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Abstract

Focusing on the percentage of body fat (% Body Fat), we develop a multiple regres-
sion model to predict the percentage of body fat in a person given demographic and
physical attributes, but recognize the presence of multicollinearity in the model. With
multicollinearity present inference can not be taken, therefore, we propose two differ-
ent methods to extinguish this multicollinearity issue. We first employ a Step-wise
Minimal AIC Method, which fails to address the multicollinearity issue, and then show
how Principal Component Analysis (PCA) can be used to overcome the multicollinear-
ity issue using the appealing property of independence in the Principal Components
(PCs). We apply a rigorous interpretation of the PCA results to show how using PC
scores in multiple regression can still yield effective interpretations and conclusions.
This work is important because retrieving a person’s body fat percentage is not always
trivial and using standard multiple regression models to do so may yield inconclusive
results. This research is a first step in developing a new cost effective way to efficiently
and accurately estimate a person’s body fat percentage.

Key Words: Bio-statistics, Multicollinearity, Multiple Regression, Multivariate Statis-
tics, Principal Components Analysis
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1 Introduction

Part of assessing health includes estimating a person’s body fat percentage, and there are
many ways in calculating this metric. Some propose using statistical tables where a person
can estimate their body fat percentage by plugging in their age into a table and taking
a few skin-fold measurements using a caliper (Bailey, 1994). Others propose using the
circumference of body measurements (i.e. the abdominal circumference) along with skin-
fold measurements to calculate percentage of body fat (Behnke and Wilmore, 1974; Wilmore,
1976; or Katch and McArdle, 1977). The most comprehensive and accurate way to estimate
body fat percentage is by using body density, and this involves weighing the body in and
out of water and using a universally developed formula that calculates body fat percentage
(Siri, 1956; Wilmore, 1976; Katch and McArdle, 1977). All of these methods for calculating
body fat percentage are accurate, but costly, and practitioners are always looking for new
cost efficient methods to estimate a person’s body fat percentage. We propose a new method
to estimate a person’s body fat percentage without incorporating costly measurements like
density and skin-fold measurements.

2 Project Objective

The objective of this project is to develop a simple and intuitive prediction model, in which
we can take inference from, so that practitioners can use less measurements to accurately
estimate body fat. In route to completing this objective, we find that multicollinearity
is present in our model and correct for this using Principal Component Analysis (PCA).
therefore, the purpose of this project is two-fold: 1) Developing a cost effective prediction
model for a person’s percent bod fat using their demographic and physical attributes, and 2)
Show how to use and interpret a PCA when working with a prediction model that exhibits
multicollinearity. We also show how a PCA can be more useful than a Step-wise Minimal
AIC method for the benefit to a practitioner.

3 Methodology

We develop a multiple regression model that will accurately estimate a person’s body fat
percentage using easy to measure characteristics of the human body. We then are exposed to
a multicollinearity issue in this model, and propose two methods to deal with this issue. The
first method is to reduce the model using a Step-wise Minimal AIC approach, and in using
this method, we are unsuccessful at alleviating the multicollinearity issue. Not convinced
by the Step-wise Minimal AIC approach, we employ a rigorous application of principal
component analysis (PCA) to reduce feature set dimensionalty. Since principal components
is an unsupervised type of feature extraction, where original variables are combined and
reduced to their most important and descriptive components based on their ability to explain
the variance within the original feature set, we select principal components (PCs) that explain
approximately 90% of the variance in the data, and then use the scores from these PCs to
employ a multiple regression model without any multicollinearity present. In doing this
analysis, we also interpret each PC so practitioners can use this process when developing
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their own linear prediction models for percent body fat. This method is extremely useful
in this application because a valuable property of each PC is that it’s vector of scores is
independent of all other PC scores, and this is helpful when mitigating a multicollinearity
issue in a linear model.

4 Data

Description of Data

The data we used for this project includes the estimate of the percentage of body fat deter-
mined by underwater weighing, various body circumference measurements, and demographic
characteristics for 238 individuals. Data was procured from a previous study that derived
a person’s body fat percentage using the underwater weighing technique, and made public
online. The summary statistics of the data set are:

