1-9%, 10%=5-15%, 20%=10-30%, 50%=40-60%). This report relates only to the items tested. If sample was not collected by NVL personnel, then the accuracy of the results is limited by the methodology and acuity of the sample collector. This report shall not be reproduced except in full, without written approval of NVL Laboratories, Inc. It shall not be used to claim product endorsement by NVLAP or any other agency of the US Government.
Project Information

- **Company**: Washington State University EH&S
- **Address**: PO Box 641172, Pullman, WA 99164-1172
- **Project Manager**: Mr. Matt McKibbin
- **Phone**: (509) 335-3041
- **Direct**: (509) 335-5311

NVL Batch Number
- **NVL Batch Number**: 2007995.00
- **TAT**: 5 Days
- **AH**: No
- **Rush TAT**: No

Due Date and Time
- **Due Date**: 5/12/2020
- **Time**: 4:00 PM

Sample Details

Project Name/Number: 6543-7358
Project Location: Orton Hall

Subcategory: PLM Bulk
Item Code: ASB-02
EPA: 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples

- **Total Number of Samples**: 28
- **Rush Samples**: No

Lab ID	**Sample ID**	**Description**	**A/R**
1 | 20059467 | PLAS-01-A | A
2 | 20059468 | PLAS-01-B | A
3 | 20059469 | PLAS-01-C | A
4 | 20059470 | PLAS-01-D | A
5 | 20059471 | PLAS-01-E | A
6 | 20059472 | PLAS-01-F | A
7 | 20059473 | PLAS-01-G | A
8 | 20059474 | WPPLAS-01-A | A
9 | 20059475 | WPPLAS-01-B | A
10 | 20059476 | WPPLAS-01-C | A
11 | 20059477 | WPPLAS-01-D | A
12 | 20059478 | WPPLAS-01-E | A
13 | 20059479 | 4GRECB-01-A | A
14 | 20059480 | 4GRECB-01-B | A
15 | 20059481 | 4BRCB-01-A | A
16 | 20059482 | 4BRCB-01-B | A
17 | 20059483 | 4BLCB-01-A | A
18 | 20059484 | 4BLCB-01-B | A

Office Use Only

- **Print Name**: Fatima Khan
- **Signature**:
- **Company**: NVL
- **Date**: 5/5/2020
- **Time**: 1600

- **Print Name**: Alla Prsyazhnyuk
- **Signature**:
- **Company**: NVL
- **Date**: 5/12/20
- **Time**:

Special Instructions:

- **Fax**:
- **Emailed**:

Date: 5/5/2020
Time: 4:07 PM
Entered By: Fatima Khan
Project Details

Company: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172
Project Manager: Mr. Matt McKibbin
Phone: (509) 335-3041
Direct: (509) 335-5311
Fax: (509) 730-5548

NVL Batch Number: 2007995.00
TAT: 5 Days
AH: No
Due Date: 5/12/2020
Time: 4:00 PM

Project Name/Number: 6543-7358
Project Location: Orton Hall

Subcategory: PLM Bulk
Item Code: ASB-02
EPA: 600/R-93-116 Asbestos by PLM <bulk>

Total Number of Samples

- **Total Number of Samples**: 28

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>20059485</td>
<td>4TCB-01-A</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>20059486</td>
<td>4GRCB-01-A</td>
<td>A</td>
</tr>
<tr>
<td>21</td>
<td>20059487</td>
<td>4TCERT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>22</td>
<td>20059488</td>
<td>WRCT-01-A</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>20059489</td>
<td>WRCT-01-B</td>
<td>A</td>
</tr>
<tr>
<td>24</td>
<td>20059490</td>
<td>WRCT-01-C</td>
<td>A</td>
</tr>
<tr>
<td>25</td>
<td>20059491</td>
<td>WRCT-01-D</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>20059492</td>
<td>WRCT-01-E</td>
<td>A</td>
</tr>
<tr>
<td>27</td>
<td>20059493</td>
<td>WRCT-01-F</td>
<td>A</td>
</tr>
<tr>
<td>28</td>
<td>20059494</td>
<td>WRCT-01-G</td>
<td>A</td>
</tr>
</tbody>
</table>

Special Instructions:

- **Fax**:
- **Emailed**: No

Date: 5/5/2020
Time: 4:07 PM
Entered By: Fatima Khan
ASBESTOS CHAIN OF CUSTODY

Company: Washington St. University EH&S
Address: PO Box 641172
Pullman, WA 99164
Phone: 509-335-5604

