Network Forensics Introduction
Typical Attack Path
Networking Basics

• Communications.
• Two systems communicating with one another, typically over a local network (LAN) or the Internet.
• Variety of messaging protocols, both stateful and stateless depending on the type of message.
Networking Basics

- Encapsulation
- OSI Model
- Encryption
- Compression
TCP / UDP Refresher

• Transport-layer protocols.
• Learn your ports.
• Typically the most interesting forensically because these are the rough level of encapsulation where we’re watching connections between systems.
• Transmission Control Protocol
 — Stateful
 — Examples include: HTTP (web), SMTP/IMAP (mail), DNS (sometimes)
• User Datagram Protocol
 — Stateless
 — Examples include: DNS (most of the time)
Network Forensics is Hard

- Encryption
- Compression
- Volume of data.
- Amount of noise.
- Encryption.
Protocol Definition

• Request for Comments (RFC)
 – Internet Engineering Task Force (IETF)
 – Document that tracks technical protocol specifications.
 – Process / context lives in RFCs

• Key RFCs for networking:
 – RFC 1918 (private networking)
 – RFC 2616 / 7230 (HTTP 1.1)
 – RFC 7540 (HTTP v2)
IP Layer – How it Works

- IP address (192.168.8.8)
 - Source
 - Destination
- IPv4
 - 4 digits 0-255
- IPv6
 - 8 groups of 4 hex digits
 - More structured than IPv4
- NAT
 - Internal / external IP scheme
 - Internally will see internal IPs
 - Externally will see single gateway IP
Subnetting

• CIDR Notation
 – “/”
 – Uses a subnet mask

• Subnets
 – Separation / segmentation of IP networks

• 192.168.1.0-256 /24 (256)
• /16 (65,536)
• /8 (16,777,216)
IP Layer – Key Information

- **Loopback**
 - 127.0.0.1

- **All addresses on the machine**
 - 0.0.0.0

- **RFC 1918**
 - 10.0.0.0-10.255.255.255 (10.0.0.0/8)
 - 172.16.0.0/12
 - 192.168.0.0/16
A Normal Day in Networkland

• Type a URL (domain) + hit enter
• DNS request for domain.com
• DNS response for domain.com
• HTTP GET request for domain.com
• HTTP 200 response with content for domain.com
Capturing Network Forensics Data

- Capturing network data either requires a dedicated (and pre-positioned) network tap.
- A network allows for a copy of all traffic coming and going (RX and TX) to be sent to an additional interface.
- A capture interface can be leveraged to get access to process or capture traffic.
Network Forensic Capture Cont’d

• **Pros:**
 – Full capture of everything.
 – Can include files, non-standard protocols, and a lot more.

• **Cons:**
 – Typically have to decrypt in-line / MITM traffic.
 – Newer TLS versions are making “passive” decryption difficult.
 – Encryption not always possible (TLS1.3)
 – Harder and harder as people move to cloud environments.
Network Metadata Capture

• Capture is becoming less and less feasible due to data transmission and storage limitations.
 - 100 MBPS x 7d = 7.56TB
 - 10 GBPS x 7d = 756TB
 - 10 GBPS x 30d = 3.26PB

• Pros
 - Fast
 - Low storage requirements

• Cons
 - Processing overhead is also a challenge without hardware offloading and specialized drivers (like AF_PACKET which allow raw packet access).
Network metadata by environment

- **Cloud**
 - Typically netflow data, e.g., AWS, VPC Flow logs

- **On-premise**
 - Alert metadata: Suricata (most popular), other Network Intrusion Detection (NIDS) tools
 - Flow data: typically collected by a netflow collector
 - Network Security Monitoring (NSM) metadata: typically collects protocol metadata for some or all protocols
Core Network Forensics Goals

• Understand the nature of communication.
 – Who is communication.
 – About what.
 – With whom (source / destination pairs).

• Key investigative uses:
 – Bookend an investigation.
 – Confirm key events at network layer.
Common Protocols - DNS

• Domain Name System – TCP/UDP [53]
 — Always kind of broken.
 — Mapping names to IP addresses.
• DNS Query
 — Given a DNS name -> what IP?
• DNS Response
 — IP <=> Domain mapping.
• DNS caching
Common Protocols - Mail

- Simple Mail Transfer Protocol (SMTP) [TCP 25, 587, 465]
 - “secure” and “non-secure” ports.
 - “Hello and send” protocol
 - Connects to server -> Sends Content

- Internet Message Access Protocol (IMAP) [TCP 143, 993]
 - Folder support
 - Multi-part (large) messages

- Post Office Protocol (POP3) [TCP 110, 995]
Common Protocols - Web

- Hypertext Transfer Protocol (HTTP) [TCP 80,443]
 - “secure” and “non-secure” ports.
- Request and response protocol
- HTTP Request
 - Given a Uniform Resource Indicator (URI) -> get me the content.
 - Multiple verbs (GET / PUT / POST)
 - GET – variables are in the URI
 - POST – variables and data are a part of the request (commonly not logged)
Common Protocols – Web Cont’d

• Hypertext Transfer Protocol (HTTP) [TCP 80, 443]
 – “secure” and “non-secure” ports.
• Request and response protocol
• HTTP Response Codes:
 – 2XX -> Good
 – 3XX -> Redirect
 – 4XX -> Client Error
 – 5XX -> Server Error
• 200 Good
• 404 Not Found
• RFC 2616 // Wikipedia for additional details
Applied Network Forensics
Networking Implementation

• Network layers are implemented by different components.
• From network interface drivers -> OS Networking stack -> Application
Fingerprinting

• Fingerprinting is where we use specific identifying characteristics in evidence (in this case network data) to identify a system or operating system.

