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Abstract – Human sewage can introduce pollutants into food webs and threaten ecosystem integrity. Among the 
many sewage-associated pollutants, pharmaceuticals and personal care products (PPCPs) are consistent indica-
tors of sewage in ecosystems and can also cause potent ecological consequences, even at minute concentrations 
(e.g., ng/L). Despite increased study over the past three decades, PPCPs in terrestrial ecosystems have been less 
studied than those in aquatic ecosystems. To evaluate PPCP prevalence and drivers in a terrestrial ecosystem, we 
analyzed managed and native bees collected from agroecosystems in Washington State (USA) for PPCPs. Caf-
feine, paraxanthine, cotinine, and acetaminophen were detected in all three evaluated taxa (Bombus vosnesenskii, 
Agapostemon texanus, and Apis mellifera), with B. vosnesenskii and A. texanus having a higher probability of 
PPCP detection relative to A. mellifera. The probability of PPCP presence in all three taxa increased in landscapes 
with more human development and greater plant abundance, with significant but negative interactions among 
these factors. These results suggest that human activity, availability of resources, and species-specific pollina-
tor traits affect the introduction and mobilization of PPCPs in terrestrial ecosystems. Consequently, monitoring 
PPCPs and their ecological responses in terrestrial ecosystems creates opportunities to synthesize effects of 
sewage pollution across terrestrial and aquatic ecosystem types and organisms.

Arthropoda / emerging contaminants / entomology / natural history / persistent organic pollutants

1.  INTRODUCTION

The introduction of wastewater and its byprod-
ucts into ecosystems can mobilize pollutants that 
reshape communities and food webs (Edmondson  
1970). Historically, research on wastewater 
pollution has focused on changes in effluent 

nutrient concentrations as well as chemical and 
biological oxygen demand (Edmondson 1970; 
Brydon and Frodsham 2001; Tong et al. 2020). 
Recently, research emphasis has broadened to 
include micropollutants that are often found in 
sewage (Bernhardt et al. 2017). Pharmaceuticals  
and personal care products (PPCPs) in particular 
have garnered increased attention as an emerging 
organic micropollutant because they are globally 
pervasive and consistently associated with human Corresponding author: M. F. Meyer, mfmeyer@usgs.gov 
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sewage and pose potent, yet often uncertain,  
ecological consequences (Richmond et al. 2017; 
Meyer et al. 2019). Despite this increased attention,  
PCPPs tend to be less frequently sampled relative  
to macropollutants, which likely stem from their 
comparably high cost to collect and analyze 
(Meyer et al. 2019).

As PPCPs are consistently associated with 
sewage, their presence can indicate wastewater 
inputs into ecosystems. Previous surveys have 
shown that PPCPs, such as antibiotics, non-
prescription and prescription drugs, hormones, 
and fragrances, are pervasive in subsurface and 
surface systems (Kolpin et al. 2002; Focazio 
et al. 2008; Wilkinson et al. 2022). Once intro-
duced into ecosystems, PPCPs can propagate 
through food webs where they can be metabo-
lized and accumulate within organisms (del 
Rey et al. 2011; Meador et al. 2016; Richmond 
et al. 2018). However, patterns of PPCP preva-
lence across taxa can be related to individual 
behavior and tissue allocation (Meador et al. 
2016), and biological responses to PPCPs are 
often context-dependent, where responses can 
vary in terms of vulnerability of an ontogenetic 
stage at time of exposure and duration of expo-
sure (Ginn et al. 2007). For example, activity 
and feeding rates of individual European perch 
increased when exposed to the anti-anxiolytic 
drug oxazepam, but sociality of perch popula-
tions decreased (Brodin et al. 2013). In insects, 
bumble bees fed nectar treated with caffeine 
increased foraging on nectars with similar aro-
matic compounds (Wright et al. 2013; Arnold 
et al. 2021). Overall, studies across diverse taxa 
suggest that biological responses to PPCPs are 
often deleterious, although specific responses 
may be uncertain (Richmond et al. 2017).