Project Manager: Matt McKibbin
Cell: (509) 730-5548
Email: mrmckibbin@wsu.edu, stephan.gilley@wsu.edu

<table>
<thead>
<tr>
<th>Project Name/Number</th>
<th>Project Location</th>
<th>Reporting Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>6543-7358</td>
<td>ORTON HALL</td>
<td>email</td>
</tr>
</tbody>
</table>

Total Number of Samples: 51

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEE ATTACHED SHEETS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Stephan Gilley
Signature:
Company: WSU EH&S
Date: 4-30-2020
Time: 14:00

Relinquish by: Stephan Gilley
Signature:
Company: WSU EH&S
Date: 5-1-2020
Time: 13:30

Office Use Only

Received by:
Signature:
Company:
Date:
Time: 17:00

Analyzed by:
Signature:
Company:
Date:
Time: 17:00

Called by:
Signature:
Company:
Date:
Time: 17:00

Faxed/Email by:
Signature:
Company:
Date:
Time: 17:00
Asbestos Sampling Data Sheet

Building: 6543-7358
HSA: PLAS-01
ORNON HALL
Inspector: S. GILLEY
Date: APRIL/MAY 2020

<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>White skim coat plaster/gray scratch coat</td>
<td>Surf.</td>
<td>> 1000 sq ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: White skim coat
Layer 2: Gray scratch coat
Layer 3:</td>
<td>1215 adj</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Layer 1: II
Layer 2: II
Layer 3: tan soft mastic</td>
<td>109</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Layer 1: II
Layer 2: II
Layer 3:</td>
<td>165 A</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Layer 1: II
Layer 2: II
Layer 3: tan soft mastic (2 1/2:1 brown)</td>
<td>926</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Layer 1: II
Layer 2: II
Layer 3:</td>
<td>812</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Layer 1: II
Layer 2: II
Layer 3: tan soft mastic</td>
<td>@ 641</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Layer 1: II
Layer 2: brown mastic
Layer 3:</td>
<td>501 stairwell</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

Locations: Dominant wall system

2007995
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: brown backing
Layer 2: green adhesive paper
Layer 3: tan mastic, skim coat</td>
<td>900 @ elevator</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1: white WP
Layer 2: tan mastic
Layer 3: skim coat, scratch coat</td>
<td>1031</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Layer 1: blue WP
Layer 2: brown adhesive paper
Layer 3: brown mastic, skim coat</td>
<td>1226</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Layer 1: white WP
Layer 2: tan mastic
Layer 3: skim coat, scratch coat</td>
<td>609</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Layer 1: white WP
Layer 2: tan mastic
Layer 3: skim coat, scratch coat</td>
<td>224</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:
Layer 2:
Layer 3:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:
Layer 2:
Layer 3:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:
Layer 2:
Layer 3:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 1:
Layer 2:
Layer 3:</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>

Locations: Lobby, student rooms, lounges

2007995
Asbestos Sampling Data Sheet

Building: 6543-7358
Location: ORTON HALL
Inspector: S. GILLEY
Date: APRIL/MAY 2020

<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>4GRE801</td>
<td>3/4-inch GREEN cove base/mastic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Layer 1: 3/4-inch green cove base
Layer 2: tan mastic
Layer 3: brown mastic plaster | > 50,000 SF |

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
</table>
| A | Layer 1: 3/4-inch green cove base
Layer 2: tan mastic
Layer 3: brown mastic plaster | @ 1140 | YES | |
| B | Layer 1: 3/4-inch green cove base
Layer 2: tan mastic
Layer 3: brown mastic | @ 641 | YES | |

Layer 1:
Layer 2:
Layer 3:

Locations: 2nd – 11th floor student hallways

2007995
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1: 4-inch brown veneer base</td>
<td>12/5 adj</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 2: brown brittle mastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>812</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>22</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>22</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 1:</td>
<td>33</td>
<td>YES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer 3:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations

1st, 2nd, 11th (central rooms), 12th floor, scattered
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: 4-inch TAW cover base</td>
<td>1226</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 2: brown brittle mastic</td>
<td></td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Layer 3: gray plaster</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Locations 12th Floor

