
Securing the Supply Chain in a
Company

Casaba | Slater Weinstock

What is a software supply chain?

• It is anything that goes into your code or anything that affects your
code from development to production

• What all is included in the software supply chain?
– Code
– Binaries
– Open-source software (from repositories, package managers, etc)
– Internal packages
– Build scripts
– Packaging scripts
– The infrastructure the software runs on

• Also:
– Who wrote the software, who reviewed it, software licensing, supported

versions, when it was contributed
– The software that checks for known security issues

Where to attack?

• Two main areas where the supply chain can be attacked
– Components under the company’s control

– External components not under the company’s control

• Types of attacks:
– Dependency confusion targeting open-source components or internal

packages

– Typosquatting

– Developer accidents

– Compromising an employee’s accounts or otherwise injecting code
into the company’s private repository

– Stealing code-signing certificates

– Attacking the build environment

– Ransomware

Recent newsworthy attacks

• REvil
– Happened against Kaseya, a managed service provider

– Used an authentication bypass in the web UI of VSA, and then used
SQL injection to upload the payload and deploy the malicious update

– Due to the nature of the product, ~1500 downstream businesses were
impacted by this

• Trojan Source
– Hiding malicious code with Unicode characters resulting in it getting

missed during a routine code review

– Early return example

Recent newsworthy attacks

• SolarWinds
– Targeted Orion, an IT performance monitoring system

• This software had privileged access and was widely deployed

– SolarWinds network was infiltrated, build system was targeted, and code injection
vectors were tested

– Code was eventually signed and deployed to the 30K+ customers

• XcodeSpy
– Trojan Xcode project based on TabBarInteraction, a legitimate Xcode project which

adds animation to the tab bar for an iOS application

– Runs malicious code that downloads the EggShell backdoor from a remote server

– Acts as a first step in a supply chain attack

• ua-parser-js
– Took over developer’s account (https://github.com/faisalman/ua-parser-

js/issues/536#issuecomment-949742904) with the probable help of an email bomb

– After installation, the script detects the OS and downloads the respective binary,
which then downloads a cryptominer to mine cryptocurrency

https://github.com/faisalman/ua-parser-js/issues/536#issuecomment-949742904
https://github.com/faisalman/ua-parser-js/issues/536#issuecomment-949742904

An Example – Dependency Confusion

Internal
Package

Repository

internal-package-1.1.0.tar.gz
internal-package-1.1.1.tar.gz
internal-package-1.1.2.tar.gz

PyPI

Flask-2.1.2.tar.gz
numpy-1.22.4.zip
numpy-1.22.3.zip
numpy-1.22.2.zip

requests-2.7.0.tar.gz

internal-package-1.1.2.tar.gz
Flask-2.1.2.tar.gz
numpy-1.22.4.zip

requests-2.7.0.tar.gz

An Example – Dependency Confusion

Internal
Package

Repository

internal-package-1.1.0.tar.gz
internal-package-1.1.1.tar.gz
internal-package-1.1.2.tar.gz

PyPI

Flask-2.1.2.tar.gz
numpy-1.22.4.zip
numpy-1.22.3.zip
numpy-1.22.2.zip

requests-2.7.0.tar.gz
internal-package-99.0.0.tar.gz

internal-package-99.0.0.tar.gz
Flask-2.1.2.tar.gz
numpy-1.22.4.zip

requests-2.7.0.tar.gz

But you need the internal package names…

• You can get these by scraping GitHub

• Searching the JavaScript on the website of interest for calls
such as:
– require()

– Search for paths that are prepended with the company’s name

• Stack Overflow

• Guessing

Has this happened?

• Yes, a proof-of-concept was demonstrated in early 2021

• https://www.npmjs.com/package/yelp-bunsen-logger-js

• https://www.npmjs.com/package/yelp-js-infra

• https://www.npmjs.com/package/yelp_sitrep

https://www.npmjs.com/package/yelp-bunsen-logger-js
https://www.npmjs.com/package/yelp-js-infra
https://www.npmjs.com/package/yelp_sitrep

This seems easy… Why?

