Incident Management
Investigations and Incident Handling

• Investigations and incidents have defined processes.
• For criminal investigations and best practices – ACPO Good Practice Guide
• For incident response – NIST 800-61r2
NIST 800-61r2

- NIST 800-series – information security series.
- 800-61r2 – Computer Security Incident Handling Guide
Investigation Preparation

• Communications:
 – Contact information
 – On-call information
 – Incident reporting mechanisms
 – Issue tracking systems
 – Encryption software
 – War room
 – Secure storage facility
Attack Lifecycle
Attack Vectors

- External/Removable Media
- Web-based attacks
- Email attacks
- Impersonation
- Improper usage
- Loss or theft of equipment
- Other
Signs of an Incident

Precursors

• Web server logs indicate the presence of unauthorized vulnerability scanning.
• Announcement of a new, relevant vulnerability.
• A threat group stating privately or publicly that they are targeting the organization
Signs of an Incident

Indicators of Compromise

• Alerts from a NIDS or HIDS
• Suspicious log / audit log entries for key services.
• Configuration changes
• Multiple failed login or access attempts
Analysis

- Profile networks and systems.
- Baseline normal behavior
- Perform event correlation
- Maintain and use a knowledge base of information
- Use Internet search engines for research
- Collect additional data
- Filter the data
- Seek assistance from others
Documentation

• Current status of the incident
• Summary of the incident
• Indicators of the incident
• Other related incidents
• Actions taken by incident handlers
• Chain of custody, if applicable
• Impact assessments related to the incident
• List of gathered evidence
• Next steps to be taken
Prioritization

- Prioritization of incidents is critical
- Functional impact
 - impact of the incident on IT systems functionality
- Information impact
 - What’s the impact on confidentiality, integrity and availability of information
- Recoverability
 - Size of the incident, degree of compromise, and type of resources it affects will impact the amount of resources needed for recovery
Notification

• Key stakeholders must be notified based on the incident severity and impacts
• This is typically documented in an organization’s incident response plan
• Notification requirements may vary by the data involved in the incident or contractual requirements
Containment

• Containment strategies vary and they must balance the need to prevent additional damage or theft with a need to maintain and collect evidence
• Premature containment can lead to situations where an adversary is thought to be “evicted” but is not
• Containment cannot occur without root cause analysis
• Containment typically involves parallel network and identity efforts
• Example: APT actor war stories
Evidence Collection

• Once containment is established / it’s time to figure out what happened, and to do that a scope of systems and a collections plan are needed

• Scoping systems is critical while prioritizing timelines and resources for collection
Analysis

• Identify attacking hosts
• Identify the root cause of the incident
• Build a timeline of the incident including the sequence of events from the root cause of the incident
Eradication and Recovery

• Similar to containment strategies, good eradication and recovery strategies will take inputs from evidence collection and analysis and balance the business capabilities against attacker access
• Phased approaches generally work better
• Eradication - removing adversary access
• Recovery - ensuring systems are functional within expected parameters
• Don’t forget to address the root cause!
Lessons Learned

• What happened, when?
• Did staff and organizations perform as expected?
• What would staff do differently the next time an incident like this occurs?
• What corrective actions can prevent similar incidents in the future?
Post-incident Analysis

• Prioritization of incidents is critical
• Functional impact
 — impact of the incident on IT systems functionality
• Information impact
 — What’s the impact on confidentiality, integrity and availability of information
• Recoverability
 — Size of the incident, degree of compromise, and type of resources it affects will impact the amount of resources needed for recovery
Conducting an Investigation: Investigation Models
Formal Investigation Process Models

• Digital investigations must uncover and produce the truth
• Early models described a stepwise approaches to specific investigative problems (and focused solely on computer crime on networked computer systems)
• Real-world digital investigations are diverse
Figure 6.2 Categories of the investigative process model (depicted as a flight of stairs) from Digital Evidence and Computer Crime, 2nd edition.
Distillation

• Preparation
• Survey / Identification
• Preservation
• Examination and Analysis
• Presentation (Reporting)
Preparation

• Plan of action, tool preparations and resource preparation
• Case management (or case management preparation)
• Logistical / collection considerations
Survey / Identification

• Review all potential sources of digital evidence to get a familiarity with the totality of evidence
• Determine which items may be of potential relevance to the investigation
• Example: compromised systems vs. all systems
Preservation

• Preventing changes of *in-situ* digital evidence
• Critical for maintaining the integrity of the investigation
Investigation Scoping
In-depth Investigations

Overview

• Forensic policy approach
• Digital evidence maps
• Scope of an investigation
• Forensic preparedness
• Real-world lessons learned on investigation scoping
Realities of Real-world Forensics

• Surveys by nature must be initially broad
• Once the investigation starts, it will be constrained by the law, time, resources and the interests of the victim (person, business, or organization)
Forensic Policy Approach

• Specification and enforcement of policies
• What events must be handled
• What data surrounding events must be preserved
• What logs are collected, how long are they retained, do they have required detail
Digital Evidence Maps

- Layout of evidence survey
 - Systems
 - Network layout
 - How they relate
 - What data we have from each

- Can help with rapid scoping / targeting and prioritization of analysis
Digital Evidence Maps
Investigation Critical Focus Areas
Common Core Investigation Areas

• Despite every investigation being unique, there are core investigation focus areas almost all investigations include

• Core areas:
 – Customer data
 – Intellectual property
 – Payments and financial systems
Core Investigation Functions

• Difficult to affect CIA triad (confidentiality, integrity, availability) without accessing systems and data.

• Core functions:
 – Local authentication
 – Remote authentication
 – Data access (application logs)
Core Investigation Tech

- Certain systems appear in investigations more often than not

- Core systems:
 - Active Directory Domain Controller(s)
 - Email Server (could be server or SaaS)
 - Web Application Servers
 - Remote Access Servers (Virtual Private Network (VPN) or Remote Desktop / Secure Shell)