2007995
Asbestos Sampling Data Sheet

Building: ORTON HALL
Inspector: S. GILLEY
Date: APRIL/MAY 2020

<table>
<thead>
<tr>
<th>HISA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y6C8-01</td>
<td>3/4"-thick GRAY Cove base (tan-yellow sticky mastic)</td>
<td>MISC.</td>
<td>500 SF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
</table>
| A | Layer 1: 3/4"-thick GRAY Cove base
Layer 2: Tan sticky mastic | /025 south end | YES | |
| | Layer 1:
Layer 2:
Layer 3: | | NO | |
| | Layer 1:
Layer 2:
Layer 3: | | NO | |
| | Layer 1:
Layer 2:
Layer 3: | | NO | |
| | Layer 1:
Layer 2:
Layer 3: | | NO | |
| | Layer 1:
Layer 2:
Layer 3: | | NO | |

Locations
5th floor

2007995
<table>
<thead>
<tr>
<th>HSA</th>
<th>Material</th>
<th>Type (TSI, Surfacing, Misc.)</th>
<th>Estimated Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRCT-06</td>
<td>white thick rough pebble texture - ceiling</td>
<td>Surf.</td>
<td>65,000 ft</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Layering</th>
<th>Sample Location</th>
<th>Friable</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Layer 1: white pebble texture ceiling</td>
<td>427</td>
<td>YES</td>
<td>Honeycomb; ceiling - student rooms</td>
</tr>
<tr>
<td>B</td>
<td>Layer 1:</td>
<td>1226 lounge</td>
<td>YES</td>
<td>Flat ceiling</td>
</tr>
<tr>
<td>C</td>
<td>Layer 1:</td>
<td>1142</td>
<td>NO</td>
<td>Honeycomb</td>
</tr>
<tr>
<td>D</td>
<td>Layer 1:</td>
<td>819</td>
<td>YES</td>
<td>Honeycomb</td>
</tr>
<tr>
<td>E</td>
<td>Layer 1:</td>
<td>718</td>
<td>NO</td>
<td>Flat ceiling</td>
</tr>
<tr>
<td>F</td>
<td>Layer 1:</td>
<td>517</td>
<td>YES</td>
<td>Honeycomb</td>
</tr>
<tr>
<td>G</td>
<td>Layer 1:</td>
<td>331</td>
<td>NO</td>
<td>Honeycomb</td>
</tr>
</tbody>
</table>

Locations: 1226, 2nd - 11th floors; student rooms - ceiling

2007995
May 7, 2020

Matt McKibbin
Washington State University EH&S
PO Box 641172
Pullman, WA 99164-1172

RE: Total Metal Analysis
Method: EPA 7000B Lead by FAA <paint>
Item Code: FAA-02

Client Project: 6543-7358
Location: Orton Hall

Dear Mr. McKibbin,

NVL Labs received 6 sample(s) for the said project on 5/5/2020. Preparation of these samples was conducted following protocol outlined in EPA 3051/7000B, unless stated otherwise. Analysis of these samples was performed using analytical instruments in accordance with EPA 7000B Lead by FAA <paint>. The results are usually expressed in mg/Kg and percentage (%). Test results are not blank corrected.

For recent regulation updates pertaining to current regulatory levels or permissible exposure levels, please call your local regulatory agencies for more detail.

At NVL Labs all analyses are performed under strict guidelines of the Quality Assurance Program. This report is considered highly confidential and will not be released without your approval. Samples are archived after two weeks from the analysis date. Please feel free to contact us at 206-547-0100, in case you have any questions or concerns.

Sincerely,

Shalini Patel, Lab Supervisor

Enc.: Sample results
Analysis Report

Total Lead (Pb)

Client: Washington State University EH&S
Address: PO Box 641172
Pullman, WA 99164-1172

Attention: Mr. Matt McKibbin
Project Location: Orton Hall

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Client Sample #</th>
<th>Sample Weight (g)</th>
<th>RL in mg/Kg</th>
<th>Results in mg/Kg</th>
<th>Results in percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>20059530</td>
<td>PB-01</td>
<td>0.0551</td>
<td>180</td>
<td>< 180</td>
<td><0.018</td>
</tr>
<tr>
<td>20059531</td>
<td>PB-02</td>
<td>0.1364</td>
<td>73</td>
<td>< 73</td>
<td><0.0073</td>
</tr>
<tr>
<td>20059532</td>
<td>PB-03</td>
<td>0.2093</td>
<td>48</td>
<td>680</td>
<td>0.068</td>
</tr>
<tr>
<td>20059533</td>
<td>PB-04</td>
<td>0.2088</td>
<td>48</td>
<td>850</td>
<td>0.085</td>
</tr>
<tr>
<td>20059534</td>
<td>PB-05</td>
<td>0.0529</td>
<td>190</td>
<td>< 190</td>
<td><0.019</td>
</tr>
<tr>
<td>20059535</td>
<td>PB-06</td>
<td>0.2033</td>
<td>49</td>
<td>100</td>
<td>0.010</td>
</tr>
</tbody>
</table>