Although studies in aquatic systems suggest 
that PPCPs are ubiquitous and disrupt ecologi-
cal processes, comparatively few studies have 
been conducted in terrestrial systems (Meyer 
et  al. 2019). This imbalance in the literature 
creates opportunity to assess how PPCPs propa-
gate through terrestrial food webs compared to 
aquatic food webs. For example, bees are ter-
restrial taxa that pollinate plants in natural and 
managed ecosystems (Kleijn et al. 2015; Iwasaki 

and Hogendoorn 2022; Papa et al. 2022). Bee 
pollinators may be commonly exposed to PPCPs 
through soil contact, interactions with plants, 
applications of biosolids for fertilizer, or through 
contamination of water in terrestrial ecosystems. 
For example, earthworms in soils experiencing 
biosolid application have been associated with 
increased PPCP concentrations (Carter et  al. 
2021). Due to the dramatic, recent declines in 
bee pollinators worldwide (Potts et  al. 2010; 
Kleijn et  al. 2015), bee taxa may be promis-
ing, societally important model organisms for 
expanding PPCP research from aquatic to ter-
restrial ecosystems.

Here, we assess PPCP prevalence and mobili-
zation within pollinators in terrestrial ecosystems 
by focusing on three species: Bombus vosnesen-
skii, Agapostemon texanus, and Apis mellifera. 
Two of these bee species are wild (B. vosnesen-
skii, A. texanus), but A. mellifera is managed by 
humans. Our first goal was to identify species-
specific patterns of PPCP presence. We predicted 
that taxa interacting with soil more frequently 
(i.e., ground-nesters; B. vosnesenskii, A. texanus) 
would be associated with a higher probability of 
PPCP presence than managed, colony-forming 
species (A. mellifera), as ground-nesting taxa 
would more likely encounter PPCPs within 
groundwater and biosolids. Our second goal 
was to assess potential drivers of PPCP pres-
ence. We predicted that PPCP presence would 
increase at sites with greater human develop-
ment and sites with a higher density of floral 
plant resources, both of which may be sources of 
PPCPs (Carter et al. 2021; Meyer et al. 2022a). 
Overall, our study provides some of the first 
evidence for PPCP uptake in bee species, which 
have an exclusively terrestrial life cycle, while 
also demonstrating that landscape-context and 
species traits may affect exposure to PPCPs.

2. � MATERIALS AND METHODS

2.1. � Study system

Our study of PPCPs in bees was nested within 
a study of bee ecology on 36 small (< 25 ha), 
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diversified farms and community gardens (e.g., 
farms and gardens with more than five unique 
flowering crops in simultaneous production) 
in western Washington (USA) (Bloom et  al. 
2022). Sites consisted of an assortment of pri-
vate farms, farms owned by non-profit organiza-
tions, and urban gardens. For the present study, 
bees were collected from a subset of 10 locations 
that represented a range of human development 
(Figure 1). Each garden was at least 1 km apart 
for spatial independence (Bloom et al. 2022; 
Desaegher et al. 2022).

At each farm, we were not aware of direct 
sewage byproduct application both at the time 
of sampling as well as historically for each sam-
pling location. Additionally, no sites were adja-
cently located to centralized forms of wastewater 
treatment, such as a wastewater treatment plant.

2.2. � Bee and plant surveys

Bees were collected at each site using blue 
vane traps (SpringStar LLC, Woodinville, WA, 
USA), and bee bowls placed along a 50-m tran-
sect. All traps were filled with soapy water, 
where specimens could have remained up to 9 h. 
Upon trap collection, bee specimens were trans-
ferred to a 75% ethanol solution. After return-
ing to the laboratory, all bees were rinsed with 
water, dried in a flask with kimwipes under low 
airflow, and then identified to species (Bloom 
et al. 2022). Of the 6539 specimens collected, we 
selected 101 for analysis, with 34 B. vosnesen-
skii, 32 A. texanus, and 35 A. mellifera; these 
taxa vary based on social behavior (social vs. sol-
itary) and nesting strategies (cavity vs. ground-
nesting). Because bees were collected across 

