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Abstract
Invasive insect species threaten the productivity of ecosystems worldwide, and ecological niche models can
be used to predict distributions of invaders and guide management efforts. Ecological niche models can also
aid monitoring for invasive species that are globally distributed. One such species is the yellow spotted
stink bug (Erthesina fullo Thunberg), a polyphagous pest native to Asia that has established in Europe and
South America and threatens specialty crops. Here, we used ecological niche models to predict the potential
distribution of E. fullo, and created a website to display predictions. We show that E. fullo has peak occur-
rence probability in areas with annual mean temperatures around 20�C, and that the occurrence probabil-
ity increases as maximum monthly temperature reaches up to 38�C. The likelihood of occurrence
decreased as annual precipitation increased, but increased with greater precipitation in the wettest and dri-
est months. This suggests E. fullo is most suited to regions that are warm and dry and where most precipi-
tation occurs across only a few months, such as southern North America, central and southern South
America, southern Europe, southern Africa, and central and eastern Australia. Given that E. fullo is a
highly mobile hitchhiking insect that travels through cargo and other containers to new areas, the potential
spread of this species into new regions should be carefully monitored.
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INTRODUCTION

Invasive insects represent a major threat to agriculture,
biodiversity and ecosystem function by disrupting food
webs, spreading pathogens, consuming crops and
damaging infrastructure (Bradshaw et al. 2016). Many
researchers have studied the likely impacts of climate
change on invasive species and found that the changing
environment will allow for range expansions of invasive
species, and the number and impact of invasions are
predicted to increase with climate change (Anton 2021).

The most efficient tactic to manage invasive species is to
eradicate earlier established populations (Valentin
et al. 2018), but we often lack information on where to
monitor invasive species to identify incipient populations,
especially for species that are not well studied. For those
invasive species that have shown a capacity for establish-
ment across continents or broad geographic regions,
leveraging data from existing invasive populations into
ecological niche models could aid in identifying other
potential areas where invaders might occupy.

Early detection and eradication programs require spa-
tial habitat suitability predictions to guide deployment
of traps for monitoring and to manage interventions.
Ecological niche models are common tools used in inva-
sive species distributional modeling and risk assessment
for these purposes (Jiménez-Valverde et al. 2011). The
correlative niche models use environmental variables
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that are associated with observation localities of an
invasive species to characterize the realized niche, and
then identify regions where the realized niche is
located geographically (Peterson et al. 2011). The
low-data-demand of ecological niche models make them
useful in invasion risk assessment for species that are not
well studied, and for species that have invaded parts of
the globe and are considered threats to invade other
regions. For example, for species such as yellow spotted
stink bug, Erthesina fullo Thunberg, 1783 (Hemiptera:
Pentatomidae) that are native to Asia but have invaded
Europe and South America, models may explore other
world regions that could potentially be invaded.
Erthesina fullo is a highly polyphagous insect pest

species that is native to East Asia, but has recently
become of global interest as it invaded Albania in
Europe and Brazil in South America (Mi et al. 2020;
Brugnera et al. 2022). It has been reported to feed on
many economically important plants such as kiwifruit,
cherries, pear and apple (Mi et al. 2020). The ability of
E. fullo to overwinter across a range of conditions,
combined with their broad dispersal potential and high
polyphagy, has caused worry that populations could
invade regions outside of Asia. As E. fullo shares many
ecological traits with the devastating invader brown
marmorated stink bug, Halyomorpha halys Stål, 1855
(Hemiptera: Pentatomidae), a species that has rapidly
swept across Europe and North America and is causing
extreme damage to specialty crops (Zhu et al. 2012),
assessment of potential areas of invasion is warranted.
In this paper, we used ecological niche models to iden-

tify where potential establishment of E. fullo could occur
across the globe. We first explored whether the realized
niche of E. fullo is similar in the native range to the two
invaded ranges (Europe and South America). This analy-
sis allowed us to predict whether adaptation has
occurred in invasive populations and the degree of over-
lap in the realized niche in the native compared to the
invaded ranges (Zhu et al. 2012). Next, responses of E.
fullo to annual trends and extremes of temperature and
precipitation were modelled using a fine-tuned Maxent
model (Radosavljevic & Anderson 2014) with inflated
response curves (Zurell et al. 2012). Finally, we used
six types of ecological niche models and two environ-
mental datasets, along with ensemble models (Zhu &
Peterson 2017) that averaged predictions, to predict
the potential distribution of E. fullo globally. Here
we sought to identify the regions that would be most
likely to support establishment and spread of E. fullo
by searching suitable areas that were supported by
multiple niche models. By comparing the variation
among models in the distributional predictions, we
identified global regions that should be targeted for

monitoring of E. fullo to prevent establishment of
this highly mobile and devastating invader.

