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Abstract

I develop an alternative method to estimate the structure and influence in a social network

within a learning model. Agents build a network by comparing the experts they follow in a

particular field (i.e, politicians, media outlets, academics). I use a latent variable spatial fol-

lowing model to explain why agents follow these experts. The model estimates the underlying

individual parameters that explain the decision to follow in a network, including the followers’

and experts’ ideological positions. I then use these estimates to derive each agent’s level of

influence in the social network and learning process. Using Twitter data, I apply this method

to experts in the field of genome editing in domestic livestock (GEDL) showing that the anti-

GEDL followers own 69% of the social influence in any conversation. In a post hoc analysis, I

find that the consensus on Twitter about GEDL is anti-GEDL leaning. Implications are that

any conversations about GEDL on Twitter will be heavily influenced by anti-GEDL followers,

making it difficult for pro-GEDL opinions to be accepted.
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1 Introduction

Social networks facilitate information transmission between agents, helping agents gain insight

from each other through repeated interaction. This process is known as social learning (Mobius

and Rosenblat, 2014). In his seminal work, DeGroot (1974) proposes that agents learn over time

by repeatedly updating their own beliefs (or opinions) through the averaging of all agents’ previous

period beliefs, including their own. This approach is used in most non-Bayesian social learning and

opinion dynamics research (Banerjee et al., 2021; Chandrasekhar et al., 2020; DeMarzo et al., 2003;

Golub and Jackson, 2010).1

A contribution from DeGroot (1974) is the notion of “learning convergence,” where agents,

by repeated interaction in a network, eventually reach a consensus in their updated beliefs (i.e., a

steady state). Reaching a consensus requires the social network to have certain graphical properties.

If these properties are satisfied, each agent’s relative level of influence in the learning process

is realized (DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson, 2010). This implies that

learning, reaching a consensus, and an agent’s social influence are all depend on the social network’s

geometric structure.

Estimating a network’s structure is not trivial, primarily because the empirical network forma-

tion literature in the learning framework is still at its infancy. Chandrasekhar (2016) provides a

summary of utility-based models, but many lack the ability to estimate a network whose properties

satisfy those required by DeGroot (1974). For example, random geometric graph models incorporate

individual heterogeneity (Erdős et al., 1960; Penrose, 2003), but they are governed by thresholds

chosen by the researcher. Additionally, parameter estimates are rarely used to interpret why the

geometric structure exists. Graham (2017) provides an alternative model, where he uses unobserved

variables (i.e., fixed effects in panel data) to uncover individual degree heterogeneity, but his model

does not estimate the weight each individual puts on their own belief.

Another issue in the empirical network formation literature is the availability of data. Often

times researchers need to have data on the connections between agents and the observable char-

acteristics of each agent. This data is usually expensive to collect, and many times researchers

1Other economist model learning in a Bayesian setting where opinions update as new evidence or information
becomes available (Acemoglu and Ozdaglar, 2011; Banerjee, 1992; Bikhchandani et al., 1992; Glass and Glass, 2021;
Smith and Sørensen, 2000). In this paper, I focus on a non-Bayesian setting.
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need to define restrictive dimensions on the network because its size can become vast. Additionally,

researchers may only have access to partitions or subsets of a network. This data can be rich with

information, but difficult to estimate using the utility-based network formation models mentioned

above. With these hurdles, it behooves researchers to find other ways to estimate networks for the

non-Bayesian social learning environment.

Assuming social networks are homohilic (i.e., agents have a higher probability of connecting

when they are similar (McPherson et al., 2001)), I develop an alternative methodology to estimate

a social network to use in the DeGroot (1974) learning model. In particular, I assume agents

form their own social network by comparing the experts they follow outside of their network. The

network of followers is seen as a partition of a larger network. I estimate this network partition

using a latent variable spatial following model developed from item-response theory (Bafumi et al.,

2005; Barberá, 2015; Barberá et al., 2015; Hoff, 2003; Hoff et al., 2002; Navelski and Pascual, 2022;

Rasch, 1993). This method uncovers each individual’s ideological position and social influence in

the network. I compare these estimates to see which ideological positions have the most social

influence in the network.

I apply this method to a Twitter dataset where I focus on agents comparing the expert accounts

they follow in the field of genome editing in domestic livestock (GEDL). I find that individuals with

anti-GEDL ideologies have 69% of the social influence on Twitter, indicating that any consensus

reached will be heavily influenced by individuals who are against GEDL. I support this result with

a post hoc analysis where I find that the consensus on GEDL is anti-GEDL leaning on Twitter. To

my knowledge, this is one of the first non-Bayesian analyses to show that anti-GEDL individuals

have the most influence in social media, indicating that pro-GEDL opinions will be difficult to

adopt.

1.1 Related Literature

DeGroot (1974) was one of the first to introduce a model of learning and social influence. A

finite amount of agents learn and interact with each other through a weighted and possibly directed

network over time. Each agent is endowed with some initial belief about a common idea or thought,

such as the probability of an event happening or the perceived level of quality in a new technology.
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Agents repeatedly discuss and share beliefs over time. An agent’s updated belief is the weighted

average of all agent beliefs from the previous period, including their own. Over time, provided

the social network is row-stochastic (i.e, all row entries sum to one for each agent) and strongly

connected (i.e., there is a path from any agent to every other agent, even if it is indirect) the

learning process will converge to a common belief (Golub and Jackson, 2010; Jackson, 2010). This

convergence is the equivalent to reaching a consensus about the common idea or thought. When

a consensus is reached the relative social influence weight each agent has in the learning process

is realized.2 This implies that the social network’s structure has an important effect on learning,

drawing a consensus, and influence, and that this effect should be investigated empirically to support

its theory.

Economists have recently started to empirically investigate how the structure of social networks

affects learning and convergence in the DeGroot (1974) model. Chandrasekhar et al. (2020), for

instance, propose methods to determine if agents use a mixture of learning types, Bayesian and

non-Bayesian, and investigate how a sparse network (i.e., few connections between agents) leads

to failures in asymptotic learning (i.e., drawing a consensus). They estimate the social network

using a random utility framework and a mixture of two methods summarized by Chandrasekhar

(2016) in Bramoullé et al. (2016). They use Penrose (2003)’s and Erdős et al. (1960)’s random

geometric graph methods to model the presence of “clans” within the network. Penrose (2003)’s

theory assumes individuals connect if the distance between their latent parameters is less than

some radial threshold. They test their method using real-life social network data from two different

settings and find that a more sparse network increases the chances that agents become “stuck” in

their learning process, leading to an asymptotic learning failure. This research makes a seminal

contribution to the learning literature, but it does not focus on how individual characteristics can

explain or change asymptotic learning in the network.