• A lot of times it’s due to assumptions or confusion

• For example, in Python:
– Developers using --extra-index-url, which does the same type of check

as previously described, instead of --index-url.

– Using Artifactory, which is used in many corporations, mixes internal
and public libraries into its own type of library. Therefore, it shares the
same type of vulnerability

Other derivatives - Typosquatting

• Typosquatting, which has been known about since 2016

• Let’s say I want to install requests, I do: pip install requests

• As the name typosquatting implies, an attacker takes
advantage of common typos, such as:
– requets

– reqeusts

– requsts

• This can lead to arbitrary code execution among other issues

CrateDepression - Rust

• This attack targeted rust_decimal by uploading a malicious
crate called rustdecimal

• Once the machine is infected, the environment variable
GITLAB_CI is searched for

• The Poseidon payload (written in Go) is downloaded to the
targeted Linux or macOS platform. Once downloaded, the
binary is set as an executable and on macOS the quarantine
bit is removed

• C2 communication is set up

How do you mitigate these types of attacks?

• To mitigate against dependency confusion in Python:
– Avoid using --extra-index-url

– Use version pinning

– If possible, use version hashing (pip install --hash)

Hash match for Flask version:

Hash mismatch for Flask version:

Event-Stream - Dependencies of dependencies attack

• A JavaScript library known as Event-Stream is downloaded
approximately 2 million times a week

• The original author gave another developer/maintainer access to
the repository (Right9ctrl)

• The new developer added a dependency to Flatmap-Stream(which
was an injection attack) and bumped the minor version of Event-
Stream

• A few days, that developer removed Flatmap-Stream and bumped
the major version of Event-Stream

• Millions of users were affected as it’s downloaded so often

• Ultimately, the malware targeted Copay. If wallet is found, it
executes and attempts to steal your bitcoin wallet

• https://github.com/dominictarr/event-stream/issues/116

https://github.com/dominictarr/event-stream/issues/116

Secure SDLC

• Having clear security requirements defined up front and distributed
to developers

• Perform threat modeling

• Establish design requirements and use appropriate cryptographic
standards

• Keeping an inventory of all 3rd-party components that are used and
performing dependency analysis/SCA

• Using approved tools/versions and using appropriate compiler flags

• Performing static analysis against source code before compiling

• Perform dynamic analysis of the compiled software

• Pen testing

Threat Modeling

• The 5 major steps are:
– Define the security requirements of the application

– Diagram the application

– Identity the potential threats and security boundaries

– Apply mitigations

– Validate that the threats have been mitigated

• Having to make a significant change to an application costs a
huge amount of money, causes delays, optics, etc

Establish design requirements/Crypto standards

• Many features are susceptible to vulnerabilities just based on
complexity
– Authentication

– Role-based access controls

– Logging

– Cryptographic protocols

• Examples
– Two-factor authentication

– Password complexity

– Collision resistant hashing algorithms

Dependency Analysis/Software Composition Analysis (SCA)

• Identification of vulnerabilities in open-source code used by companies
• Many tools exist including:

– Snyk.io
– Synopsys Black Duck
– npm-audit or yarn audit
– Manual review of the package manifests

• Each of these tools have various strengths and weaknesses.
• What if these tools identify a huge number (I have seen 20K+ findings in

the past)
– This does not mean the application is vulnerable. It is possible that the application

does the not leverage a vulnerable component in a vulnerable way.
– It is important to ensure that each of the findings though are reviewed to

determine if a vulnerability exists.

• A lot of the findings can be fixed by updating to the latest point release.
Think back to Event-Stream, if you updated to the major release a few
days later, you would no longer be vulnerable.

Tool Use and SAST

• What IDEs are being used? Are appropriate plugins being
used?

• In the build pipeline, what compiler/linker flags are being
used?
– For example (GCC): -Werror, -Wall, -Wextra, -fstack-protector, -Wsign-

conversion, -Wconversion

• Is the source code free of secrets including in the history?