MATERIALS AND METHODS

Input data

Raw occurrence records in East Asia were gathered from
multiple sources: (i) the Global Biodiversity Information
Facility (http://gbif.org/); (ii) iNaturalist (http://
inaturalist.org/); and (iii) idgibio (http://idigbio.org/)
using the spocc package in the R statistical software
(Owens et al. 2023; R Core Team 2023). After raw
records were obtained, we cleaned the data by removing
duplicate records and records that were beyond native
distribution. We then enforced a distance of 100 km
between records to reduce sampling bias with the
spThin package in R, as ecological niche models are sen-
sitive to sampling bias (Aiello-Lammens et al. 2015).
This left 136 records that were retained for model cali-
bration and evaluation (Fig. 1A). Six bioclimate vari-
ables (see below) that were associated with these
occurrence records were extracted and plotted in three
scatterplots, that is, annual precipitation against annual
mean temperature (Fig. 1B), minimum temperature of
the coldest month against maximum temperature of the
hottest month (Fig. 1C) and precipitation of the driest
month against that of the wettest month (Fig. 1D).
We assembled 12 environmental variables at a resolu-

tion of 2.5 min that summarized aspects of climate and
vegetation for niche and distribution modeling
(Table S1). We collected bioclimate variables associated
with annual trends and extremes of temperature, precipi-
tation and radiation from WorldClim (version 2.1; http://
worldclim.org/); these predictors were derived from his-
torical monthly temperature and precipitation data and
averaged from 1970 to 2000. For vegetation data, we
used the European Global Landcover 2000. We assessed
annual maximum green vegetation fraction based on
12 years (2001–2012) normalized difference vegetation
index data. Two datasets were prepared (Table S1):
(i) dataset 1 included annual trends and extremes of tem-
perature and precipitation, two abiotic factors that have
been used to effectively predict the distribution of another
invasive stink bug, H. halys (Zhu et al. 2012); and
(ii) dataset 2 included all variables with Pearson correla-
tion <0.7, including annual mean radiation, annual mean
temperature, precipitation of the driest month, land cover
and maximum green vegetation fraction (Table S1).

Modeling the realized niche of E. fullo

After obtaining occurrence data, we assembled six abiotic
variables (i.e. dataset 1) to characterize the realized niche
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of E. fullo: (i) annual mean temperature; (ii) maximum
temperature of the warmest month; (iii) minimum temper-
ature of the coldest month; (iv) annual precipitation;
(v) precipitation of the wettest month; and (vi) precipita-
tion of the driest month. To assess the realized niche of E.
fullo, we used Maxent to simulate the occurrence proba-
bility of E. fullo in the native as well as the two invaded
ranges. For this analysis, we fine-tuned the Maxent model
using the Akaike information criterion with the SDMtune
package in R (Warren & Seifert 2011; Vignali
et al. 2020), and we used inflated response curves to
explore species–environment relationships (i.e. the realized
niche of E. fullo). These inflated response curves demon-
strate the effect of a variable on the response while
accounting not only for the average effects of the other
variables but also for mean, minimum, median, maximum
and quartile values (Zurell et al. 2012).

Distributional modeling of E. fullo

We used a classical model approach, where ecological
niche models were calibrated based on occurrence

records in the native East Asia region and transferred
onto the globe to predict the potential distribution of
E. fullo (Zhu et al. 2012); this approach assumes a
shared realized niche in the invaded and native ranges.
We used six common ecological niche models to pre-
dict the distribution of E. fullo: (i) generalized additive;
(ii) boosted regression tree; (iii) generalized linear;
(iv) Maxent; (v) random forest; and (vi) support vector
machine. Models were built using the sdm package
in R, and this package was used to average model
predictions to create an ensemble model (Naimi &
Araújo 2016); the ensemble models have been pro-
posed as a method to reduce uncertainty given that
variations exist for predictions of any individual model
(Araújo & New 2007). Ensemble models (see below)
were calibrated using the two environmental datasets
separately, results of which were averaged for the final
distribution predictions.