Table 1: Summary Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

% Body Fat (pc fat) 238 18.71 7.85 0.00 12.43 24.78 35.00
Age (years) 238 45.00 12.63 22 36 54 81
Weight (lbs.) 238 176.99 25.26 118.50 158.50 195.56 241.25
Height (inches) 238 70.35 2.49 65.50 68.50 72.25 77.75
Neck (cm) 238 37.87 2.22 31.10 36.32 39.40 43.90
Chest (cm) 238 100.27 7.65 79.30 94.25 104.88 121.60
Abdomen (cm) 238 91.82 9.48 69 84.4 98.8 118
Hip (cm) 238 99.35 5.92 85.00 95.50 102.68 114.40
Thigh (cm) 238 59.10 4.68 47.20 56.00 62.05 74.40
Knee (cm) 238 38.49 2.24 33.00 36.92 39.80 46.00
Ankle (cm) 238 22.95 1.26 19.70 22.00 23.87 26.00
Biceps (cm) 238 32.11 2.88 24.80 30.13 34.08 39.10
Forearm (cm) 238 28.61 1.99 21.00 27.30 30.00 34.90
Wrist (cm) 238 18.20 0.88 15.80 17.60 18.80 20.90

where we can see that many of the variables are physical measurements of an individuals
body and different body parts, with the exception of age. Age is the only non-physical trait
included in the analysis. Note that we are treating this as a random selection of individuals
from a population of average humans, since the age, weight, and height ranges seem to be
quite large. Therefore, all conclusions should be interpreted as a result for the “average
human.”

Initial Interpretation

As shown in Figure 1, all variables except height is positively correlated to percentage of body
fat. All variables are also very highly positively correlated with each other, with the exception
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of Age. This is a clear initial sign of multicollinearity being present in the model. This is
intuition is further supplemented through the individual LOWESS regressions presented in
the bottom left portion of Figure 1. All data seems to be normally distributed by looking
at the histograms for each variable, so a joint normality assumption may be satisfied. One
thing to notice in particular is how highly correlated Weight is with all other variables. This
could imply that Weight is a driving factor in explaining all other variable measurements.

Figure 1: Pairwise Plot of Data

5 Analysis and Results

The base case linear model is defined as

Yn×1 = Xn×kβk×1 + εn×1

and we present results using variables from the data (the raw data), and from a regression
analysis using the estimated principal component’s (PCs) scores derived from the Principal
Components Analysis (PCA). We first fit a “Full Model,” using all k variables from the raw
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data. Table 2 (1) presents these results, and shows there is an obvious multicollinearity issue
present. This issue is apparent because many of the signs on the estimate coefficients do not
match the intuition derived from the pairwise plot analysis. The multicollinearity concern
is further amplified because many variables that are highly correlated with the dependent
variable are insignificant. This problem is not to be ignored, so we employ a Step-Wise
Minimal AIC method to reduce the model, discover that the multicollinearity issue persists,
then proceed to apply a PCA to reduce the model to PCs, and then use the PC’s scores in a
separate multiple regression to maintain high predictions, enable some level of interpretation,
and to finally ward off the multicollinearity issue.

Table 2: Initial Multiple Regression Results

Dependent variable:

pc fat

(1) Full Model (2) Optimal Step-Wise Model

Age 0.063∗ (0.034) 0.065∗∗ (0.032)
Weight −0.011 (0.072)
Height −0.241 (0.203) −0.262∗ (0.139)
Neck −0.385 (0.242) −0.429∗ (0.220)
Chest −0.112 (0.114)
Abdomen 0.883∗∗∗ (0.094) 0.811∗∗∗ (0.071)
Hip −0.202 (0.165) −0.227 (0.141)
Thigh 0.219 (0.153) 0.259∗ (0.138)
Knee −0.030 (0.276)
Ankle 0.039 (0.384)
Biceps 0.162 (0.176)
Forearm 0.291 (0.211) 0.311 (0.194)
Wrist −1.593∗∗∗ (0.576) −1.615∗∗∗ (0.509)
Constant 2.253 (25.029) 3.627 (8.933)

Observations 238 238
R2 0.721 0.718
Adjusted R2 0.705 0.708
F Statistic 44.552∗∗∗ 72.973∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To address the multicollinearity issue, we first reduce the model based on a Step-Wise Min-
imal AIC regression technique. This technique reduces the model with the intent of mini-
mizing AIC. Using this technique, the model is reduced to the one presented in Table 2 (2)
and has a minimal AIC of 696.28. The multicollinearity issue still persists since coefficient
signs still go against intuition. With this lack of assurance in model fit, we further combat
the multicollinearity issue using a PCA. A PCA reduces the independent variable set’s di-
mensionality, while gaining the useful property of independence between the PCs. We then
interpret the characteristics and loadings for each PC, and perform a new multiple regression