Figure 1.   Map of bee sampling locations with sites colored by the value of 80% impervious development within 
1 km of a sampling location. Gray polygons represent formal municipalities in the area. Dev80 values are arcsine-
square root transformed for normality and consistency with modeling techniques. Data by OpenStreetMap (open-
streetmap.org), under ODbL (openstreetmap.org/copyright). State data from US Census Bureau 2019.
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3 years (2014, 2015, 2016) and three time points 
(spring, summer, fall), we used pinned speci-
mens to have an approximately equal number of 
individuals across sampling periods. Specimen 
selection was stratified by species, year, time of 
collection, and sampling location, where each 
species-timing-year-site combination included 
at least two individuals. As we had more indi-
viduals of each species in any given time point, 
samples were haphazardly chosen from the larger 
collection within time points for each species to 
create a balanced set of samples. Only foraging 
taxa were selected, meaning that we were only 
able to assess bee PPCP conditions and not con-
ditions that may be present in hives or nest sites. 
Additionally, as the selected individuals were 
taken from field surveys, we were not able a pri-
ori to isolate or cultivate individuals that were 
not exposed to PPCPs in these same sampling 
locations.

To assess the role of plant communities in 
affecting PPCP presence in bees, plant rich-
ness and abundance were measured at sites 
during sampling. Plants with flowers serving 
as resources for bee visitation (i.e., having pol-
len and nectar) were recorded along the same 
transect used for bee collection. All plants col-
lected were in antithesis. A portable 1 × 1-m 
plot was placed over vegetation at 5-m inter-
vals and all plants with open flowers were 
identified to species (Bloom et al. 2022). Each 
transect moved in a serpentine fashion across 
each study site. Summarized field variables are 
detailed in Table S1.

2.3. � Landscape context

As sites were located along an urbaniza-
tion gradient, we determined the proportion 
of developed landscape within 1 km of each 
site using the United States Department of 
Agriculture cropland data layer (CDL). Each 
pixel within the CDL classifies a 30 × 30-m 
area as one of 255 landscape classes. To char-
acterize all human development in a land-
scape, we summed across low-, moderate-, 

and high-intensity pixels (Figure 1; Table S1) 
(Han et al. 2014).

2.4. � PPCP extraction and quantification

Each dried bee sample was massed and 
then ground with a ceramic mortar and pestle. 
Bee PPCPs were extracted using a three-phase 
sequential extraction (Furlong et al. 2008; Brodin 
et al. 2013). First, 1.5 mL of methanol:water 
solution (7:3 ratio) with 0.1% formic acid was 
added into the mortar with the bee parts and 
transferred into a glass culture tube. Then, 
1.5  mL methanol:water solution with 0.1% 
formic acid was used to rinse the mortar and 
pestle and was poured into the culture tube before 
centrifuging at 2000 rpm for 5 min. Following 
centrifugation, supernatant was moved to a 
clean culture tube and immediately sealed with 
parafilm. A second 1.5 mL of acetonitrile was 
next added to the first tube containing the bee 
tissue. The tube containing bee tissue was then 
vortexed and centrifuged twice. After each of 
the three extraction phases, the supernatant 
was placed under nitrogen flow in a 40 °C bath. 
Once samples were nearly evaporated, 1 mL of 
formate buffer was added to the sample, and 
the concentrated extract was transferred to a 
1.5-mL amber glass autosampler vial. Samples 
were preserved in the dark at −20 °C until being 
analyzed with HPLC/MS.

2.5. � HPLC/MS quantification

PPCP identification and quantification 
followed Furlong et  al. (2008) and Brodin 
et  al. (2013) with standards shown in 
Table  S2. These methods targeted caffeine, 
acetaminophen/paracetamol, cotinine, codeine, 
warfarin, trimethoprim, sulfamethoxazole, 
d iphenhydramine,  th iabendazole ,  and 
paraxanthine/1,7-dimethylxanthine, as these 
PPCPs have been frequently monitored since 
the 1980s and would more likely be observed 
in samples relative to the over 4000 PPCPs 
on the global market (Daughton and Ternes 
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1999). HPLC eluents included a 10-mM 
formate buffer and 100% acetonitrile solution 
that varied in percent contribution over the 
quantification procedure (Table  S3). All 
samples were analyzed using an Agilent 1260 
Infinity II standard HPLC with a C18 Agilent 
column (2.1 × 150  mm). Sample injection 
volumes were 50 μL, and sample flow rate 
was 20  mL/min, as prescribed in Furlong 
et al. (2008). A main difference between our 
methods and others prior is that we split analyte 
signatures into separate channels to avoid peak 
interference (described in Table S2).

