USB Hot-plug Attack Counter Forensics

Noah Black

BACKGROUND

- USB plug attacks pose a grave threat to the security of information systems
- Commercially available and inexpensive attacks are now possible for even the most inexperienced of attackers
- The forensic footprint of these devices are small, however not completely zero
- Serial Communication necessitates the exchange vendor identification (VID) number and the product identification (PID) number.
- The Bash Bunny particularly is capable of advanced and dynamic attacks, as it is a fully functional Linux computer.
- The Hak5 Rubber Ducky and Bash Bunny shown in figure one.
- The Windows Registry contains keys for all inserted USB devices, allowing for forensic analysis after attack discovery
- What if it were possible to reduce the forensic footprint of these attacks to make forensics harder to launch more clandestine attacks
- Assumptions:
 - Using the Linux foundations database of VID and PID numbers, it is theoretically possible to engineer a program that changes the VID and PID number at every insertion of the malicious drive. A linear runtime complexity can be attained in this functionality.

METHODS

- Data was downloaded, parsed and converted to CSV format to be stored on the Bash Bunny
- Bash Bunny executes python script
- Python script randomly selects entry from CSV
- Bash Bunny spoofs selected VID/PID
- OS enters spoofed VID/PID into registry
- Hot-plug attack is launched

FUTURE WORK

Future work will focus on developing a module for counter forensics that is all-encompassing. From payload construction to the file hierarchy with the mountable USB partition.

Some concern over leaking of information due to invalid syntax or improper usage of the scripts poses an OPSEC risk.

To correct these OPSEC risks I intend on working directly with the Hak5 Developers to correct these issues with the codebase in the counter forensics module and within the Bash Bunny itself.

On the payload delivery aspect, the only way to create FUD malware anymore is to make it yourself. Research on payload development is a necessary end to advance this project.

RESULTS AND DISCUSSION

- A functioning proof of concept has been constructed, and it is now open sourced
- This does not hide commands injected, or executable artifacts
- A legitimate VID/PID is selected each time, thwarting most AV protections
- A full attack is only available for an unlocked computer

MITIGATIONS

- Locking the computer is a good practice (however this is not fool-proof)
 - Bring your own network attacks are still possible.
- Staff Training
- Network Segmentation
- Completely disable unused USB ports

ACKNOWLEDGEMENTS AND FUNDING

- The author is grateful for funding from the Griffiss Institute under contract No. SA10012021MM0336.