5



to show how the multicollinearity issue can be mitigated using a PCA.1

We employ a PCA on all the independent variables of interest Xn×k to reduce the di-
mensionality of the data and to ward off the multicollinearity issue. PCA’s help mitigate
multicollinearity issues because they explain the variance-covariance structure of the feature
measurements X1, . . . , Xp through a few linear combinations that are theoretically indepen-
dent. These linear combinations are called principal components (PCs) and a PCA finds
the PCs that account for the variance in the data. In a PCA, the first PC is the linear
combination that accounts for the most variance in the data, and all other PCs follow a
pattern where each PC accounts for more variance in the data than the next PC. Figure 2
shows this trend with the PCs, using all variables of interest Xn×k, as the amount of variance
explained decreases as we move from PC1 (Comp. 1) to PC9 (Comp. 9).2 This trend is also
apparent in Table 3 which presents the Standard Deviation (SD), Proportion of Variance
(Variance Prop.), and Cumulative Proportion of Variance (Cumulative Prop.) Explained. A
key metric presented in this table is the Cumulative Proportion of Variance Explained (Cu-
mulative Prop.). This metric gives the proportion of variance explained by the first k PCs,
and it is useful because if we as researchers are trying to preserve the variance-covariance
structure of the feature set Xn×k, then we would like to use enough of the PCs in the next
multiple regression analysis that explains this variance-covariance structure. Figure 2 and
Table 3 indicates that using 5 PCs in the multiple regression analysis may be sufficient as
they explain approximately 90% (exactly 89.7%) of the variance in the data.3

Table 3: Summary of PC Variance Explanation

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

SD 2.839 1.227 0.931 0.844 0.721 0.571 0.538 0.476 0.431 0.373 0.290 0.257 0.137
Variance

Prop.
0.620 0.116 0.067 0.055 0.040 0.025 0.022 0.017 0.014 0.011 0.006 0.005 0.001

Cumulative
Prop.

0.620 0.736 0.803 0.857 0.897 0.922 0.945 0.962 0.976 0.987 0.993 0.999 1.000

Taking a deeper dive into the interpretation of these two PCs, we investigate the loadings
βi that govern the linear combination for each PC yi. Each PC yi takes on the form of

yi = βi1X1 + · · · + βikXk + · · · + βimXm

where βik is the loading for feature Xk, and i is the PC derived from the PCA. Loadings are
important in interpreting PCs because each vector of loadings βi contains the coefficients for

1We understand that a Step-Wise Minimal AIC method and PCA are not the only ways to account
for multicollinearity in a multiple regression model, but for this project and analysis, we are using these
methods to show how a multivariate technique can help improve multiple regression fit and the ability to
take inference.

2Note that we do not plot PC11 through PC13 because the percentage of variance explained for these
PCs is very small (0.006,0.005,0.004, respectively).

3When doing a PCA it is important to use the correlation matrix, instead of the variance-covariance
matrix, because some features with large variances could dominate in the PCA. This could lead to unequal
explanation of the variance structure, and therefore, we use the correlation matrix.
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Figure 2: Principal Component Variance Explanation Plot

each variable Xk in that linear combination. Each loading βik represents a relative level of
correlation between the PC yi and Xik in that linear combination. The greater the magnitude
of the loading, the higher the correlation between PC yi and feature Xk. Table 4 presents
these loadings for all 13 features used in the initial multiple regression, and we find that the
first five principal components (PC1-PC5) can be interpreted very differently. PC1 seems
to represent how all the features are positively correlated with each other since all loading
signs are positive. Further note that the smallest loading is Age, implying that PC1 is highly
correlated with all of the other variables that relate to physical body part measurements. On
the contrary, PC2’s highest loading is Age implying that PC2 is highly correlated with Age,
and that the variance in Age is most likely being explained by this PC. The third PC (PC3)
seems to account for the variance that is mostly explained by the contrast between Height &
Wrist and Thigh & Abdomen. The forth PC (PC4) seems to account for the variance that is
explained by the negative relationship of the arms Biceps, Forearm & Wrist with the rest of
the body, and the fifth PC (PC5) seems to account for the variance that is explained by the
contrast of the legs Thigh, Knee & Ankle with the rest of the body. Practitioners should use
these loadings interpretations when constructing their own PCA and multiple regression.
It is clear that we have an interpretation for these PCs and that we can use them to ex-
plain approximately 90% of the variance for the features we are using to explain a person’s
% percent body fat. With that said, we then use the scores from each PC in a multiple
regression to help explain a person’s body fat percentage, and the results are reported in
Table 5. Each score for each PC is derived by plugging in the observational data values
x1, . . . ,xN into each one of estimated linear functions that make up each yi. We report 3
linear regression models in Table 5, and show how we have warded off the multicollinearity
issue in Figure 3. In all three models, all coefficients are significant in explaining percent
body fat with the exception of Comp.5 in model (3), and it is now valid to take inference
from these coefficients since all models satisfy the equal variance and normality assumptions
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Table 4: Principal Component Loadings