For each model, a native model was built using
occurrence data from accessible areas in East Asia,
which was delimited by buffering minimum convex
polygons of observed points at 500 km. Following

Figure 1 (A) Occurrence data of Erthesina fullo and the native accessible area used in native niche models. Six bioclimate vari-
ables associated with these occurrence records were plotted in scatterplots, showing values for (B) annual mean temperature and
precipitation, (C) maximum temperature of the warmest month and minimum temperature of the coolest month and
(D) precipitation of the wettest and driest months. In each scatterplot, values for all native (black circles) and invasive occurrence
data (red and yellow stars) used in the models are shown.

Potential distribution of Erthesina fullo
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established best practices for Maxent (Araújo et al. 2019),
we used the fine-tuned settings and a “random” method
to select 10,000 pseudo-absence records from the
“accessible” areas (Barve et al. 2011), given that real
absence data was not available. For the other models, we
selected 680 pseudo-absence records from the “accessible”
areas, which is five times the number of occurrence
records used to create the models (Barbet-Massin
et al. 2012). Pseudo-absence records represent back-
ground landscapes or areas that are not predicted to have
the species; these types of records are used in models
when data on the real absence of species is lacking, as in
this study. Each of the models, and the ensemble models,
were fit in the accessible areas of East Asia and then
transferred on the globe to estimate potential habitat
suitability.
For model validation, 70% of the records were used

for training and 30% for evaluation. We used the area
under the curve (AUC) of the receiver operating charac-
teristic plot as an effective discrimination measure in
concert for evaluating model performance (Lobo
et al. 2008; Peterson et al. 2008) rather than simply
reporting the AUC value. Finally, we used the multivar-
iate environmental similarity surface metric (MESS)
(Elith et al. 2010), to measure the nonanalogue envi-
ronmental conditions for the two datasets in model
transferred areas (i.e., areas of the globe where distri-
butional predictions occurred in areas not reflected by
conditions in the training area of East Asia).

RESULTS

Realized niche modelling of E. fullo

The fine-tuned Maxent model simulations showed that
E. fullo has the greatest probability of occurrence in
habitats with temperatures ≈20�C; suitability based on
annual temperatures showed a relative normal distribu-
tion around this value (Fig. 2A). Model predictions
show E. fullo has the highest probability of occurrence
in regions with relatively high maximum temperatures
in the warmest month (up to 38�C); occurrence proba-
bility of E. fullo was also predicted to increase in
regions with minimum temperatures of the coldest
month of up to 25�C (Fig. 2B,C). Results from Maxent
models show that the likelihood of occurrence for
E. fullo was highest in regions with relatively low
annual precipitation (Fig. 2D), but also where most
precipitation falls in only a few months (Fig. 2E,F). For
each predictor, inflated response curves (i.e. Fig. 2, gray
lines) that accounted for values of predictors generally
followed the partial response curves that did not
account for other predictors (i.e. Fig. 2, blue lines).

This suggests that the predictors largely were observed
to have independent and additive effects on probability
of occurrence.
When comparing climatic conditions in native and

invasive ranges, climatic conditions occupied by inva-
sive populations of E. fullo overlap with native
populations, supporting our assumption of a shared
niche (Fig. 1). This suggests that invasive populations
have not adapted to unique climatic conditions, or
invasive populations have not yet reached regions with
climatic conditions not found in the native range.

Ecological niche modelling of the potential
distribution of E. fullo

All six ecological niche model approaches showed good
discrimination ability in model interpolation evalua-
tions with either dataset 1 or 2 as input data, with
AUC values for the 70% training data ranging from
0.70 to 1.0 and the 30% validation data ranging
from 0.72 to 0.83 (Figs S1,S2). The random forest
model was particularly efficient in reclassifying pres-
ence and absence distributions and showed better per-
formance in training data evaluation than the other five
models with either predictor dataset (Figs S1,S2). There
was considerable variability in predictions across the
six model types that were unequally distributed across
the globe (Figs S3,S4). The greatest congruence among
the six models occurred in regions north of 40�N lati-
tude, in northern and western South America, and in
parts of central Africa; these predictions were consis-
tent with either predictor dataset (Figs S3,S4). In con-
trast, the greatest variability observed across the six
models occurred in areas south of 40�N latitude in
dataset 1 (but not dataset 2) based models, including
the majority of Africa, the southern United States, cen-
tral America, eastern South America and Australia.
Based on our analysis of areas outside the training
area, our model predictions were robust throughout
most of the globe except in parts of northern Canada
and Russia (Figs S3,S4), as these two regions have one
or more environmental variables outside the range pre-
sent in training data (i.e. MESS analysis; Figs S3,S4);
however, these regions were predicted to have almost
no suitability for E. fullo.
Predictions of habitat suitability from the ensemble

