Automotive Cybersecurity: An Introduction

- Rita M. Barrios, Ph.D.
- Associate Director - Vehicle Cyber Institute
- Adjunct Professor - Vehicle Cyber Engineering
- Sr. Cybersecurity Engineer Bosch Automotive
What is Cybersecurity?
What is Cybersecurity?

Cybersecurity is the protection of Internet Connected, Computer-based Systems and their components (hardware, software, data, & people) against unauthorized information disclosure, transfer, modification, or destruction, whether accidental or intentional.
CIA: Confidentiality, Integrity, & Availability

- **Confidentiality**: Ensuring critical information is accessible to only those AUTHORIZED to have access.

- **Integrity**: Software, Data, Hardware is complete and free from UNAUTHORIZED modifications.

- **Availability**: Ensuring the system (hardware, software, & data) are usable as intended, in their intended environment.
Authentication vs. Authorization

- Authentication: Ensuring that the identity of the entity can be verified to True
- Authorization: Ensuring that an Authenticated entity has access to only those components that are needed to complete an assigned task
Authentication

Entities can be human or electronic

Uses Cryptography functions

Methods: Passwords, Tokens, Digital Signatures & Certificates, Biometrics, etc.

Strong Authentication: Ability to validate 2 of the following characteristic
Vulnerability, Threats & Risk

Threat: acts performed by individuals with harmful intent, whose goal is to steal data, cause damage to or disrupt computing systems.

Vulnerability: a weakness that can be exploited by cybercriminals to gain unauthorized access to a computer system: Network, Operating Systems, Hardware, Software & Humans

Risk: the probability of exposure or loss resulting from a cyber attack or data breach: Loss can be tangible (e.g., money) or intangible (e.g., reputation)

Vulnerabilities and Threats are mitigated by countermeasures that reduce Risk
Who are these hackers?
- Individuals (significant time, varied expertise, limited $ & capability)
 - Corporate (moderate time, high expertise, moderate $ & capability)
- Universities (moderate time & $, high expertise, high capability)
- Terrorists (moderate time, varied expertise, moderate $ & capability)
- Nation states (significant time, high expertise, high $ & capability)

Hacking Goals
- Fame, notoriety, revenge
- Economic gain – e.g., unlock hidden functionality; access IP/content
- Terrorism - e.g., disrupt a city at rush hour; remove truck from service

Hacking consequences
- Brand damage – loss of customer confidence in products/systems
- Liability – legal actions (criminal & civil)
- Economic loss – recalls, replacements, repairs, future sales, fines
- Loss of Life – vehicle crash, product malfunction
Why Does it Matter?
Four Factors to Consider

- Technology
 - What are we securing and why - not everything needs to be secured
- Economics of the stakeholders (Victim & Attacker)
 - Motivation: What do they have to gain or loose
- Social Influence
 - Public Perception of the Stakeholders
- Public Policy
 - Regulations, Standards, Laws
Automotive Cybersecurity

A quick overview…
A Computer on Wheels…

Electronic Control Units (ECU)
The Software Defined Vehicle

<table>
<thead>
<tr>
<th>787 Dreamliner</th>
<th>Ford F150 Lightning EV</th>
<th>F22 Raptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>7+ Million LoC</td>
<td>130+ Million LoC</td>
<td>2+ Million LoC</td>
</tr>
</tbody>
</table>

"Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away.” *Antoine de Saint-Exupéry*

http://www.informationisbeautiful.net/visualizations/million-lines-of-code/
Entry Points for Hackers

External
• Bluetooth
• Internet
• Wi-Fi
• Key fob
• LIDAR
• Digital broadcasts
• Tire Pressure Monitors
• Taillight
• DSRC

Internal
• Diagnostic Port (OBD)
• CD/DVD
• Auxiliary Input Devices (USB)
• CAN Bus
• Auto Ethernet
• Cellular
• Mobile Device Paring
What Could Go Wrong?

- Theft
- Terrorism
- Revenge
- Mischief
- Extortion - Ransomware
- Insurance fraud
- Espionage
- Stalking
- Feature (de)activation
- Identity theft
- Counterfeiting
Automotive Security Events

- 2010: OnStar remote control
- 2010: Wifi laptop remote control
- 2014: Remote control through Zubie dongle
- 2015: Dealer malware propagation
- 2015: Key fob replicator
- 2015: Jeep hack
- 2015: OnStar unlock / start takeover
- 2015: Tesla WebKit hack
- 2015: Corvette insurance dongle
- 2015: BMW unlock
- 2016: Nissan Leaf mobile app
- 2016: Tesla Wifi and Android App
- 2017: Tesla hacked by Keen again
Vehicle Hacks in Action...
2015 Miller & Valasek

The Relay Attack

CNN & West Midland Police Department (UK), (2019), “Relay Attack in Progress”
Autonomous Vehicles vs. Connected Vehicle
THE ROAD TO FULL AUTOMATION

HISTORY OF AUTONOMOUS VEHICLES (AV) IN THE U.S.