Banerjee et al. (2021) use similar methods to Chandrasekhar et al. (2020), proposing a gener-

alization of DeGroot (1974)’s model where there is a mixture of informed and uninformed agents

at time t = 0. Agents update beliefs by “naively” adopting the beliefs of informed agents, and

ignoring the beliefs of uninformed agents. They also demonstrate how beliefs and social influence

changes for agents in a sparse network using Penrose (2003)’s and Erdős et al. (1960)’s random

2I provide a complete review of the DeGroot (1974) model in the Appendix Section 6.1 for reference.
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graph methods. They find that sparse social networks and signals (i.e., few connections and a small

amount of informed agents) can lead to a consensus where only the most informed agents beliefs

are accepted. They call this “belief dictatorship.” Their proposed methods give strong insights

as to why true initial signals become construed or altered over time, but do not investigate how

individual characteristics govern the formation of the social network affect learning and influence.

The empirical network formation literature is limited in the social learning setting. Chan-

drasekhar (2016) provides a summary of the utility-based network formation models where many

have limitations in their application to DeGroot (1974)’s model. For example, both Chandrasekhar

et al. (2020) and Banerjee et al. (2021) use random geometric graphs from Erdős et al. (1960) and

Penrose (2003), but neither of them focus on individual (node) parameter estimates and how these

estimates dictate a networks structure and asymptotic learning. Another limitation in the utility-

based models is that only a few models estimate the individual heterogeneous effects that contribute

to the formation of a network. Graham (2017)’s recent econometric work established a base for

how to estimate and identify the individual unobserved parameters that govern the formation of

a network. He also characterizes the marginal effects of these parameters and provides details on

how these parameters can alter the geometric structure of a network. One reason why Graham

(2017)’s method has not yet been used in learning models is because it assumes agents do not build

a connection with themselves. This means that agents do not weigh their own beliefs relative to

others, which DeGroot (1974) requires.

Another reason why the utility-based network formation models have been unexplored in the

context of learning is because it is difficult to collect network data (Banerjee et al. (2013); Chan-

drasekhar (2016)). Most network models use data that indicates how individuals are connected (i.e.,

an adjacency matrix), and if available, data on individual characteristics (e.g., gender, income, and

race). Most of the time data is acquired through surveys that ask agents about their connections

with other agents (Sampson (1968), Banerjee et al. (2013) and Krackhardt (1987)). Collecting this

data is usually costly and many times researchers can only collect data on small portions of large

networks. An additional difficulty is that many times researchers need to decide the bounds on a

network. This decision may affect the interpretation of results and alter the research questions. For

example, if a researcher wants to investigate how individuals learn and influence each other about

a new technology, how do they gather data on a network when the world is highly connected?
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An interesting case researchers may face when working with network data is that they only

observe individual links outside of a network. For example, researchers may only observe a partition

of a network where n individuals follow m experts in a field they are interested in. This implies data

on the entire network does not exist, but there is data that can still provide insights. In particular,

this data can provide insights into what led to these following decisions, and how these individuals

might learn and influence each other in their own social network.

This paper utilizes the above scenario and proposes an alternative way to estimate a social net-

work in DeGroot (1974). I assume social networks are homophilic and that agents build networks

by comparing the connections they have with experts outside of the network. I estimate the unob-

served individual parameters that explain the following behaviors between agents and experts. This

method uncovers each individual’s ideological position and social influence in the network using a

latent variable spatial following model (Barberá, 2015; Barberá et al., 2015; Hoff, 2003; Hoff et al.,

2002; Navelski and Pascual, 2022). I compare these estimates to see which ideological positions

have the most social influence in the network.

I apply this method to a Twitter dataset where I focus on agents comparing the expert accounts

they follow in the field of genome editing in domestic livestock (GEDL). I find that individuals with

anti-GEDL ideologies have 69% of the social influence on Twitter indicating that any consensus

reached will be heavily influenced by individuals that are against GEDL. I conduct a post hoc

analysis that supports this result, where I find that the consensus on GEDL is anti-GEDL leaning

on Twitter. To my knowledge, this is one of the first non-Bayesian analyses to show that anti-GEDL

individuals have the most influence in social media. Implications are that pro-GEDL opinions will

be difficult to adopt in social media.

This paper is organized as follows: Section 2 presents the theoretical model, empirical model and

the network estimation methodology. Section 3 surveys the Twitter data used in the application,

and reviews the estimation diagnostics. Section 4 discusses the estimation, social influence and post

hoc consensus results, and Section 5 concludes.
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2 Model

Experts often amass a following due to their knowledge and beliefs about their field of work. For

example, political elites attract voters that support their ideals, media sources target certain types

of viewers, and academic researchers attract followers eager to align with their next groundbreaking

discovery. This behavior can be seen as a network partition where n different agents (or nodes),

also called followers, connect with or follow m different expert agents. This “following” behavior

can provide insights into the underlying characteristics that describe each agent, and how the n

followers interact and learn from each other in their own social networks.

2.1 A Social Network based on Common Connections

Consider a social network (or graph) g where there are n + m = N agents (or nodes), and (n +

m)× (n+m) edges (or links). Let the social network g be represented as an adjacency matrix

GN×N =

Um×m Wm×n

An×m Tn×n


where Um×m, Tn×n and Wm×n are not observed by the researcher, but matrix An×m is, which takes

the form

An×m =


a11 . . . a1j . . . a1m
...

. . .
...

. . .
...

ai1 . . . aij . . . aim
...

. . .
...

. . .
...

an1 . . . anj . . . anm

 ,
and it is a matrix of dyadic links. These links represent the directed one-way relationship between

the ith agent in n choosing to link with the jth agent in m.3 Hence forth, A will be denoted as

the “connections matrix,” the m agents as “experts,” and the n agents as “followers.” Experts

are knowledgeable and informed about their specializations, and followers link with experts to

gain information about their specializations and because their positions or beliefs align (i.e., the

3If Wm×n = (An×m)T then An×m can be seen as an undirected network, but for this application I only consider
An×m as a directed partition of GN×N .
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connections are assumed to be homophilic).4

Let A represent the disjoint graphical partition of G, and the goal is to uncover the social network

of followers represented by T. Assume all followers form a social network by comparing each expert

they follow in m. The mathematical representation of this behavior is T = A · (A)T , where each

element in this matrix is tik =
∑m

j=1 aijakj. All followers then reevaluate each interaction and

weigh them relative to all other interactions t∗ik = tik/
∑n

i=1 tik. This process yields a row-stochastic

transition matrix

T∗n×n =


t∗11 . . . t∗1k . . . t∗1n
...

. . .
...

. . .
...

t∗i1 . . . t∗ik . . . t∗in
...

. . .
...