model suggest there are vast areas of suitable habitat in
global regions south of 40�N latitude (Fig. 3). In the
United States, a country that has not yet been invaded,
there is predicted suitable habitat in California and the
Pacific Northwest, two regions that are relatively warm
and dry (Fig. 3A), as well as much of the southeastern
United States (Fig. 3B). In South America, the majority
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of the continent is predicted to have medium to high
suitability. Indeed, the region of Brazil that has been
invaded is predicted to have extremely high suitability
(Fig. 3C). Similarly, most of southern Europe, including
Spain, Italy and Greece, are predicted to have
extremely high suitability and these regions include the
invaded area (Fig. 3D). To facilitate application, our
ensemble model prediction was deposited in a website
(https://gpzhu.github.io/YSSB/YSSB.html) for interac-
tive visualization.

DISCUSSION

Realized niche modelling suggests global areas that are
relatively warm and dry are most suitable for E. fullo,
which tracks well with their observed native range in
East and Southeast Asia. Prior studies show that E.
fullo can complete development from 15�C to 30�C,
with a hatch rate exceeding 97.5% across these tem-
peratures (Mi et al. 2020); however, hatch rates

precipitously decline below 15�C and above 60% rela-
tive humidity. These findings are in line with our results
showing increasing annual precipitation lowers the
occurrence probability (Fig. 2). Our models suggest
that the occurrence probability of E. fullo decreases as
annual precipitation increases, but the probability
increases with greater precipitation in the wettest and
driest months. These simulations are consistent with
ensemble model predictions that show E. fullo is most
suited to regions that are warm and dry and where
most precipitation occurs across only a few months
(Fig. 3). Our suitable predictions were also observed in
distinct dotted areas in the eastern United States
(Fig. 3B) and Europe (Fig. 3D). This might be due to
the urban heat island effect (Deilami et al. 2018) as
these dotted areas are the homes of cities, for example,
Columbus, Cleveland, and Dayton in Ohio, Pittsburgh
and Philadelphia in Pennsylvania (Fig. 3B), Paris in
France and London in the UK (Fig. 3D); the high tem-
peratures there would help to provide suitable habitat

Figure 2 Simulations of Erthesina fullo response to climate factors with Maxent models and inflated response curves. For each
panel, blue lines denote partial response curves for how E. fullo occurrence probability is expected to change when holding other
predictors at their mean values. Gray lines denote inflated response curves when keeping other predictors at their minimum,
median, maximum and quartile values.

Potential distribution of Erthesina fullo
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for E. fullo. Of course, regions or areas predicted to
have highly suitable habitat are not guaranteed to
be invaded, as the ultimate distribution of species like
E. fullo is determined not only by abiotic factors but
also by biotic factors as well as dispersal (Peterson
et al. 2011). However, E. fullo is known to be a
hitchhiking insect that can travel through cargo and
other containers to reach new areas. For example, in
2014, E. fullo was detected in New Zealand but did
not establish; similar detections were confirmed to be
established populations in Albania in 2017 and Brazil
in 2020 (Mi et al. 2020; Brugnera et al. 2022).
Like every ecological model, correlative ecological

niche models are sensitive to input occurrence data and
model approaches (Thibaud et al. 2014). Selecting the
best model for invasion risk assessment remains contro-
versial, and there is no agreement in ideal metrics to
evaluate model performances (Lobo et al. 2008; Leroy
et al. 2018). It is therefore important to explore both
suitability and uncertainty in model predictions, and to
explore predictions with variable model techniques and
input parameters. Uncertainty is common in both cor-
relative (e.g. Maxent) and process (e.g. CLIMEX)
based model predictions, and in some cases more

robust predictions can be achieved if ensemble models
are produced appropriately (Araújo & New 2007). We
used ensemble models, as well as a mixture of environ-
mental datasets that included various predictor vari-
ables, to generate predictions on habitat suitability that
also showcased variability in predictions across models.
Our approach allowed us to show general congruence
among model approaches, which increases the robust-
ness of our findings.
Our ensemble model predictions are generally consis-

tent with a recent model prediction that was based on
CLIMEX (Santos et al. 2023). Our predictions were
based on correlative niche approaches and provide con-
tinuous suitability predictions from 0 to 1 (Fig. 3),
whereas the CLIMEX model related insect physiologi-
cal tolerance data with grid data and was developed
with low and high suitability (Santos et al. 2023). Some
mechanistic approaches to model species distribution
tend to require large numbers of parameters for model
calibration, including information on morphology,
physiology and behavior of species (Peterson
et al. 2015), whereas most of these data were not avail-
able for E. fullo. This represents a significant barrier to
the use of mechanistic models in estimating its niche