Sampled by: Client
Analyzed by: Ruth Schumaker
Reviewed by: Shalini Patel

Date Analyzed: 05/07/2020
Date Issued: 05/07/2020
Shalini Patel, Lab Supervisor

mg/ Kg =Milligrams per kilogram
RL = Reporting Limit
Percent = Milligrams per kilogram / 10000
'<' = Below the reporting Limit

Note: Method QC results are acceptable unless stated otherwise.

Unless otherwise indicated, the condition of all samples was acceptable at time of receipt.
Company Washington State University EH&S
Address PO Box 641172
Pullman, WA 99164-1172
NVL Batch Number 2008000.00
TAT 5 Days
AH No
Rush TAT
Due Date 5/12/2020
Time 4:00 PM
Email mrmckibbin@wsu.edu
Fax (509) 730-5548

Project Name/Number: 6543-7358
Project Location: Orton Hall

Subcategory Flame AA (FAA)
Item Code FAA-02
EPA 7000B Lead by FAA <paint>

Total Number of Samples 6
Rush Samples

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 20059530</td>
<td>PB-01</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>2 20059531</td>
<td>PB-02</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>3 20059532</td>
<td>PB-03</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>4 20059533</td>
<td>PB-04</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>5 20059534</td>
<td>PB-05</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>6 20059535</td>
<td>PB-06</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

Print Name
Signature
Company
Date
Time

- **Sampled by**
 Client
- **Relinquished by**
 Federal Express

Office Use Only

<table>
<thead>
<tr>
<th>Received by</th>
<th>Signature</th>
<th>Company</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatima Khan</td>
<td>NVL</td>
<td>5/5/20</td>
<td>1600</td>
<td></td>
</tr>
<tr>
<td>Analyzed by</td>
<td>Ruth Schumaker</td>
<td>NVL</td>
<td>5/7/20</td>
<td></td>
</tr>
</tbody>
</table>

Results Called by

- Faxed
- Emailed

Special Instructions:

Date: 5/5/2020
Time: 4:23 PM
Entered By: Kelly AuVu
METALS CHAIN OF CUSTODY

Company: Washington State University EH&S
Address: P.O. Box 641172, Pullman, WA 99164
Phone: 509-335-3401
Project Manager: Matt McKibbin
Cell: (509) 730-5548
Email: mmckibbin@wsu.edu, stephan.gilley@wsu.edu
Fax: (509) 335-3401

<table>
<thead>
<tr>
<th>Project Name/Number</th>
<th>Project Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>6543-7358</td>
<td>ORTON HALL</td>
</tr>
</tbody>
</table>

- **Total Metals**
 - FAA (ppm)
 - ICP (PPM)
 - GFAA (ppb)
 - CVAA (ppb)
 - Other
- **TCLP**
 - Air Filter
 - Paint Chips (cm)
 - Dust Wipes
 - Drinking Water
 - Waste Water

RCRA
- RCRA 8
- RCRA 11
- Barium
- Chromium
- Silver
- Copper
- Arsenic
- Mercury
- Lead
- Zinc
- Selenium
- Cadmium
- Other

Reporting Instructions
- Email mmckibbin@wsu.edu, stephan.gilley@wsu.edu
- Call (509) 730-5548
- Fax (509) 335-3401

Total Number of Samples: 6

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Description</th>
<th>A/R</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PB-01 4015 Taj wall/white/metal d-frame</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PB-02 735 stainless/white/concrete/wall</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PB-03 1111 white cream/painted ceiling</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PB-04 1211 tan/plaster/wall</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PB-05 Exterior west/white cream/concrete/wall</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PB-06 Exterior east/white cream/concrete/wall</td>
<td></td>
</tr>
</tbody>
</table>

Sampled by: Stephan Gilley
Relinquish by: Stephan Gilley
Company: WSU EH&S
Date: 4-30-2020
Time: 14:30
Company: WSU EH&S
Date: 5-1-2020
Time: 13:30

Office Use Only
- Received by [Signature]
- Analyzed by [Signature]
- Called by [Signature]
- Faxed/Email by [Signature]