Standards were prepared in 70:30 
methanol:water solution with 0.1  M formate 
buffer. Standards included concentrations of each 
analyte at 1 mg/L, 100 μg/L, 10 μg/L, 1 μg/L, 
100 ng/L, 10 ng/L, and 1 ng/L. All standards 
were purchased from Sigma-Aldrich (St. Louis, 
MO, USA) and were rated at purities commen-
surate for HPLC analysis. All standards were 
prepared fresh on the day of HPLC/MS analysis. 
While Furlong et al. (2008) have a reported mini-
mal detection limit of 5 ng/L, our methods were 
able to detect PPCP concentrations to 1 ng/L. 
To be conservative, we considered our minimal 
detection limit as 5 ng/L.

Samples were also analyzed in a way that 
accounted for potential cross-sample con-
tamination and peak drift. Following standard 
samples, 2 blanks of 100% methanol were pro-
cessed and assessed for contamination. Follow-
ing the two blank samples, bee samples were 
processed in batches of 10 followed by 1 blank 
of 100% methanol, 1 standard (100  ng/L), 
and 1 blank of 100% methanol. This routine 
allowed us to purge the column from potential 
cross-sample contamination, to assess if sam-
ples were contaminating downstream samples 
within a batch, and to control for peak drift. No 
blanks contained PPCP residues, implying that 
cross-sample contamination was negligible.

For integrating peaks, personnel manually 
investigated each spectrum for each HPLC/
MS channel and sample. If the personnel could 
clearly identify a peak, and the Agilent soft-
ware was able to integrate a peak, the user man-
ually performed all integrations. To ensure that 

signatures were consistent with potential peak 
drift, personnel manually compared the tim-
ing of each PPCP signature in the most recent 
standard analyzed with the samples preceding 
that standard.

Following peak quantification, we noticed 
that concentrations observed in bee samples 
tended to be bimodal, where PPCPs were 
either detected in higher concentrations or not 
detected entirely (Figure 2). We assumed the 
bimodality of these detections was likely a 
product of low-to-intermediate PPCP concen-
trations degrading since the time of specimen 
collection or diffusing from bee tissues as sam-
ples were originally collected in soapy water 
and then an ethanol solution before pinning 
(Bloom et  al. 2022). To estimate bee PPCP 
presence, we reduced concentrations into cate-
gorical presence/absence informatics, implying 
that subsequent models and model interpreta-
tions should be conservative.

2.6. � Quality control procedures

To account for potential contamination that 
might arise during the extraction and quantifi-
cation process, laboratory personnel refrained 
from consuming caffeinated beverages, nico-
tine products, and non-prescription medica-
tions. Personnel wore an N95 mask and nitrile 
gloves to reduce chance of contamination dur-
ing extraction.

During PPCP extraction, internal standards 
were not included. Consequently, we were not 
able to assess extraction recoveries. Therefore, 
concentrations reported may be lower than 
those reported, especially as lower concentra-
tions tended to not be detected. To account for 
the lack of internal standards, we implemented 
a quadruple-blind sample processing routine 
to reduce probability of bias when analyzing  
samples. Throughout the entire specimen selec-
tion, PPCP extraction, peak quantification, and  
modeling procedures were performed by different 
personnel. Experimental autosampler vials were 
also haphazardly placed in the auto-sampler to 
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reduce likelihood of biases due to order in the 
auto-sampler. Personnel were therefore only 
aware of sample identity by the sample’s unique 
numerical “Sample Identifier,” which would not 
be intuitively related to an individual sample.