Figure 3 Predicted habitat suitability of Erthesina fullo based on the ensemble ecological niche models. Panels represent regional
predictions for (A) the western United States, (B) the eastern United States, (C) South America and (D) Europe, along with a com-
bined global map (top right).
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and distribution. However, CLIMEX models generally
require fewer parameters and are more parsimonious
than other mechanistic models, which allowed us to
compare our ecological niche models with prior work
using CLIMEX.

Erthesina fullo and H. halys are two sympatric spe-
cies in East Asia that share many biological characteris-
tics such as polyphagy, a primarily r-selected life
history, reproductive diapause, high dispersal capacity,
aggregation behavior and association with human-
modified ecosystems (Mi et al. 2020). These character-
istics have made H. halys a successful global invader
that has established populations in North and South
America as well as Europe and has become a key agri-
cultural pest causing considerable damage and losses to
tree fruit, small fruit, nuts and vegetables (Zhu
et al. 2012). There is little doubt that E. fullo has simi-
lar invasive potential and may be able to establish in
many of the suitable areas identified here if transported
to those regions. Like H. halys, invasions by E. fullo
could have large economic impacts on a range of
important horticultural crops, such as stone fruit,
apples and kiwifruit (Mi et al. 2020). Our study shows
that E. fullo could become a globally distributed
invader and its potential establishment in new suitable
regions should be carefully monitored and coordinated
across the globe. More broadly, our study shows that
using a range of ecological niche models and ensemble
models can not only identify areas of potential suitabil-
ity for an invasive species but also assess variability in
predictions. For future invasive species, combining
model techniques and explanatory variables of interest
could be the optimal way to mitigate potential invaders
before they occur or become widely established.

ACKNOWLEDGMENTS

The project was funded by the USDA HATCH
Program (Accession: 7005372). We thank M. Ikes for
assistance with data analysis.

REFERENCES

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B,
Anderson RP (2015) spThin: an R package for spatial
thinning of species occurrence records for use in ecologi-
cal niche models. Ecography 38, 541–545. https://doi.
org/10.1111/ecog.01132

Anton A (2021) How many alien species will there be in
2050? Global Change Biology 27, 968–969. https://doi.
org/10.1111/gcb.15406

Araújo MB, New M (2007) Ensemble forecasting of species
distributions. Trends in Ecology and Evolution 22,
42–47. https://doi.org/10.1016/j.tree.2006.09.010

Araújo MB, Anderson RP, Barbosa AM et al. (2019) Stan-
dards for distribution models in biodiversity assessments.
Science Advances 5, eaat4858. https://doi.org/10.1126/
sciadv.aat4858

Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012)
Selecting pseudo-absences for species distribution models:
how, where and how many? Methods in Ecology and
Evolution 3, 327–338. https://doi.org/10.1111/j.2041-
210X.2011.00172.x

Barve N, Barve V, Jiménez-Valverde A et al. (2011) The
crucial role of the accessible area in ecological niche
modeling and species distribution modeling. Ecological
Modelling 222, 1810–1819. https://doi.org/10.1016/j.
ecolmodel.2011.02.011

Bradshaw CJA, Leroy B, Bellard C et al. (2016) Massive yet
grossly underestimated global costs of invasive insects.
Nature Communications 7, 12986. https://doi.org/10.
1038/ncomms12986

Brugnera R, Lima Y, Grazia J, Schwertner CF (2022)
Occurrence of the yellow-spotted stink bug Erthesina
fullo (Thunberg) (Hemiptera: Pentatomidae) in Brazil,
a polyphagous species from Asia. Neotropical Entomol-
ogy 51, 325–329. https://doi.org/10.1007/s13744-021-
00924-9

Deilami K, Kamruzzaman M, Liu Y (2018) Urban heat
Island effect: a systematic review of spatio-temporal
factors, data, methods, and mitigation measures. Interna-
tional Journal of Applied Earth Observation and
Geoinformation 67, 30–42. https://doi.org/10.1016/j.jag.
2017.12.009