1958
First car with cruise control is introduced

2004
DARPA Challenges are created to incentivize American autonomous vehicle development

2014
Google creates first AV prototype

2016
First known fatal accident involving a Tesla in autopilot mode. Other accidents followed.

2021
Ford and GM invest billions of dollars in AV technology and testing

1995
Carnegie Mellon University Navlab project completes cross-country trip with "semi-autonomous" vehicle

2009
Google begins Self-Driving Car Project

2015
Tesla introduces autopilot software; University of Michigan’s MCity AV Lab is launched

2018-20
AV mass transit programs debut in numerous states; NHTSA releases new AV guidance

Graphic by: Sydney O'Shaughnessy
V2X Communication

DIRECT VEHICLE COMMUNICATION
Ubiquitous connectivity can facilitate automation and autonomy among cars on the road.
AV Classification Levels

SAE Levels of Driving Automation

What does the human in the driver's seat have to do?

- **SAE Level 0**
 - You are driving whenever these driver support features are engaged - even if your feet are off the pedals and you are not steering.

- **SAE Level 1**
 - You must constantly supervise these support features; you must steer, brake or accelerate as needed to maintain safety.

- **SAE Level 2**
 - You are not driving when these automated driving features are engaged - even if you are seated in "the driver's seat".

- **SAE Level 3**
 - When the feature requests, you must drive.

- **SAE Level 4**
 - These automated driving features will not require you to take over driving.

- **SAE Level 5**
 - These features can drive the vehicle under limited conditions and will not operate unless all required conditions are met.

What do these features do?

These are driver support features

- **Automatic emergency braking**
- **Lane centering**
- **Adaptive cruise control**

These are automated driving features

- **Traffic jam chauffeur**
- **Local driverless taxi**
- **Pedals/steering wheel may or may not be installed**

Example Features

- **Automatic emergency braking**
- **Lane centering**
- **Adaptive cruise control**
- **Blind spot warning**
- **Lane departure warning**

Copyright © 2021 SAE International. The summary table may be freely copied and distributed AS-IS provided that SAE International is acknowledged as the source of the content.
Vehicle Connectivity

- CAN: Controller area network
- GPS: Global Positioning System
- GSM: Global System for Mobile Communications
- LIN: Local interconnect network
- MOST: Media-oriented systems transport
Need for Cybersecurity in Vehicles

- OBD-II Port
- Network harness connectors
- Diagnostic ports
- USB ports
- Onboard vehicle networks (CAN, LIN, FlexRay, Ethernet, MOST, etc)
- CD / DVD player
- Vehicle charging port

Attack surfaces

- ECU Electronic control unit
- BT/BLE Bluetooth / Bluetooth low energy
- DSRC Dedicated short range communication
- GPS GPS receiver
- HEU Head end unit to which ECU bus connects
- NFC Near field communication
- OTA Over-the-air in-car 4G/LTE connectivity
- SEC Vehicle security module
- WiFi WiFi
Vehicle Cyber Engineering (VCE) Graduate Programs
Graduate Certificate - Vehicle Cyber Engineering

This is a 15-credit (five-course) Graduate Certificate Program.

Required Courses:

1. **CSSE 5545** Advanced Computer Security (3 credits)
2. **CSSE 5760** Network Security (3 credits)
3. **VCE 5110** Introduction to Cybersecurity (3 credits)
4. **VCE 5400** Secure Vehicle Embedded Systems (3 credits)
5. **VCE 5500** Secure Vehicle Electronics or **ELEE 5500** Automotive Electronics (3 credits)
Master of Science - Vehicle Cyber Engineering

This is a 30-credit (ten-course) Graduate Certificate Program.

Required Courses (5 Graduate VCE Certificate Courses plus):

6. **VCE 5330** Vehicle Hardware Security (3 credits)
7. **ELEE 5150** Secure Wireless Vehicular Networks (3 credits)
8. **CSSE 5120** Introduction to Data Science (3 credits) or **ELEE 5750** Deep Learning (3 credits)
9. **ELEE 5350** Machine Learning or **VCE 5350** Applied Machine learning (3 credits)
10. **VCE 5600** Capstone Design (3 credits)
Questions