2008000
4708 Aurora Ave N, Seattle, WA 98103
page 4 of 4
Laboratory Results

<table>
<thead>
<tr>
<th>Lab Sample Number</th>
<th>Client Sample Number</th>
<th>Layer Type</th>
<th>Lab Gross Description</th>
<th>Asbestos</th>
<th>Other Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-05-00360-001</td>
<td>PC-01-F</td>
<td>White Granular;</td>
<td>NAD</td>
<td>100% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-05-00360-002</td>
<td>WRCT-01-H</td>
<td>White Granular;</td>
<td>3% Chrysotile</td>
<td>97% Non-Fibrous</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homogeneous</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Asbestos: 3%
## Lab Sample Number	Client Sample Number	Layer Type	Lab Gross Description	Asbestos	Other Materials
QC Sample: 39-M12015-1
QC Blank: SRM 1866 Fiberglass
Reporting Limit: 1% Asbestos
Method: EPA Method 600/R-93/116, EPA Method 600/M4-82-020
Analyst: Christian H. Schaible
Reviewed By Authorized Signatory: Missy Kanode
QA/QC Clerk:

The condition of the samples analyzed was acceptable upon receipt per laboratory protocol unless otherwise noted on this report. Each distinct component in an inhomogeneous sample was analyzed separately and reported as a composite. Results represent the analysis of samples submitted by the client. Sample location, description, area, volume, etc., was provided by the client. This report cannot be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report shall not be reproduced except in full, without the written consent of the Environmental Hazards Service, L.L.C. California Certification #2319 NY ELAP #11714 NVLAP #101882-0 VELAP 460172. All information concerning sampling location, date, and time can be found on Chain-of-Custody. Environmental Hazards Services, L.L.C. does not perform any sample collection.

Environmental Hazards Services, L.L.C. recommends reanalysis by point count (for more accurate quantification) or Transmission Electron Microscopy (TEM), (for enhanced detection capabilities) for materials regulated by EPA NESHAP (National Emission Standards for Hazardous Air Pollutants) and found to contain less than ten percent (<10%) asbestos by polarized light microscopy (PLM). Both services are available for an additional fee.

400 Point Count Analysis, where noted, performed per EPA Method 600/R-93/116 with a Reporting Limit of 0.25%.

* All California samples analyzed by Polarized Light Microscopy, EPA Method 600/M4-82-020, Dec. 1982.

LEGEND:

NAD = no asbestos detected
<table>
<thead>
<tr>
<th>Comments</th>
<th>Total Time (mins)</th>
<th>Flow Rate (L/min)</th>
<th>Time On</th>
<th>Date Collected</th>
<th>Same ID</th>
<th>ASBESTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No.</td>
</tr>
</tbody>
</table>

Weekend: (Must call ahead)

Same Day: (Must call ahead)

Turn Around Time: 1 - Day, 2 - Day, 3 - Day

Sample ID:

Company Name: Chain of Custody

Address: EHS Laboratories

Phone: 335-5604

Fax: (509) 335-6907

E-mail:

Project Name:

Orton Hall

Pulman, WA 99164

Signature:

Received By:

Date/Time: 5-1-2020 14:30

Returned By:

Date/Time: 5-1-2020 14:30

Table:

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>4-30-2020</th>
<th>PC-01-F</th>
<th>4-30-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>WRC-01-H</td>
<td>4-30-2020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locations</td>
<td>Layer 1</td>
<td>Layer 2</td>
<td>Layer 3</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes

- 215 sq ft
- Material: 11L
- Thin Film on Concrete

Date

- April 2020

Sample No.

- PC-01

Inspector's Name

- Gilley

Building

- 6543-7358

HSAs

- WSWEHAS
<table>
<thead>
<tr>
<th>Locations</th>
<th>226 - 22 - 11 Floor: Stark Room - Ceiling</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Layer 1:</td>
</tr>
<tr>
<td>YES</td>
<td>Layer 2:</td>
</tr>
<tr>
<td>NO</td>
<td>Layer 3:</td>
</tr>
<tr>
<td>YES</td>
<td>Layer 2:</td>
</tr>
<tr>
<td>NO</td>
<td>Layer 1:</td>
</tr>
<tr>
<td>YES</td>
<td>Layer 2:</td>
</tr>
<tr>
<td>NO</td>
<td>Layer 3:</td>
</tr>
<tr>
<td>YES</td>
<td>Layer 1:</td>
</tr>
<tr>
<td>NO</td>
<td>Layer 2:</td>
</tr>
<tr>
<td>YES</td>
<td>Layer 2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>Estimatied Quantity</th>
<th>Sample Location</th>
<th>Type (TSL, Surface, Air)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>654-008</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Date April/May 2020
Inspector S. Gilley
Asbestos Sampling Data Sheet