Elith J, Kearney M, Phillips S (2010) The art of modelling
range-shifting species. Methods in Ecology and Evolution
1, 330–342. https://doi.org/10.1111/j.2041-210x.2010.
00036.x

Jiménez-Valverde A, Peterson AT, Sober�on J, Overton JM,
Arag�on P, Lobo JM (2011) Use of niche models in inva-
sive species risk assessments. Biological Invasions 13,
2785–2797. https://doi.org/10.1007/s10530-011-9963-4

Leroy B, Delsol R, Hugueny B et al. (2018) Without quality
presence–absence data, discrimination metrics such as
TSS can be misleading measures of model performance.
Journal of Biogeography 45, 1994–2002. https://doi.org/
10.1111/jbi.13402

Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: A mis-
leading measure of the performance of predictive distribu-
tion models. Global Ecology and Biogeography 17,
145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

Mi Q, Zhang J, Gould E, Chen J, Sun Z, Zhang F (2020)
Biology, ecology, and management of Erthesina fullo
(Hemiptera: Pentatomidae): a review. Insects 11, 346.
https://doi.org/10.3390/insects11060346

Naimi B, Araújo MB (2016) Sdm: A reproducible and extensible
R platform for species distribution modelling. Ecography
39, 368–375. https://doi.org/10.1111/ecog.01881

Potential distribution of Erthesina fullo

7 of 8Entomological Science (2023) 26, e12566
© 2023 The Authors. Entomological Science published by John Wiley & Sons Australia, Ltd on behalf of The Entomological
Society of Japan.

 14798298, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ens.12566 by W

ashington State U
niversity, W

iley O
nline L

ibrary on [12/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1111/ecog.01132
https://doi.org/10.1111/ecog.01132
https://doi.org/10.1111/gcb.15406
https://doi.org/10.1111/gcb.15406
https://doi.org/10.1016/j.tree.2006.09.010
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1126/sciadv.aat4858
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1111/j.2041-210X.2011.00172.x
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1016/j.ecolmodel.2011.02.011
https://doi.org/10.1038/ncomms12986
https://doi.org/10.1038/ncomms12986
https://doi.org/10.1007/s13744-021-00924-9
https://doi.org/10.1007/s13744-021-00924-9
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.1016/j.jag.2017.12.009
https://doi.org/10.1111/j.2041-210x.2010.00036.x
https://doi.org/10.1111/j.2041-210x.2010.00036.x
https://doi.org/10.1007/s10530-011-9963-4
https://doi.org/10.1111/jbi.13402
https://doi.org/10.1111/jbi.13402
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.3390/insects11060346
https://doi.org/10.1111/ecog.01881


Owens H, Barve V, Chamberlain S (2023) spocc: Interface to
Species Occurrence Data Sources. Available from URL:
http://docs.ropensci.org/spocc/
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Table S1. Candidate variables assembled. Candidate
variables in dataset 1 have been used in Halyomorpha
halys.
Figure S1. The area under the curve (AUC) of receiver
operating characteristic (ROC) plots for six ecological
niche models using dataset 1: (i) generalized linear
(GLM); (ii) generalized additive (GAM); (iii) boosted
regression tree (BRT); (iv) random forest (RF);
(v) support vector machine (SVM); and (vi) Maxent.
Notice that RF is good at interpreting training data
(i.e., high training AUC), a common phenomenon
observed elsewhere.
Figure S2. The area under the curve (AUC) of receiver
operating characteristic (ROC) plots for six ecological
niche models based on dataset 2: (i) generalized linear
(GLM); (ii) generalized additive (GAM); (iii) boosted
regression tree (BRT); (iv) random forest (RF);
(v) support vector machine (SVM); and (vi) Maxent.
Notice that RF is good at interpreting training data
(i.e., high training AUC), a common phenomenon
observed elsewhere.
Figure S3. Mean (top) and standard deviation
(SD, middle) of model predictions, and environmental
similarity (MESS) in dataset 1 based models. In the spa-
tial SD of model predictions, areas with higher values
had less congruence across models. Areas in red have
one or more variables outside the range present in
training data and have less reliable distributional pre-
dictions than blue areas.
Figure S4. Mean (top) and standard deviation
(SD, middle) of model predictions, and environmental
similarity (MESS) in dataset 2 based models. In the spa-
tial SD of model predictions, areas with higher values
had less congruence across models. Areas in red have
one or more variables outside the range present in
training data and have less reliable distributional pre-
dictions than blue areas.
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