. . .
...

t∗n1 . . . t∗nk . . . t∗nn


that satisfies the properties of DeGroot (1974)’s interaction matrix.

All followers then learn via the DeGroot (1974) process. If T∗ is strongly connected a consensus

is reached yielding a social influence weight si for each follower. Intuitively, the n followers compare

the experts they follow outside of the network and this dictates the weight or trust they put on

each others beliefs. Followers then reevaluate each connection relative to all of their connections.

2.2 An Estimated Social Network Based on Common Connections

Consider the same connections matrix A, but where each dichotomous choice can be modeled with

the logistic regression model, a specific form of a generalized linear mixed model (GLMM), given

by

Pr(Aij = 1|µ, αj, βi, γ, θi, φj) = [1 + exp(−πij)]−1 (1)

where πij = µ + αj + βi − γ|θi − φj|. The intercept µ ∈ R is a fixed effect, αj ∈ R and βi ∈ R

represent individual random effects observed in the connections matrix, φj ∈ R and θi ∈ R are latent

variables representing spatial positions in the network structure, and γ is a weighting parameter.

4McPherson et al. (2001) makes a strong and well documented case that this behavior is true in practice for
social networks, and this assumption has been applied in other empirical network formation models (Graham, 2017;
Chandrasekhar et al., 2020).
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The specification in Equation 1 follows Hoff et al. (2002), Barberá (2015), and Navelski and

Pascual (2022), who all propose models that assume links are formed based on how closely related

their latent positions are in space. The random effects αj and βi are correlated with the observed

individual effects that explain the connection between expert j and follower i (i.e., the number of

total followers for expert j and the number of total follows for follower i) These parameters can

be interpreted as expert j’s popularity and follower i’s engagement, respectively (Barberá, 2015;

Navelski and Pascual, 2022).

Parameters φj and θi are assumed to be in a one-dimensional space, and the absolute distance

specification −γ|θi − φj| follows the “homophilic” assumption (Hoff, 2003). These parameters are

interpreted as “ideal points” (Bafumi et al., 2005; Curtis, 2010; Poole and Rosenthal, 2000; Rasch,

1993).5 An agent’s “ideal point” is his or her preference or position within a spatial framework, and

the simplest spatial framework is characterized in a single dimension. In the political context, an

ideal point represents an individual’s position on a scale from extremely liberal (−∞) to extremely

conservative (∞+). I use Navelski and Pascual (2022)’s inverse arc-tangent method to map these

latent positions on a spectrum between −1 and 1, −1 is the most extreme “anti” point of view and

1 is the most “pro” point of view. I map to this scale for ease of interpretation and comparison.

Data is used to fit the model and each predictive element is derived where

âij = [1 + exp(−π̂ij)]−1,

and the initial social interaction rule is defined as

t̂ik =
m∑
j=1

âij âkj.

Each âij is an index on how similar follower i is to expert j, and indicates the probability of follower

i following expert j. t̂ik defines a weighted relationship between followers i and k, and this weight

5This interpretation is further supported by the probabilistic voting model literature where agents vote for
candidates based on how close their “ideology” or “reputations” align (Coughlin and Nitzan, 1981; Coughlin, 1992;
Enelow and Hinich, 1984, 1989). This literature also proposes that the ideology parameters can be functions of
many other parameters that explain patterns in ideology. For example, the ideological position of a candidate can
be a function of an array of political positions on certain issues and/or it can be a function of other individual
characteristics such as charisma or wealth.
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increases when they are more connected and have similar following profiles. Similar to the base-

case example, each follower i reevaluates their relationship with follower k relative to all others

t∗ik = tik/
∑n

i=1 tik to form a row vector corresponding to follower i in T∗. Followers then learn from

each other based on T∗. Assuming T∗ is strongly connected, beliefs converge to a common belief,

and a social influence vector s is realized.

Intuitively, this social interaction matrix T∗ represents followers comparing their weighted in-

dices âij and âkj for each expert j. These indices are functions of the unobserved individual char-

acteristics of each agent, including the latent variables whose distance dictates the probability of

follower i linking with expert j. I map the latent variables onto a scale between −1 and 1 that

represents the relative position individuals have on the specialization the experts represent. Both

expert and follower positions are mapped onto their own scale, giving an overall distribution of

ideological positions on a topic.

2.2.1 Markov-Chain Monte Carlo (MC-MC) Estimation

The model parameters are unknown and the statistical problem is to perform inference on α =

(α1, . . . , αm)′, β = (β1, . . . , βn)′, φ = (φ1, . . . , φm)′, θ = (θ1, . . . , θn)′, γ, and µ. Under the assump-

tion of logical independence (i.e., individual following decisions are independent across all users n

and m given the parameters), the likelihood function to maximize is given by

p(y|µ,α,β, γ,θ,φ) =
n∏
i=1

m∏
j=1

logit−1(πij)
aij
[
1− logit−1(πij)

]1−aij
(2)

where πij = µ+ αj + βi − γ|θi − φj| and logit−1(x) = [1 + exp(−x)]−1 for x ∈ R.

Without additional assumptions regarding the parameters, this model is not identifiable. For

example, there are an infinite number of θi and φj combinations that will produce the same distance

|θi − φj|. Even when the identifiability issues are addressed, the complexity of this equation makes

direct estimation using maximum likelihood highly intractable because there is no analytical solution

to the maximization problem. There are m αj’s, m φj’s, n βi’s, n θi’s, one intercept µ, and one

weighting constant γ, implying that the total number of parameters to estimate is 2× (m+ n) + 2.

Thus, maximum likelihood becomes even more difficult as datasets become larger.
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To overcome the tractability problem, I follow Navelski and Pascual (2022)’s Bayesian estimation

approach to generate samples from the posterior distribution where each of the parameters µ, αj, βi,

γ, θi, and φj are assumed to be drawn from independent prior population distributions. I provide

more details on how to implement this estimation method in the Appendix Section 6.2.

3 Data: Genome Editing in Domestic Livestock (GEDL)

Social media is a natural setting for this framework because it has network data on followers who

choose to connect with, or “follow,” an expert in the field they are interested in. I use data from

Twitter because about one in four US adults (23%) say they use this social network and Twitter

allows academics to conduct research using information from their public accounts (Pew Research

Center, 2021; Twitter Inc., 2022a). I apply my model to a panel of m = 46 experts, and n = 3, 383

of their most informed followers, from the genome editing in domestic livestock (GEDL) field.6

3.1 Choosing the GEDL Experts and Procuring the Data from Twitter

I first defined a list of GEDL experts on Twitter. The list consists of academics, organizations,

journals, politicians and companies that have an active presence in the GEDL industry, or in an

industry that is closely related to GEDL (e.g., the genome editing industry in general). This list

was assembled in two steps.