ORTON HALL
Building: 6543-7358

WSU EH&S

0342
APPENDIX E
Previous Roof Sampling and Abatement Letter
February 8, 2010

Customer:
WSU / Orton Hall

Location:
Project # 5077-2010
Pullman, WA 99164

Subject Material:
Roof Material

Findings:
I have taken samples of suspect material and have found there to BE ACM (Asbestos Containing Materials) in the following locations:

OR-1-10-00104-0001
Roof (Layers 3-7) – (Chrysotile Asbestos 10%) returned greater than allowable and needs to be addressed properly before removal or replacement of existing roof can take place.

OR-2-10-00104-0002
Roof (Layers 3-7) – (Chrysotile Asbestos 10%) returned greater than allowable and needs to be addressed properly before removal or replacement of existing roof can take place.

OR-4-10-00104-0004
Roof (Layers 3-7) – (Chrysotile Asbestos 10%) returned greater than allowable and needs to be addressed properly before removal or replacement of existing roof can take place.

Applicable Rules:
Chapter 296-62 WAC
Chapter 296-65 WAC
Chapter 296-155 WAC

All other samples have returned clear. If there are any questions about this report feel free to contact me any time.

We are a certified asbestos abatement contractor and would be more than happy to give you an estimate for removal.
January 3, 2011

Washington State University
110 Commons
Pullman, WA 99164

RE: Washington State University – Orton Hall Contract No. 18895

Subject: Asbestos Materials

Dear Doug,

Meyer Brothers Roofing, Inc. did not use any materials containing asbestos in this project.

We do not use materials containing asbestos in any of our projects.

Regards,

[Signature]

Eugene Meyer
President
Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 101882-0

Environmental Hazards Services, L.L.C.
N. Chesterfield, VA

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

Asbestos Fiber Analysis

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated January 2009).

2020-01-01 through 2020-12-31

Effective Dates
SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

Environmental Hazards Services, L.L.C.
7469 Whitepine Road
N. Chesterfield, VA 23237-2261
Ms. Julie Dickerson
Phone: 804-275-4788 Fax: 804-275-4907
Email: j.dickerson@leadlab.com
http://www.leadlab.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101882-0

Bulk Asbestos Analysis

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18/A01</td>
<td>EPA -- 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of Asbestos in Bulk Insulation Samples</td>
</tr>
<tr>
<td>18/A03</td>
<td>EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials</td>
</tr>
</tbody>
</table>

For the National Voluntary Laboratory Accreditation Program

Effective 2020-01-01 through 2020-12-31
March 29, 2019

Nghiep Vi Ly
NVL Laboratories, Inc.
4708 Aurora Avenue N.
Seattle, WA 98103

Dear Mr./Ms. Ly:

Congratulations! The AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC’s Analytical Accreditation Board (AAB) has approved NVL Laboratories, Inc. as an accredited Industrial Hygiene, Environmental Lead, Environmental Microbiology and Unique Scope laboratory.

Accreditation documentation includes the IHLAP, ELLAP, EMLAP and Unique Scopes accreditation certificate, scope of accreditation document and a copy of the current AIHA-LAP, LLC license agreement (if your completed agreement is not on file at AIHA-LAP, LLC). The accreditation symbol has been designed for use by all AIHA-LAP, LLC accredited laboratories. If your laboratory chooses to use the symbol in its advertising the laboratory’s accreditation, you must complete and return the AIHA-LAP, LLC license agreement to a Laboratory Accreditation Specialist. Once submitted, an electronic copy of the accreditation symbol will be sent to you.

Laboratory accreditation shall be maintained by continued compliance with IHLAP, ELLAP, EMLAP and Unique Scopes requirements (see Policy Modules 2B, 2C, 2D, 2E, and 6), which includes proficient participation in AIHA-LAP, LLC approved proficiency testing, demonstration of competency, or round robin program as indicated on the AIHA-LAP “Approved PT and Round Robin” webpage, its associated Scope/PT table, and as required in Policy Module 6, for all Fields of Testing (FoTs) for which the laboratory is accredited. An accredited laboratory that wishes to expand into a new FoT must submit an updated accreditation application to AIHA-LAP, LLC for review by the AAB.