• We can use this technique to identify operating systems and (sometimes) installed software on a system.
Time to Live

- TTL = Time to Live
- IP-layer component
- Packets circulate / have a lifetime
- TTL sets the max lifetime of a packet (IP)
Fingerprinting Operating Systems

- **Windows TTL**
 - TTL = 128 (number of router hops)
- **Specific update / OS services**
 - Windows Update
 - Telemetry
 - v10.events.data.microsoft.com
- **Auth / Cross-communications**
 - DCERPC (445 TCP)
 - EPMAPPER (135 TCP)

- **Linux TTL**
 - TTL = 64
- **Specific update / OS services**
 - (distro mirrors)
- **Auth / Cross-communications**
 - SSH (22 TCP)
Fingerprinting Applications

• **User agents**
 - Chrome
 - dl.google.com
 - Firefox
 - aus<X>.mozilla.org

• **Productivity**
 - Office
 - nexusrules.officeapps.live.com
 - Gsuite
 - Googledrive.com
Traffic Analysis

• Brim
 – Inputs:
 • Raw Packet Capture (PCAP)
 • Logs (binary or non-binary formats)
 – Binary: ZNG
 – Non-binary: CSV
Traffic Analysis

• Brim
 – Outputs:
 • Metadata
 – Bro / Zeek
 • Alert data
 – Suricata (Emerging Threats)
Bro/Zeek

- Used to be called “bro”
- Now called “zeek”
- Takes packet data and produces logs
- Many logs are easy to figure out:
 - Protocol based...
 - http: web traffic
 - conn: netflow
- Some are not
 - “weird”: things Bro thinks are weird
 - “files”: file log generated from traffic (there’s no “file” protocol)
Working with Brim

• Start with built-in queries
• Then query traffic by protocol:
 — _path==“dns”
 — _path==“http”
 — …
• Then summarize using count()
• Then drill-down with “pivot to logs”
Brim Query Language

- "splunk like" uses "|"
- Select > function > present
 - _path=="dns" | count() by query | sort -r
 - "count()" = GROUP BY
 - "sort" = sort by amount
- May want to roll / unroll to use "pivot to logs" and other features. Certain aggregations will break features.
Summarizing Traffic

• Start with built-in bro logs
• Drill into protocols
 – _path=="dns" | count() by query
• Drill into alerts
 – event_type=="alert" | count()
 by alert.severity,alert.category | sort count
Building a Traffic Summary

• Who’s talking?
 – Source IP (what is it)
 – Destination IP (what is it)

• What’s the nature of the communication?
Example Traffic Summary

- DNS
 - Clients
 - Local DNS Server
 - Standard / non-standard traffic
 - Queries and responses
 - (ex: A record requests / responses)
 - No non-standard activity observed
 - Look for outliers (query type / etc)
Example Traffic Summary

- **SMTP**
 - Clients (IP / OS / etc)
 - List of email servers
 - Standard / non-standard traffic
 - Ports / protocols / encrypted
 - `<normal|not normal>` to see # of servers / servers contacted by `<workstation|server>`
 - Mail client observed
 - No non-standard activity observed
 - Look for outliers / total activity
 - # of servers / etc.
Is it Bad / Interesting

- Lots of approaches – top 3 are:
 - Signature-based matches
 - Typically suricata alerts
 - Outlier analysis
 - Looking for very frequent (beaconing)
 - Looking for very rare (IP / malware download)
 - Key events
 - Binary download
Working with Wireshark

- Wireshark logo

- This launches wireshark:
TCP Stream Extraction

- Follow TCP Stream
TCP Stream Extraction

- Follow TCP Stream
Files in BRIM

- Pulls from Bro/Zeek “file” log
- Gives you a hash
Files?

- Sometimes we have full files, sometimes we have metadata.
- In the case of metadata (typically a hash value) – we can go to Virustotal to find out more about the file.
Virustotal A/V Results

- Among other things, VT aggregates AV Engines.
- Not always perfect but can be a good barometer / starting point to see if a file is malicious.

of AV Engines that detect as malicious

Type of file

AV Detection names, can help to ID malware.
Extracting Files

• PCAP is a binary file format – essentially file extraction can be performed with 2 methods:
 – Bruteforce file headers
 – Look for “file” sections in protocols (mail attachments, etc.)

• NetworkMiner will do this for us, however, there are other options if we’re not getting what we need.
Using NetworkMiner

• NetworkMiner – Free Edition
 — Enables us to load a PCAP
 — Extract Files
• Start by loading the PCAP
• Then will list and can extract files.