The first step was to include accounts that appear when searching for terms related to GEDL

on Twitter. The terms I searched for were animal welfare, biotechnology, crispr, dairy, dehorning,

gene editing, genetically modified, genome editing, genome engineer, GMO, and organic, and these

terms were gathered from Social Mention. Social Mention is an online software that identifies the

key terms that are closely related to a topic people are posting about online. I selected accounts

that had more than 1,000 followers and clearly had a position in genome editing. I used these

thresholds because I wanted to gather accounts that were reasonably popular but also not too

general where their position on GEDL was ambiguous or unclear. Examples of ambiguous accounts

6Barberá (2015) and Navelski and Pascual (2022) also use Twitter data in their analyses namely, one dataset
based on political elites and their followers in the former and one based on US media influencers and their followers in
the latter. Merriam-Webster (2021) defines an “influencer” as “a person who is able to generate interest in something
(such as a consumer product) by posting about it on social media” and a “follower” is an individual that follows
that influencer because they have similar interests or ideologies.
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are “Biotechnology” or “NatureBiotech” where they may promote genome editing technologies, but

also other biotechnology technologies. I also chose to include five producers from the domestic

livestock industry because their position on GEDL could dictate their following on Twitter. I also

was interested to see how their ideological positions compared to other accounts.

In my second step, I did a web-search on “Twitter accounts to follow for information about

genome editing.” The top search result was a blog post by Synthego, a large player in the genome

editing industry. The blog post provided a list of the “top 20 Twitter accounts to follow for the latest

CRISPR news,” and some of these accounts are verified on Twitter as being authentic, notable, and

active (Prabhune, M., 2019; Synthego, 2022; Twitter Inc., 2022b). I included all of these accounts

on the list since this blog post would lead a user to follow these accounts when investigating GEDL.

All of these had more than 1,000 followers, and the blog post clearly states how each account is

related to the genome editing industry. Most of these accounts actively disseminate information

about GEDL and genome editing in general, whether the information is positive or negative, and

many of them have amassed a following based on their informativeness and position about GEDL.

For example, NonGMOProject and CRISPR News both have over 30,000 followers because they

are seen to be a valid source of information about GEDL and/or genome editing in general.

These two steps led to a final list of 46 experts in the field of GEDL, and I provide a detailed list

of the experts accounts and their account characteristics in Figure 6 in the Appendix. I downloaded

all of the accounts that follow each expert, and merged the datasets by each follower’s unique ID.7

This produced a connections matrix A that has n = 187, 209 followers.

The experts are initially labeled as being “anti-” or “pro-” GEDL based on the message they are

trying to disseminate, but this labeling is only used for preliminary analyses to motivate the data

structure.8 There are 12 anti- and 34 pro-GEDL accounts. OrganicConsumer and NonGMOProject

have the largest number of followers at 187,209 and 125,516, respectively, and Recombinetics has

the smallest number of followers at 1,238. Table 1 shows that the average number of followers

per anti-GEDL 59,596, account is greater than pro-GEDL 15,223 followers. Additionally, the anti-

GEDL experts are more active on Twitter than the pro-GEDL experts because they tend to follow

7I use Twitter’s Academic Research’s application programming interface (API) to obtain each expert’s list of
followers. The Twitter API query was conducted January 2022 (Twitter Inc., 2022a).

8This labeling will not affect future analyses as the estimation technique allows individuals to move on a contin-
uous spectrum from −1 to 1 which represents being the most anti-GEDL vs. the most pro-GEDL.
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more accounts on Twitter and tweet more on average. These results imply the average anti-GEDL

experts are more connected and engaged to the Twitter network than the pro-GEDL experts.

Table 1: Summary Statistics of the Experts’ Account Characteristics by GEDL Viewpoint
Means and Standard Deviations (in Parentheses)

Viewpoint Followers Following Tweets

Anti-GEDL 59,596 (51,190) 6,373 (8,381) 28,214 (31,220)

Pro-GEDL 15,223 (15,536) 2,665 (3,274) 15,041 (18,700)

3.2 Data Reduction

I reduce the dataset to include only those followers that follow at least 9 out of the 46 accounts.

I perform this reduction to focus the analysis on the most informed followers in GEDL, reduce

the amount of potential Twitter “bots” in the data, to help with estimation tractability, and to

ensure matrix T∗n×n is strongly connected. This reduces the set of followers to n = 3, 383, and

this reduction slightly alters the research question to be focused on the “more informed” followers

in regards to GEDL. The number of followers per account in the reduced connections matrix is

presented in Table 2, and Table 3 presents the anti-GEDL and pro-GEDL group averages where the

anti-GEDL accounts still have, as a group, more followers (1,456) on average than the pro-GEDL

accounts (517).
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Table 2: Total Number of Followers per Expert Account
for the Reduced (More Informed) Dataset

Screen Name Followers Position Screen Name Followers Position
GMOEvidence 1184 Anti Recombinetics 139 Pro

USRightToKnow 582 Anti AzMilkProducers 62 Pro
JoelSalatin 330 Anti CRISPRchef 474 Pro

nongmoreport 1795 Anti AquaBountyFarms 131 Pro
GMWatch 1824 Anti joeBondyDenomy 431 Pro

RachelsNews 959 Anti FrancoiseBaylis 158 Pro
CFSTrueFood 1825 Anti jcornlab 746 Pro
GMOFreeUSA 1811 Anti AprilPawluk 514 Pro
OrganicTrade 1665 Anti jsherkow 236 Pro
OrganicValley 1583 Anti shsternberg 735 Pro

NonGMOProject 1978 Anti JKamens 326 Pro
OrganicConsumer 1936 Anti mem somerville 402 Pro

TysonFoods 305 Pro Synthego 708 Pro
Cargill 309 Pro pcronald 523 Pro

Kevin Faulconer 45 Pro JonEntine 441 Pro
doudna lab 1119 Pro ELS Genetics 119 Pro

CRISPR News 1008 Pro KevinADavies 659 Pro
SynBioBeta 873 Pro BioBeef 665 Pro
AgBioWorld 675 Pro igisci 881 Pro

pknoepfler 718 Pro CamiDRyan 395 Pro
GeneticLiteracy 736 Pro nmpf 231 Pro
CRISPRjournal 1038 Pro pdhsu 814 Pro

GaetanBurgio 760 Pro NPPC 196 Pro

The reduced dataset is the connections matrix A used in all subsequent analyses. Figure 1

depicts a heat-map of matrix A, where the columns are the 46 expert accounts and the rows are the

3, 383 followers. A black “dash mark” indicates users following expert accounts, which corresponds

to 1’s in the connections matrix. The white space indicates users not following and corresponds

to 0’s. To reveal patterns in the data, the first 12 columns are the anti-GEDL experts, which are

sorted in decreasing order by the number of followers they have. The subsequent 34 columns are

the pro-GEDL experts, which are sorted in increasing order by the number of followers they have.