2.7. � Modeling PPCP presence

To relate the probability of PPCP presence in 
bee tissues with potential environmental vari-
ables, we iterated through all possible combi-
nations of logistic regression models, which 
used six predictor variables: bee and plant 
abundance, bee and plant diversity, percent 
development, bee taxon, and all two-way inter-
actions between these variables. This technique 
is sometimes referred to as “exhaustive model 
selection” or “exhaustive feature searching” and 
has been employed in several biological contexts 
where non-linearities or the lack of multiscale 
data make process-based approaches unfeasi-
ble (Katz et al. 2015; Rheubert et al. 2020). To 

account for edge effects, all predictor variables 
were standardized by the perimeter:area ratio 
of their respective site. Once all possible mod-
els were generated, we selected the best model 
based on AICc, R2, AUC, accuracy (percent true 
results), and p-value. When multiple models had 
similar performance (AICc within two points of 
lowest AICc value and R2, AUC, and accuracy 
above the median of all models), best perform-
ing model coefficients were averaged to create a 
single statistical model.

To validate our results, we repeated analy-
ses 1000 times with 80:20 train:test subsetted 
data, and compared the distribution of model 
parameters and pseudo-R2 values from subset-
ted data to those models generated with the 
entire dataset. This subsetting routine allowed 
us to assess whether the distribution of possi-
ble model parameters was multi-modal and to 
evaluate whether the model constructed with 
100% of the training data was overfit to those 
data (in the sense of Rheubert et al. 2020). In 
instances where model parameters generated 

Figure 2.   Violin plot of total PPCP concentrations (on log10 scale) in each of the three examined bee taxa (101 
individuals in total; 34 B. vosnesenskii, 32 A. texanus, and 35 A. mellifera). Although the figure shows continuous 
PPCP concentrations, few samples contained “intermediate” PPCP concentrations, meaning that concentrations were 
either high (i.e., greater than 500 ng/g) or not detectable. Given that this framework seemed unrealistic and could be 
a product of how bees were preserved, our main analysis only focused on presence/absence of PPCPs in samples. 
Therefore, our logistic regression approach should be more conservative than continuous, linear analyses. Neverthe-
less, trends in PPCP concentrations mirror patterns observed in PPCP presence/absence, where B. vosnesenkii and A. 
texanus have higher concentrations and probabilities of PPCP presence relative to A. mellifera. 
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with 100% of the training data represent the true 
environmental conditions that are predictive of 
PPCP presence in bee tissues, model parameters 
would come from unimodal distributions gener-
ated from models being trained by a subset of the 
data. Thus, if we compared the model parameters 
generated with 100% of the training data with 
the distributions of those generated with 80% of 
the training data, parameters fit with 100% of 
the training data should be representative of the 
general distributions.

All analyses were conducted within the R 
Statistical Environment (R Core Team 2022) using 
the packages glmulti (Calcagno 2019), tidyverse 
(Wickham et  al. 2019), janitor (Firke 2020), 
MuMIn (Barton 2020), ggpubr (Kassambara 
2019), ggeffects (Lüdecke 2018), lubridate 
(Grolemund and Wickham 2011), plotrix (Lemon 
2006), Hmisc (Jr et al. 2020), corrplot (Wei and 
Simko 2017), ggrepel (Slowikowski 2019), 
ggspatial (Dunnington 2021), tigris (Walker 
2021), cowplot (Wilke 2019), sf (Pebesma 2018), 
and readxl (Wickham and Bryan 2019).

3. � RESULTS

3.1. � Species‑specific PPCP detections

We detected four PPCPs across all three bee spe-
cies: caffeine, paraxanthine/1,7-dimethylxanthine, 
acetaminophen/paracetamol, and cotinine. We did 
not detect evidence of seven other PPCPs: codeine, 
warfarin, trimethoprim, sulfamethoxazole, diphen-
hydramine, thiabendazole, or albuterol. Bombus 
vosnesenskii (50% of samples; Tables S4 and S5) 
and A. texanus (44%; Tables S4 and S5) tended to 
have a higher odds ratio of PPCP presence relative 
to A. mellifera (26%; Tables S4 and S5).