Any changes in ownership, laboratory location, personnel, FoTs/Methods, or significant procedural changes shall be reported to AIHA-LAP, LLC in writing within twenty (20) business days of the change.

The accreditation certificate is the property of AIHA-LAP, LLC and must be returned to us should your laboratory withdraw or be removed from the IHLAP, ELLAP, EMLAP and Unique Scopes.

Again, congratulations. If you have any questions, please contact Lauren Schnack, Laboratory Accreditation Specialist, at (703) 846-0716.

Sincerely,

Cheryl O. Morton
Managing Director
AIHA Laboratory Accreditation Programs, LLC

acknowledges that

NVL Laboratories, Inc.
4708 Aurora Avenue N., Seattle, WA 98103
Laboratory ID: 101861

along with all premises from which key activities are performed, as listed above, has fulfilled the requirements of the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC accreditation to the ISO/IEC 17025:2017 international standard, General Requirements for the Competence of Testing and Calibration Laboratories in the following:

LABORATORY ACCREDITATION PROGRAMS

- INDUSTRIAL HYGIENE Accreditation Expires: June 01, 2021
- ENVIRONMENTAL LEAD Accreditation Expires: June 01, 2021
- ENVIRONMENTAL MICROBIOLOGY Accreditation Expires: June 01, 2021
- FOOD Accreditation Expires:
- UNIQUE SCOPES Accreditation Expires: June 01, 2021

Specific Field(s) of Testing (FoT)/Method(s) within each Accreditation Program for which the above named laboratory maintains accreditation is outlined on the attached Scope of Accreditation. Continued accreditation is contingent upon successful on-going compliance with ISO/IEC 17025:2017 and AIHA-LAP, LLC requirements. This certificate is not valid without the attached Scope of Accreditation. Please review the AIHA-LAP, LLC website (www.aihaaccreditedlabs.org) for the most current Scope.

Elizabeth Bair
Chairperson, Analytical Accreditation Board

Cheryl O. Morton
Managing Director, AIHA Laboratory Accreditation Programs, LLC

Revision 17 – 09/11/2018

Date Issued: 03/29/2019
AIHA Laboratory Accreditation Programs, LLC
SCOPE OF ACCREDITATION

NVL Laboratories, Inc. Laboratory ID: 101861
4708 Aurora Avenue N., Seattle, WA 98103 Issue Date: 03/29/2019

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory’s current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Industrial Hygiene Laboratory Accreditation Program (IHLAP)

Initial Accreditation Date: 04/01/1997

<table>
<thead>
<tr>
<th>IHLAP Scope Category</th>
<th>Field of Testing (FoT) (FoTs cover all relevant IH matrices)</th>
<th>Technology sub-type/ Detector</th>
<th>Published Reference Method/Title of In-house Method</th>
<th>Method Description or Analyte (for internal methods only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometry Core</td>
<td>Atomic Absorption</td>
<td>FAA</td>
<td>NIOSH 7082</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inductively-Coupled Plasma</td>
<td>ICP/AES</td>
<td>NIOSH 7300</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-ray Diffraction (XRD)</td>
<td></td>
<td>NIOSH 7500</td>
<td></td>
</tr>
<tr>
<td>Asbestos/Fiber Microscopy Core</td>
<td>Phase Contrast Microscopy (PCM)</td>
<td></td>
<td>NIOSH 7400</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Core</td>
<td>Gravimetric</td>
<td></td>
<td>NIOSH 0500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NIOSH 0600</td>
<td></td>
</tr>
</tbody>
</table>

A complete listing of currently accredited Industrial Hygiene laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org
AIHA Laboratory Accreditation Programs, LLC

SCHEME OF ACCREDITATION

NVL Laboratories, Inc.
4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: 101861
Issue Date: 03/29/2019

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory’s current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

The EPA recognizes the AIHA-LAP, LLC ELLAP program as meeting the requirements of the National Lead Laboratory Accreditation Program (NLLAP) established under Title X of the Residential Lead-Based Paint Hazard Reduction Act of 1992 and includes paint, soil and dust wipe analysis. Air and compositing wipes analyses are not included as part of the NLLAP.

