CySER - Carnivore A

Team Members: Riggs Ferguson and Spencer Scamman

EMEC 499/ETME 499 – Capstone I/II Faculty Advisor and Sponsor: Dr. Clemente Izurieta
Instructors: Craig Shankwitz, Felix Grobler

Background
The Air Force has identified cyber security as a primary concern to national security. Cyber warfare is constantly evolving and there is a lack of new officers coming into the Air Force with a cyber security foundation. The CySER program wants cadets to understand and be able to encrypt live video data as it would be done by a real drone the Air Force uses.

Requirements
- The weight does not exceed the payload of the drone of <800g.
- The budget remains less than $1000 but with a goal of $500.
- Fit within a 200mm x 200mm x 200mm volume.
- The camera can rotate with a range of 0-90 degrees.

Design Process
Throughout our design and manufacturing process, we encountered some issues:
- Wi-Fi Direct was not available on the Raspberry Pi 4 Model B.
- Internet connection created a larger latency.
- The encrypting and decrypting process was initially only done on one device.

Camera Controls
The camera has two views: forward and down. This satisfies the predefined requirement of a 0-90 degree range for the camera. It also creates a more user friendly code by allowing the desired view to be chosen rather than the specific angle value.

Encryption & Data Transfer
The process of encryption and data transfer is shown in Figure 1. The video data is collected and encrypted on the Raspberry Pi. The Pi transmits the data over a Wi-Fi network to the laptop, where it is decrypted and displayed. The level of encryption may be adjusted based on download speeds.

Manufacturing
The manufacturing plan was to focus on purchasing widely available parts that only required minor modifications to keep the overall cost down and manufacturing time as low as possible.

Connection
The Raspberry Pi and laptop are connected through a shared Wi-Fi network and Secure Shell Protocol (SSH). This requires knowledge of the Pi’s IP address as well as the SSH password to connect.

Test Results
With each level of encryption, there will be a difference in latency times due to each option requiring more or less processing power. In order to determine the effects of the change in encryption level, a stop watch was placed in front of the camera and an additional camera was placed to see both the stopwatch and video output on the server, then the difference was calculated as being the latency. The average of ten tests for each are below.

<table>
<thead>
<tr>
<th>Encryption</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>430</td>
</tr>
<tr>
<td>DES</td>
<td>610</td>
</tr>
<tr>
<td>3DES</td>
<td>640</td>
</tr>
<tr>
<td>AES-128</td>
<td>870</td>
</tr>
<tr>
<td>AES-196</td>
<td>600</td>
</tr>
<tr>
<td>AES-256</td>
<td>510</td>
</tr>
</tbody>
</table>

Figure 2. The measured latency of each encryption.

Final Specifications
- Weight: 717 g
- Cost: $268
- Size: 156x82x99 mm
- Angle of Camera Rotation: 0-90 deg
- Latency: 510-890 ms

Figure 3. The specifications of the final product.

Findings
The system successfully transmitted encrypted live video feed wirelessly. However, the connection was dependent on an Internet connected Wi-Fi network. This caused the latency of transmission to exceed the latency goal of 300 ms defined by the requirements.

Acknowledgements: A special thank you goes out to Dr. Clemente Izurieta and Andrew Fallin for leading the MSU branch of the CySER program while helping all of the cadets involved with the material and their individual projects. Another thank you goes out to Lt Col Lance J. Ratterman and his staff for their help in merging AFROTC and the EMEC 489R class.