• Is the developer documentation free of secrets?

• What static analysis tools are being used?
– For example, Semmle, PVS-Studio, Semgrep

Other areas to look at in the supply chain

• Build reproducibility

• Code review process

• Release process

• Build artifact storage and retention

• Access revocation

• Session longevity

• Automation of the build/scripting

Introducing SLSA:
Supply-chain Levels for Software Artifacts

• Introduced by Google
• SLSA provides an easy framework to measure the security of a

supply chain
• Consists of 4 levels where 3 is the most secured – Updated from 0.1

spec
– Level 0: No real requirements, no SLSA implemented
– Level 1: Provenance shows how the package was built
– Level 2: Signed provenance and generated on a hosted build platform
– Level 3: Build platform itself has been hardened

– Source Requirements
– Build Requirements
– Provenance Requirements
– Common Requirements

SLSA Build L0

• Lack of SLSA

SLSA Build L1

• Consistent build process

• Build platform generates provenance automatically
– Provenance describes:

• What entity built the package

• What build process was used

• What the top-level input to the build was

• Provenance is distributed

SLSA Build L2

• Everything in L1

• Build runs on a hosted build platform
– Provenance is signed and generated on the build platform

• Verification of provenance includes validation of
authenticity

SLSA Build L3

• Everything in L1 and L2

• Build platform must prevent each run from influencing
another one

• Prevent any secrets that are used to sign the provenance from
being accessible

References

Slide 2:
https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/

Slide 3:
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://docs.microsoft.com/en-us/microsoft-365/security/intelligence/supply-chain-malware?view=o365-worldwide

Slide 4:
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/diving-deeper-into-the-kaseya-vsa-attack-revil-returns-and-other-hackers-are-riding-their-coattails/
https://trojansource.codes/trojan-source.pdf

Slide 5:
https://sysdig.com/blog/software-supply-chain-security/
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://www.securemac.com/news/xcodespy-mac-malware-targets-developers
https://www.bleepingcomputer.com/news/security/new-xcodespy-malware-targets-ios-devs-in-supply-chain-attack/
https://www.truesec.com/hub/blog/uaparser-js-npm-package-supply-chain-attack-impact-and-response
https://blog.aquasec.com/npm-library-supply-chain-attack

Slide 6:
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f

Slide 7:
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f

Slide 8:
https://redhuntlabs.com/blog/top-organizations-on-github-vulnerable-to-dependency-confusion-attack.html
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

https://github.blog/2020-09-02-secure-your-software-supply-chain-and-protect-against-supply-chain-threats-github-blog/
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://docs.microsoft.com/en-us/microsoft-365/security/intelligence/supply-chain-malware?view=o365-worldwide
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/diving-deeper-into-the-kaseya-vsa-attack-revil-returns-and-other-hackers-are-riding-their-coattails/
https://trojansource.codes/trojan-source.pdf
https://sysdig.com/blog/software-supply-chain-security/
https://www.techtarget.com/whatis/feature/SolarWinds-hack-explained-Everything-you-need-to-know
https://www.crowdstrike.com/blog/sunspot-malware-technical-analysis/
https://www.securemac.com/news/xcodespy-mac-malware-targets-developers
https://www.bleepingcomputer.com/news/security/new-xcodespy-malware-targets-ios-devs-in-supply-chain-attack/
https://www.truesec.com/hub/blog/uaparser-js-npm-package-supply-chain-attack-impact-and-response
https://blog.aquasec.com/npm-library-supply-chain-attack
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f
https://redhuntlabs.com/blog/top-organizations-on-github-vulnerable-to-dependency-confusion-attack.html
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

References

Slide 9:
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610

Slide 10:
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-risk-using-private-package-
feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Private%20Package%20Feeds%20-%20v1.0.pdf

Slide 11:
https://incolumitas.com/2016/06/08/typosquatting-package-managers/

Slide 12:
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/

Slide 13:
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f

Slide 14:
https://github.com/dominictarr/event-stream/issues/116
https://5stars217.github.io/2021-05-03-metadata-analysis-flatmap/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/