The followers are sorted with respect to the amount of anti-GEDL accounts they follow less the

amount of pro-GEDL accounts they follow. Intuitively, the first follower is the most anti-GEDL in

terms of following, while the last follower is the most pro-GEDL.
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Table 3: The Experts’ Number of Followers by GEDL Viewpoint
for the Reduced (More Informed) Dataset
Means and Standard Deviations (in Parentheses)

Group Followers

Anti-GEDL 1456 (558)

Pro-GEDL 517 (302)

Many of the followers in the northwest quadrant follow a large portion of the anti-GEDL ac-

counts, indicated by the dark black mass. The followers in the southeast quadrant are more sparse

and not following a large proportion of the pro-GEDL accounts, indicated by the patchy black and

white area. This indicates anti-GEDL account followers tend to be more “loyal” whereas pro-GEDL

account followers tend to have more of a “smattering,” or mixed, in their following structure. An-

other key observation about the connections matrix is the lack of extremely informed followers that

follow many of the 46 accounts. These followers are presented in the middle of the matrix, and it is

apparent that out of these followers many of them follow the anti-GEDL accounts while following

some of the pro-GEDL accounts. This indicates that even though some followers are extremely

informed about GEDL, most of them are more informed about the anti-GEDL experts rather than

the pro-GEDL experts.
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Figure 1: Heat Map of Connections Matrix A

3.3 Estimating the Data Structure

I estimate the connection matrix A from Figure 1 using the model and methodology outlined in

Section 2.2. All MC-MC (Bayesian) diagnostics yield expected results. All R̂ values are less than

1.1, which is the standard recommendation in practice, implying that all chains have converged to

the same posterior distribution, and thus, there is no divergence in the MC-MC estimation process.

Convergence also implies the likelihood function is in the same form as Equation 2, estimates are

consistent, and hypothesis testing can be conducted. The MC-MC diagnostics are supported by

model fit diagnostics where, using all 155,618 individual decisions as observations in cross validation

(n ×m), the prediction rate is 88.5% accurate.9 To further motivate estimation results, Figure 2

shows a heat-map of the estimated probabilities of following, which closely resembles the raw data

structure presented in Figure 1.

9I provide a more detailed explanation about prediction diagnostics in Appendix Section 6.5.
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Figure 2: Heat Map of the Estimated Connections Matrix Â

Figure 1 and 2 are used as the initial connections matrices A to derive the weighted “trust”

matrix T∗ used in the learning process. Figures 11 and 12 in the Appendix Section 6.6 are heat-

maps of these matrices. It is clear that individuals in the northwest and southeast quadrants have

strong connections. These strong connections are a result of them having similar expert connections,

which leads to high probabilities of interacting. I next use these matrices are used in a DeGroot

(1974) model to derive the social influence vectors s1×n.

4 Results

4.1 Estimation Results

Results show that @NonGMOProject is the most popular expert with an estimate of α̂2 = 3.78, and

that @Kevin Faulconer is the least popular expert with an estimate of α̂15 = −3.30. These results

are expected since @NonGMOProject and @Kevin Faulconer have the most and least amount of

followers in the data. The estimated ideal positions show that the most anti-GEDL expert is
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@GMOEvidence (φ̂12 = −.687) and the most pro-GEDL expert is @joeBondyDenomy (φ̂42 = .847).

Figure 3 plots all of the expert’s estimated ideologies on a scale ranging from −1 (anti) to 1 (pro)

with hash mark in the middle representing a zero line. I highlight some experts to show how their

estimates align with the detailed information in their profile.

As expected, results show many expert accounts that are thought of to be anti-GEDL are since

most of their ideal points are closer to −1. Additionally, @doudna lab is the official Twitter account

for Dr. Jennifer Doudna’s lab. Dr. Doudna was awarded, with Dr. Emmanuelle Charpentier, the

2020 Nobel Prize in Chemistry for their methodological developments in genome editing. These

developments were essentially, the first discovery of CRISPR, and it is not surprising that her lab’s

ideal point is positioned on the more pro-GEDL side of the spectrum at 0.72.10 One unexpected

result is that @NPPC, @Cargill and @TysonFoods are all representatives of the meat producing

industry and are expected to be more pro-GEDL to reduce production costs, but they are seen to

have ideologies that are more moderate since their ideal point estimates are closer to zero.

Figure 3: Estimated Ideology of Experts φ̂ for the GEDL Data

10A summary and discussion about expert popularity and ideology is presented in the Appendix Section 6.4.
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Figure 4 (a) is a histogram of the estimated engagement parameters β̂i for all 3, 383 followers. It

has a short “fat” tail on the negative side of the distribution and a long “thin” tail on the positive side

indicating that overall engagement in GEDL is high for some followers, but low for most. Figure 4

(b) is a histogram of the 3, 383 followers’ ideal points θ̂i where many individuals are polarized about

GEDL. The mean and median ideology estimates are −0.074 and −0.19, respectively, implying that

the distribution is right-skewed and that the average informed follower about GEDL will have an

anti-GEDL ideology. These metrics are represented by the solid (mean) and dotted (median) lines

in the middle of Figure 4 (b), and this result is even more apparent when observing the large “spike”

on the anti-GEDL side. The zero-line is the theoretical center of the ideological distribution, and

56.73% of the followers are below this center line. This implies that at 56.73% of the followers align

more with the anti-GEDL expert accounts.

(a) (b)

Figure 4: Ideology β̂i (a) and Engagement θ̂i (b) for the 3, 383 Followers

4.2 Social Influence

Table 4 shows that the social influence distribution is left-skewed when agents interact via the

base-case social network (Section 2.1) and the estimated social network (Section 2.2). The median

percentage of social influence is 0.0328% and 0.0337% for the base-case and estimated social network,
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respectively. These are both higher than the mean percentage at 0.0295%. This implies that there

are more individuals with high social influence than those with low. This also implies that the

individuals with low social influence have more intense levels of low influence than those with high

influence.

Table 4: Summary Statistics for the Social Influence Vectors s

Method Min. 1st Qu. Median Mean SD 3rd Qu. Max.
Base-case 0.00871% 0.0203% 0.0328% 0.0295% 0.0093% 0.0381% 0.0577%
Estimated 0.0164% 0.0207% 0.0337% 0.0295% 0.008% 0.0364% 0.0479%

I compare the followers’ estimated ideologies with their social influence estimates and summa-

rize the results in Table 5. I find that individuals with negative ideology estimates have more

social influence than individuals with positive ideology estimates at 69% and 31%, respectively.