Environmental Lead Laboratory Accreditation Program (ELLAP)

Initial Accreditation Date: 02/07/1997

<table>
<thead>
<tr>
<th>Field of Testing (FoT)</th>
<th>Technology sub-type/ Detector</th>
<th>Method</th>
<th>Method Description (for internal methods only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paint</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Soil</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Settled Dust by Wipe</td>
<td></td>
<td>EPA SW-846 3051</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA SW-846 7000B</td>
<td></td>
</tr>
<tr>
<td>Airborne Dust</td>
<td></td>
<td>NIOSH 7082</td>
<td></td>
</tr>
</tbody>
</table>

A complete listing of currently accredited Environmental Lead laboratories is available on the AIHA-LAP, LLC website at:
http://www.aihaaccreditedlabs.org

Effective: 10/14/2016
Scope ELLAP_R7
Page 1 of 1
The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory’s current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Environmental Microbiology Laboratory Accreditation Program (EMLAP)

Initial Accreditation Date: 02/01/1997

<table>
<thead>
<tr>
<th>EMLAP Category</th>
<th>Field of Testing (FoT)</th>
<th>Method</th>
<th>Method Description (for internal methods only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungal</td>
<td>Air - Direct Examination</td>
<td>SOP 12.133</td>
<td>In-House: Analysis of Spore Trap</td>
</tr>
<tr>
<td></td>
<td>Bulk - Direct Examination</td>
<td>SOP 12.133</td>
<td>In-House: Bulk Analysis</td>
</tr>
<tr>
<td></td>
<td>Surface - Direct Examination</td>
<td>SOP 12.133</td>
<td>In-House: Analysis of Surface Wipe</td>
</tr>
</tbody>
</table>

A complete listing of currently accredited Environmental Microbiology laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org
AIHA Laboratory Accreditation Programs, LLC
SCOPE OF ACCREDITATION

NVL Laboratories, Inc.
4708 Aurora Avenue N., Seattle, WA 98103

Laboratory ID: 101861
Issue Date: 03/29/2019

The laboratory is approved for those specific field(s) of testing/methods listed in the table below. Clients are urged to verify the laboratory’s current accreditation status for the particular field(s) of testing/Methods, since these can change due to proficiency status, suspension and/or withdrawal of accreditation.

Unique Scopes Laboratory Accreditation Program (Unique Scopes)

Initial Accreditation Date: 04/01/2013

<table>
<thead>
<tr>
<th>Unique Scope Category</th>
<th>Field of Testing (FoT)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Product Testing</td>
<td>Lead in Paint and Other Similar Surface Coatings</td>
<td>CPSC-CH.E1003-10</td>
</tr>
<tr>
<td></td>
<td>Total Lead in Metal Children’s Product</td>
<td>CPSC-CH.E1001-08</td>
</tr>
<tr>
<td></td>
<td>Total Lead in Non-Metal Children’s Products</td>
<td>CPSC-CH.E1002-08</td>
</tr>
</tbody>
</table>

A complete listing of currently accredited Unique Scope laboratories is available on the AIHA-LAP, LLC website at: http://www.aihaaccreditedlabs.org
This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

Asbestos Fiber Analysis

is on the Scope of Accreditation, for

accredited by the National Voluntary Laboratory Accreditation Program for specific services.

Seattle, WA

NVLAP Laboratories, Inc.

NVLAP Lab Code: 102063-0

Certificate of Accreditation to ISO/IEC 17025:2005

National Institute of Standards and Technology
United States Department of Commerce
For the National Voluntary Laboratory Accreditation Program

18/A03

EPA 600/R-93/116 Method for the Determination of Asbestos in Bulk Building Materials

18/A01

EPA 40 CFR Appendix E to Support E of Part 763, Interim Method of the Determination of

Bulk Asbestos Analyses

NLAP LAB CODE 102063-0

NVLAP LABORATORIES, Inc.

http://www.nvlaplabs.com
E-mail: nick@nvlaplabs.com
Phone: 206-247-1000 Fax: 206-634-1936

4708 Aurora Avenue N.
Seattle, WA 98103

Scope of Accreditation to ISO/IEC 17025:2005

NVLAP®
National Voluntary Laboratory Accreditation Program
APPENDIX G
Building Inspector Training Certificates
Certificate of Completion

Stephan Gilley

has successfully completed

4-Hr AHERA Certified Building Inspector Refresher Training

Online instructor-led course

In compliance with TSCA Title II AHERA 40 CFR Part 763

as approved by the State of Missouri

Kyron Environmental Accreditation #MO-129

Date of Training & Exam: April 30, 2020 online instructor-led

Certificate # BIR20200430-08

Expires: 04/30/2021