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13

Age 0.006 0.730 0.364 0.124 0.007 0.324 0.206 0.131 0.217 0.276 0.116 0.131 0.037
Weight 0.344−0.022−0.020 0.130−0.137−0.013−0.099−0.139−0.018 0.030−0.010 0.095 0.897
Height 0.167−0.433 0.569 0.228−0.560 0.113 0.032−0.054 0.066 0.152 0.097−0.105−0.175
Neck 0.292 0.163 0.055−0.265−0.215−0.581−0.233 0.351 0.479−0.032−0.125 0.050−0.076
Chest 0.309 0.232−0.144 0.100−0.114−0.023−0.295−0.495−0.006−0.280 0.520 0.234−0.267

Abdomen 0.301 0.278−0.198 0.266−0.075 0.057−0.211−0.157−0.108 0.147−0.395−0.657−0.152
Hip 0.326−0.051−0.173 0.256−0.035 0.049 0.037 0.131−0.257 0.204−0.434 0.651−0.233

Thigh 0.302−0.155−0.355 0.116 0.116−0.068 0.212 0.371−0.039 0.443 0.562−0.173−0.038
Knee 0.310−0.057 0.090 0.275 0.198 0.266 0.090 0.443 0.067−0.699 0.006−0.101−0.010
Ankle 0.258−0.259 0.253 0.035 0.683 0.019−0.087−0.311 0.415 0.211−0.092 0.022−0.060
Biceps 0.290−0.003−0.195−0.336−0.174 0.060 0.742−0.314 0.200−0.131−0.142−0.050−0.047

Forearm 0.256−0.067−0.002−0.667−0.044 0.563−0.350 0.147−0.112 0.097 0.004−0.007−0.022
Wrist 0.270 0.143 0.462−0.228 0.225−0.377 0.158−0.018−0.641−0.041 0.054−0.085−0.015

(p-values = [(0.2285, 0.4446, 0.6142), (0.1918, 0.3632, 0.1106)] ), and it is clear through Fig-
ure 3 that all PCs exhibit independence since correlations are close to zero and the plots
seem to not have a clear positive or negative trend. 4 We propose using the Model (3) PC1-
PC5 because it has a reasonably high R2 = 0.630, it incorporates all measurements taken
on a person’s body, it explains approximately 90% of the variance in the explanatory vari-
ables, and more importantly, it wards off the initial multicollinearity issue we encountered
in the first multiple regression analyses. Each coefficient effect can be interpreted using the
intuition derived from the paragraph above which shows that the first coefficient accounts
for all body measurements, the second seems to account for age, the third represents how
the contrast between Height & Wrist and Thigh & Abdomen have a negative effect on an
individuals body fat percentage, and similar interpretation can be used for the estimated
coefficients on PC4 and PC5.

6 Conclusion

We show a method to predict the body fat percentage of an individual in the presences of
multicollinearity using a model with a large set of features. To do this, we reduce the dimin-
sionaltiy dataset using PCA, and use the first five PCs to predict body fat percentage with
the support of inference and interpretation. This research is important because practitioners
can use this methodology to first derive their own models for prediction, and then use the
loadings and multiple regression coefficients to quickly predict a person’s body fat percent-
age. We also show that PCA can be useful in curtain circumstances where other methods
are not great at dealing with multicollinearity, such as the Step-Wise Minimal AIC method.
We hope our insights will reduce costs in estimating a person’s body fat percentage.

4The Durbin-Watson AR1 auto-correlation test is rejected ( p-value = (0.0004157, 0.003026, 0.002731)),
but not by that much in the second regression, and we do not think that not fully satisfying this assumption
invalidates results.
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Table 5: Principal Component Regression Results

Dependent variable:

pc fat

(1) PC1 (2) PC1-PC3 (3) PC1-PC5

Comp.1 1.629∗∗∗ (0.145) 1.629∗∗∗ (0.116) 1.629∗∗∗ (0.110)
Comp.2 2.490∗∗∗ (0.267) 2.490∗∗∗ (0.255)
Comp.3 −2.510∗∗∗ (0.352) −2.510∗∗∗ (0.336)
Comp.4 1.867∗∗∗ (0.371)
Comp.5 −0.204 (0.434)
Constant 18.705∗∗∗ (0.412) 18.705∗∗∗ (0.328) 18.705∗∗∗ (0.313)

Observations 238 238 238
R2 0.348 0.590 0.630
Adjusted R2 0.346 0.584 0.622
Residual Std. Error 6.349 5.061 4.823
F Statistic 126.206∗∗∗ 112.036∗∗∗ 79.128∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Figure 3: Pairwise Plot of PC Scores
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