Furthermore, the individuals with more extreme ideologies, those with ideologies less than the first

quartile and greater than the third quartile, have a similar pattern of influence. The more extreme

anti-GEDL individuals have 31% of the total influence while the more pro-GEDL individuals have

18% of the social influence. This implies that the most extreme anti-GEDL individuals have a little

under a third of the total influence. Figure 5 plots follower ideology by their social influence and it

is clear that anti-GEDL followers have the majority of the influence in the learning process.

Table 5: Social Influence By Ideology θ

θi < Q1 θi < 0 θi > 0 θi > Q3
31% 69% 31% 18%
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Figure 5: Estimated Ideology of Followers θ̂i by Social Influence si for the GEDL Data

4.3 Post Hoc Analysis: A Consensus Belief Based on Ideologies

One by-product of my social network estimation method is that agents’ initial beliefs are uncovered

in the form of ideologies. I standardize follower ideology estimates θ̂i to be on a scale of zero to one

[0, 1], using P
(0)
i = θ̂i+1

2
, instead of negative one to one [−1, 1], and agents use these estimates as

endowed relative beliefs in the learning process. In this setting, a belief of zero is the least in favor

of GEDL (extremely anti-GEDL), while a one is the most in favor of GEDL (extremely pro-GEDl).

In the context of GEDL, I find that agents converge to a consensus belief of .395 using the equation

P(∞) = sP(0) from DeGroot (1974). This indicates that the consensus belief on Twitter about

GEDL is anti-GEDL given that initial beliefs are standardized ideology estimates.
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5 Conclusion

There are two contributions of this paper. The first contribution is that I develop an alternative

method to estimate the structure and influence of a social network in a learning model. I assume

that agents build connections based on their similarities (i.e., social networks are homophilic).

Agents build connections by comparing the experts they follow in a particular field, and I estimate

the underlying parameters that explain why followers link with experts. This estimation process

uncovers the relative ideology of all experts and followers. Followers then learn in their own social

network until convergence, and a social influence weight for each individual is realized. In a post hoc

analysis, I derive the consensus belief of the followers assuming they use their ideological positions

as initial beliefs in the learning process. Policy makers and companies can use my model with

large datasets to target agents who have the most influence in a social network and align with their

viewpoint.

The second contribution I make is that I apply this method to a social media dataset from

Twitter with 46 experts from the genome editing in domestic livestock (GEDL) industry and 3, 383

of their most informed followers. The main results are that 56.73% of the followers have ideologies

that align with anti-GEDL experts and that these followers own 69% of the social influence on

Twitter. The post hoc analysis shows that the consensus on GEDL is .395 on a scale where zero

is the most anti-GEDL and one is the most pro-GEDL. To my knowledge, this is one of the first

papers to show that individuals who are anti-GEDL have the most influence on social media.

These results imply that any initial belief these followers receive will lead to a social learning

consensus that is heavily influenced by anti-GEDL followers. This means that anti-GEDL will

dominate the conversation on Twitter, and this could make it difficult for positive opinions about

GEDL to be accepted. The post hoc analysis supports this intuition where the consensus on

Twitter is not in favor of GEDL when ideologies are used as initial beliefs. Policy makers who

promote and educate the public about new genome editing technologies need to realize their efforts

could be squandered by individuals who perceive these technologies as something negative. The

public perception of GEDL on social media is negative, and policy makers should target anti-GEDL

followers with high influence in an attempt to change their position and message on GEDL.
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Bramoullé, Y., Galeotti, A., and Rogers, B. W. (2016). The Oxford handbook of the economics of
networks. Oxford University Press.

Chandrasekhar, A. (2016). Econometrics of network formation. The Oxford handbook of the eco-
nomics of networks, pages 303–357.

Chandrasekhar, A. G., Larreguy, H., and Xandri, J. P. (2020). Testing models of social learning on
networks: Evidence from two experiments. Econometrica, 88(1):1–32.

Coughlin, P. and Nitzan, S. (1981). Electoral outcomes with probabilistic voting and nash social
welfare maxima. Journal of Public Economics, 15(1):113–121.

Coughlin, P. J. (1992). Probabilistic voting theory. Cambridge University Press.

Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems:1695.

Curtis, S. M. (2010). Bugs code for item response theory. Journal of Statistical Software, Code
Snippets, 36(1):1–34.

DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association,
69(345):118–121.

22



DeMarzo, P. M., Vayanos, D., and Zwiebel, J. (2003). Persuasion bias, social influence, and unidi-
mensional opinions. The Quarterly journal of economics, 118(3):909–968.

Enelow, J. M. and Hinich, M. J. (1984). The spatial theory of voting: An introduction. CUP
Archive.

Enelow, J. M. and Hinich, M. J. (1989). A general probabilistic spatial theory of elections. Public
Choice, 61(2):101–113.
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6 Appendix

6.1 A Review of DeGroot (1974)’s Social Learning Model

The model considers a finite set of N = {1, . . . , n} agents that interact through links in a social
network. The social network is defined by an n× n non-negative row-stochastic interaction matrix
Tn×n where each element tik represents the weight or trust agent i puts on the belief (or opinion)
of agent k.11 Matrix T does not need to be symmetric implying that agent i can put a high weight
on agent k’s belief, but agent k need not put a high weight on agent i’s belief.12

Each agent is endowed with some initial subjective belief p
(0)
i ∈ [0, 1] at time t = 0, and the

vector of all n initial beliefs is represented by p
(0)
n×1. Beliefs can represent things like the perceived

level of product quality or the probability that a given statement is true. Agent i’s belief at time
t is p

(t)
i ∈ [0, 1], and the vector of all n beliefs is p

(t)
n×1. The belief updating rule is p(t) = Tp(t−1)

which implies

p(t) = Ttp(0) (3)

where,

Tn×n =


t11 t12 . . . t1n
t21 t22 . . . t2n
...

... . . .
...

tn1 tn2 . . . tnn

 and p
(t)
n×1 =


p
(t)
1

p
(t)
2
...

p
(t)
n

 .
Intuitively, each agent’s belief at time t is the weighted average of all agent’s beliefs including their
own p

(t)
i =

∑n
k=1 tikp

(t−1)
k . The interaction process continuously updates and reaches a consensus if

and only if T is convergent.
A matrix T is convergent if it is row stochastic and strongly connected (Golub and Jackson,

2010; Jackson, 2010). A matrix T is row stochastic if all rows in the matrix sum to 1, and it is
strongly connected if there is a path from any node i to every other node k, even if it is indirect.13

Intuitively, one can think of a strongly connected network as a network where there are no partitions
that are completely isolated from the other parts of the network. These two properties guarantee a
consensus is reached where p

(∞)
n×1 = limt→∞Ttp(0) for any initial vector p(0). This implies that for

any initial belief vector p(0), the learning process will reach a consensus where all beliefs in the limit
converge to a common and constant belief where each element in p(∞) is the same p

(∞)
1 = · · · = p

(∞)
n .