Slide 15:
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2

https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://medium.com/@alex.birsan/dependency-confusion-4a5d60fec610
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-risk-using-private-package-feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Private%20Package%20Feeds%20-%20v1.0.pdf
https://azure.microsoft.com/mediahandler/files/resourcefiles/3-ways-to-mitigate-risk-using-private-package-feeds/3%20Ways%20to%20Mitigate%20Risk%20When%20Using%20Private%20Package%20Feeds%20-%20v1.0.pdf
https://incolumitas.com/2016/06/08/typosquatting-package-managers/
https://www.sentinelone.com/labs/cratedepression-rust-supply-chain-attack-infects-cloud-ci-pipelines-with-go-malware/
https://medium.com/ochrona/preventing-dependency-confusion-attacks-in-python-fa6058ac972f
https://github.com/dominictarr/event-stream/issues/116
https://5stars217.github.io/2021-05-03-metadata-analysis-flatmap/
https://snyk.io/blog/a-post-mortem-of-the-malicious-event-stream-backdoor/
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2

References

Slide 16:
https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling

Slide 17:
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2

Slide 18:
https://snyk.io/series/open-source-security/software-composition-analysis-sca/

Slide 19:
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Slide 20:
https://github.com/slsa-framework/slsa
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html

Slide 21:
https://kalilinuxtutorials.com/slsa/
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2
https://www.microsoft.com/en-us/securityengineering/sdl/threatmodeling
https://www.synopsys.com/blogs/software-security/secure-sdlc/
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl/practices#practice2
https://snyk.io/series/open-source-security/software-composition-analysis-sca/
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://github.com/slsa-framework/slsa
https://security.googleblog.com/2021/06/introducing-slsa-end-to-end-framework.html
https://kalilinuxtutorials.com/slsa/
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

References

Slide 22:

https://slsa.dev/spec/v1.0/levels

https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

Slide 23:

https://slsa.dev/spec/v1.0/levels

https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

Slide 24:

https://slsa.dev/spec/v1.0/levels

https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

Slide 25:

https://slsa.dev/spec/v1.0/levels

https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

Slide 26:

https://slsa.dev/spec/v1.0/levels

https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

https://slsa.dev/spec/v1.0/levels
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md
https://slsa.dev/spec/v1.0/levels
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md
https://slsa.dev/spec/v1.0/levels
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md
https://slsa.dev/spec/v1.0/levels
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md
https://slsa.dev/spec/v1.0/levels
https://github.com/slsa-framework/slsa/blob/main/docs/_spec/v0.1/requirements.md

Thank You

Slater Weinstock

slater@casaba.com

	Slide 1: Securing the Supply Chain in a Company
	Slide 2: What is a software supply chain?
	Slide 3: Where to attack?
	Slide 4: Recent newsworthy attacks
	Slide 5: Recent newsworthy attacks
	Slide 6: An Example – Dependency Confusion
	Slide 7: An Example – Dependency Confusion
	Slide 8: But you need the internal package names…
	Slide 9: Has this happened?
	Slide 10: This seems easy… Why?
	Slide 11: Other derivatives - Typosquatting
	Slide 12: CrateDepression - Rust
	Slide 13: How do you mitigate these types of attacks?
	Slide 14: Event-Stream - Dependencies of dependencies attack
	Slide 15: Secure SDLC
	Slide 16: Threat Modeling
	Slide 17: Establish design requirements/Crypto standards
	Slide 18: Dependency Analysis/Software Composition Analysis (SCA)
	Slide 19: Tool Use and SAST
	Slide 20: Other areas to look at in the supply chain
	Slide 21: Introducing SLSA: Supply-chain Levels for Software Artifacts
	Slide 22: SLSA Build L0
	Slide 23: SLSA Build L1
	Slide 24: SLSA Build L2
	Slide 25: SLSA Build L3
	Slide 26: References
	Slide 27: References
	Slide 28: References
	Slide 29: References
	Slide 30: Thank You