11This social network can be represented as a graph g where agents are nodes and the links are edges. The
Tn×n matrix is the graphical representation of the social network in matrix form, and this graph can be weighted
or unweighted, and it can be directed or undirected.

12DeMarzo et al. (2003) refer to Tn×n as the “listening” matrix where each element tik represents how much agent
i listens to agent k’s opinion, Golub and Jackson (2010) refer to tik as how much precision agent i puts k’s opinion,
Jadbabaie et al. (2012) refer Tn×n as the social interaction matrix where tik represents the “influence” or “persuasion
power” agent i gets from agent k, and DeGroot (1974) and Jackson (2010) refers to Tn×n as the “weight“ or “trust”
matrix where tik represents the weight or trust the ith agent has on the current belief of agent k in forming its own
belief for the next period. In this paper, I will be referring to tik as the “trust” agent i puts on agent k’s opinion.

13I verify that all Tn×n matrices are strongly connected in this paper using a Depth First Search (DFS) algorithm
(Csardi and Nepusz, 2006). The Depth First Search (DFS) algorithm checks to see if any node in a matrix can be
reached starting from every other node in the matrix.
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Reaching a consensus also implies there is a unique left-hand unit eigenvector s1×n of T that
solves the limiting equation of limt→∞Ttp(0) = sp(0). Each element si in vector s1×n represents the
amount of influence each agent has in the learning process. All elements sum to one

∑n
i=1 si = 1,

and s1×n can be used to calculate the limiting beliefs in a consensus p(∞) = sp(0) =
∑n

i=1 sip
(0)
i

for any vector of initial beliefs (DeGroot, 1974; DeMarzo et al., 2003; Golub and Jackson, 2010;
Jackson, 2010). This implies that the structure of social networks have an important effect on
learning, drawing a consensus, and influence in the DeGroot (1974) model.
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6.2 Estimation Methodology and Prior Distributions for Parameters

I use RStan’s No U-Turn Sampling algorithm, developed by Gelman et al. (1995), and simulate
two chains with 1,000 draws and a burn-in of 500 samples (Stan Development Team, 2021). The
assumed prior distributions for the population are

µ ∼ N (µµ, σµ) γ ∼ N (µγ, σγ)

αj ∼ N (µα, σα) βi ∼ N (µβ, σβ)

θi ∼ N (µθ, σθ) φj ∼ N (µφ, σφ),

and the full joint posterior distribution is thus defined as:

p(µ,α,β, γ,θ,φ|y) ∝ p(µ,α,β, γ,θ,φ,µ,σ)

∝
n∏
i=1

m∏
j=1

logit−1(πij)
yij(1− logit−1(πij))

1−yij

m×n∏
j=1

N (µ|µµ, σµ)
m×n∏
i=1

N (γ|µγ, σγ)

m∏
j=1

N (αj|µα, σα)
n∏
i=1

N (βi|µβ, σβ)

n∏
i=1

N (θi|µθ, σθ)
m∏
j=1

N (φj|µφ, σφ)

(4)

where πij = µ + αj + βi − γ|θi − φj|, and the latent prior parameters are µ = (µθ, µφ)′ and
σ = (σθ, σφ)′. While Navelski and Pascual (2022) develop a new set of Jeffery’s priors, I use the
prior specification from Barberá et al. (2015), which is supported by Hoff (2003).

6.3 Identification Strategy

The model in Equation (1) is still unidentified due to “additive aliasing” and “scaling invariance”
since there are an infinite number of combinations between the parameters that will give the same
probability of following. An example of additive aliasing is µ = 0, αj = −1, βi = 1, φj = 1, θi = −1,
which gives the same probability of µ = 0, αj = 1, βi = −1, φj = −1, θi = 1, and an example of
scaling invariance is multiplying the distance −γ|θi−φj| by any constant k where γ will absorb part
of the constant −γ

k
|(θi−φj)k| (Barberá (2015)).14 These problems are usually solved by restricting

one of the jth or ith parameters in each parameter set, but becomes difficult to do when working with
the distance between two latent parameters. Navelski and Pascual (2022) suggest an alternative
identification strategy where all priors are treated equally for φj and θi, and are transformed using
an invariant transformation.

14Barberá (2015) does a great job at explain this in the Supplementary Materials if a deeper explanation is of
interest.
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6.3.1 Latent Positions (φj)

I employ a modification of Fisher’s inverse arc-tangent transformation, which was developed and
applied by Navelski and Pascual (2022), and used in this setting. The general formulation is:

x′1 = arctan
(
e(x1+xcenter)

2
π − xcut

)
x′2 = arctan

(
xcut − e(x2+xcenter)

2
π

)
(5)

where, x1 ∈ R and x2 ∈ R are mapped to x′1 ∈ (xcut, 1) and x′2 ∈ (−1, xcut), and

• x1 and x2 are the initially estimated values

• x′1 and x′2 are the transformed values

• xcut is hyperparameter and a constraint put on the lower bound for each side of the estimation

• xcenter = ln(tan
(
π
2
∗ 0
)

+ xcut) and is a value that centers the transformation.

I apply this transformation to the expert latent parameters to constrain the parameter estimates and
to map estimates to an intuitive scale. More specifically, I map all samples drawn from the priors
to a constrained parameter space where φj ∈ (−1, 1) for all j ∈ {1, . . . ,m}. This transformation is
intuitive because is allows researchers to analyze relative latent positions on a −1 (anti) to 1 (pro)
scale. In Equation 5 xcut is a hyperparameter that allows latent parameters to “switch” to the
other side of the spectrum if that is the true location of the latent parameter. For example, in the
GEDL application the @AzMilkProducers expert was originally classified as pro-GEDL and were
given an initial value of .8 to initiate the MC-MC estimation, and the mean of their latent posterior
distribution converged to −0.089, which is more anti-GEDL leaning than pro-GEDL. This intuitive
transformation

An additional difficulty when using a distance model is “reflection invariance” where the resulting
scale between θi and φj could lead to estimates that are misinterpreted since their signs could
be flipped. To combat “reflection invariance,” I assume the aforementioned transformation in
Equation 5 for φ, and use φcut = .6 to guide the parameter estimates to their anticipated estimates.
To aid this transformation, I assume −0.8 as the starting value for φj for the anti-GEDL experts
and +0.8 for the pro-GEDL experts. These assumptions are not strong as Bayesian theory allows
posterior draws to converge to their theoretically correct distribution. If estimates were to diverge
from their anticipated underlying distribution, I would see estimates trying to converge to the
posterior distribution on the other side of the scale. This would also lead to unsatisfactory conversion
diagnostics and high prediction errors. In this analysis, I use the standard practice of constraining
the m random effects to sum up to zero (i.e.,

∑m
j=1 αj = 0) and the same for the n random effects

(i.e.,
∑n

i=1 β = 0). This allows all estimates to be identified relative to their expectation, which is
zero.

6.4 Summary of Estimation Results

Figures 7 (a) and (b) show the distribution of the posterior means of expert popularity and follower
engagement estimates, respectively. Figures 8 (a) and (b) show the distribution of the posterior
means for the expert and follower ideology estimates. Expert popularity is centered at zero (i.e.,
E (α̂j) = 0), and even though the distribution seems to be symmetric overall, it is clear that the more
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popular experts, experts with values greater than zero, are more “intensely” popular than those on
the negative side. This indicates that a popular expert has more of an effect on a follower’s decision
to follow than and unpopular expert since the change in the probability of following has a greater
increase for a popular expert than a decrease in an unpopular expert. This result is motivated in
Table 6 where @NonGMOProject and @OrganicConsumer both have popularity estimates of 3.78
and 3.69, respectively, and @Kevin Faulconer and @AzMilkProducers have popularity estimates of
−3.30 and −3.07, respectively.

(a) (b)

Figure 7: Popularity for Experts α̂j (a) and Engagement of Followers β̂i (b).

(a) (b)

Figure 8: Ideology for Experts φ̂j (a) and Followers θ̂i (b).
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Table 6: Examples of Popularity and Ideology Extremes

Parameter (Name - Initializing View) R̂ Mean SD 2.5% 97.5%

Most Popular
α̂2 (@NonGMOProject - Anti) 1.00 3.78 0.16 3.49 4.11
α̂1 (@OrganicConsumer - Anti) 1.00 3.69 0.16 3.38 4.02

Least Popular
α̂15 (@Kevin Faulconer - Pro) 1.00 -3.30 0.12 -3.51 -3.06
α̂45 (@AzMilkProducers - Pro) 1.00 -3.07 0.12 -3.29 -2.84

Most Extreme Anti-GEDL Ideology

φ̂12 (@GMOEvidence - Anti) 1.03 -0.69 0.02 -0.72 -0.66

φ̂4 (@nongmoreport - Anti) 1.01 -0.68 0.02 -0.71 -0.65

φ̂1 (@OrganicConsumer - Anti) 1.01 -0.65 0.02 -0.68 -0.62

φ̂5 (@GMOFreeUSA - Anti) 1.03 -0.65 0.01 -0.68 -0.62

Most Extreme Pro-GEDL Ideology

φ̂42 (@joeBondyDenomy - Pro) 1.03 0.85 0.03 0.79 0.91

φ̂37 (@shsternberg - Pro) 1.00 0.80 0.02 0.77 0.84

φ̂25 (@pdhsu - Pro) 1.01 0.78 0.02 0.75 0.81

φ̂39 (@AprilPawluk - Pro) 1.01 0.78 0.02 0.74 0.83

Moderate GEDL Ideology

φ̂24 (@NPPC - Pro) 1.01 -0.04 0.02 -0.08 -0.00

φ̂14 (@Cargill - Pro) 1.01 -0.04 0.02 -0.07 -0.01

φ̂26 (@nmpf - Pro) 1.01 -0.07 0.02 -0.11 -0.04

φ̂15 (@Kevin Faulconer - Pro) 1.00 -0.08 0.04 -0.15 0.00

Ideologies of the experts and followers exhibit opposite distributional patterns. The negative side
of distribution in Figure 8 (a) and (b) represent those that are anti-GEDL, and the positive side are
those that are pro-GEDL. For clarity, an ideology value of−1 indicates the most extreme anti-GEDL
ideology, while a value of 1 indicates the most extreme pro-GEDL ideology. Both the ideology of the
experts and followers tend to be polarized since a large majority of the estimates are concentrated
at the end of the spectrum (−1, 1). The experts with the most extreme ideologies are presented in
Table 6 where @GMOEvidence, @nongmoreport, @OrganicConsumer and @GMOFreeUSA all have
the lowest ideal points at −0.69, −0.68, −0.65, and −0.65, respectively, and @joeBondyDenomy,
@shsternberg and @pdhsu, and @AprilPawluk have the highest ideal points at 0.85, 0.80, 0.78 and
0.78, respectively. The polarization between experts’ ideology is interesting because the anti-GEDL
accounts are very extreme while the pro-GEDL accounts range from extreme to moderate. For
example, @NPPC, @Cargill, @nmpf and @Kevin Faulconer were all initially considered experts on
the pro-GEDL side, but in reality, they have ideologies that are more moderate at −0.04, −0.04,
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−0.07 and −0.08, respectively. These point estimates are presented in Table 6, and this is an
interesting result because these experts initially started as pro-GEDL experts while their ideological
estimates are moderate to anti-moderate GEDL. This type of result could imply that these accounts
have more moderate ideologies.

6.5 Estimation Diagnostics

Gelman and Rubin (1992) recommend a R̂ statistic at 1.1, implying that there are no divergent
transitions in the estimation process, and this is the benchmark most researchers follow in practice.
To support this intuition, Figure 9 plots all R̂ values, showing that all values are below the 1.1 line.
The optimal classification threshold was derived by maximizing the area under the ROC curve (i.e.,
maximizing the sensitivity and specificity of the prediction diagnostics), and Figure 10 (a) and (b)
show the ROC curve and confusion matrix, respectively.

Figure 9: R̂ Plot of All 6,860 Parameters (MCMC Convergence Diagnostics)

(a) (b)

Figure 10: ROC Curve (a) and Confusion Matrix (b) for All Observations
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6.6 T∗ Matrix for All Examples

Figure 11: A Social Network Based on Common Connections

Figure 12: An Estimated Social Network Based on Common Connections

33


	Introduction
	Related Literature

	Model
	A Social Network based on Common Connections
	An Estimated Social Network Based on Common Connections
	Markov-Chain Monte Carlo (MC-MC) Estimation


	Data: Genome Editing in Domestic Livestock (GEDL)
	Choosing the GEDL Experts and Procuring the Data from Twitter
	Data Reduction
	Estimating the Data Structure

	Results
	Estimation Results
	Social Influence
	Post Hoc Analysis: A Consensus Belief Based on Ideologies

	Conclusion
	Appendix
	A Review of DeGroot1974's Social Learning Model
	Estimation Methodology and Prior Distributions for Parameters
	Identification Strategy
	Latent Positions (j)

	Summary of Estimation Results
	Estimation Diagnostics
	T Matrix for All Examples