3.2. � Relating PPCP presence with human 
development and plant abundance

Across all bee taxa, the probability of PPCP 
presence increased in landscapes with greater 
human development and landscapes with higher 
plant abundance (Figure 3). However, there was 

also a significant negative interaction between 
human development and plant abundance. This 
negative interaction suggests the positive asso-
ciation between development and PPCP presence 
decreased in landscapes with greater plant abun-
dance and that the positive effects of plant abun-
dance on PPCP presence decreased in landscapes 
with greater development (Figure 3).

Our subsetting routine, which assessed the 
probability of observing the final model solely 
by chance, suggested that our final model coef-
ficients were non-random (Figure  4). Model 
parameter estimates (Figure 4) as well as pseudo-
R2 values (Figure 5) were generally unimodal. 
Most subsetted model runs included human 
development and plant abundance as positive 
predictors of PPCP presence (Figures 3 and 4), 
and most coefficients for interactions between 
plant abundance and development were negative 
(Figures 3 and 4). Coefficients from the subset-
ting routine corresponded with patterns of PPCP 
detections for each taxon, where B. vosnesenskii 
had higher positive coefficients, and A. mellifera 
and A. texanus had lower negative coefficients 
(Figures 3 and 4).

4. � DISCUSSION AND CONCLUSION

Our study demonstrates the presence of PPCPs 
in a terrestrial ecosystem and highlights that 
pinned insect specimens can be used along with 
environmental data to assess patterns of PPCP 
prevalence. These results are notable, considering 
that the study of PPCPs in terrestrial ecosystems 
is uncommon relative to aquatic environments 
(Meyer et al. 2019). Our results corroborate those 
results from aquatic systems, showing that PPCP 
presence can be influenced by human develop-
ment and species-specific traits (Bendz et al. 
2005; Meador et al. 2016) and that PPCPs can be 
mobilized in terrestrial food webs (Lagesson et al. 
2016; Richmond et al. 2018).

Our results suggest that PPCPs are more fre-
quently encountered in B. vosnesenskii and A. 
texanus than in A. mellifera (Figure 2; Table S4), 
implying that differences in species’ life history 
traits may affect PPCP accumulation. Both B. 
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vosnenskii and A. texanus create nests in the soil, 
which may increase exposure to human contami-
nants in the soil matrix and groundwater relative 
to A. mellifera, which is managed in artificial 
nests by humans (Gradish et al. 2019). Because 
bees were collected while foraging, our results 
are only pertinent to foraging bees and may not 
reflect conditions in hives or nest sites. These 
bees may encounter various point and non-point 
sources of PPCPs within their foraging radius. 
In particular, non-point sources commonly intro-
duce PPCPs to aquatic and terrestrial ecosys-
tems, and owing to heterogeneous, non-linear 
processes governing PPCP distribution in eco-
systems, clearly associating PPCPs with their 
source can be challenging (Meyer et al. 2022a, 
b). As there was no direct evidence of sewage 
byproduct application and no adjacent waste-
water treatment plants, all PPCPs detected were 
assumed to originate from non-point sources, 

such as groundwater transport from adjacent 
human developments.

Beyond sources of PPCP introduction, spe-
cies’ life histories and ecologies may also influ-
ence probability of PPCP uptake. From an eco-
logical perspective, A. mellifera may occupy a 
distinct niche from the other taxa within the same 
location (Thompson and Hunt 1999; Leonhardt 
and Blüthgen 2012), where PPCP concentra-
tions in certain food resources may generate 
variation in exposure. Niche partitioning of flo-
ral resources due to differences in traits, such as 
tongue length, could also mediate pollutant expo-
sure and uptake (e.g., pesticides) (Brittain and 
Potts 2011). Further, age of specimen, ontoge-
netic shifts, and exposure time of resource use 
may explain some variation in PPCP presence 
(in the sense of Ginn et al. 2007). As bees were 
not assessed for age or sex prior to PPCP extrac-
tion, we are unable to assess how much variation 

Figure 3.   Coefficients for the final averaged model using all data for training. Points indicate the estimated model 
coefficient, and bars reflect the adjusted standard error. A value of 0 indicates that a variable does not discriminate 
between PPCP presence or absence. Values greater or less than 0 correspond to predictors that are more or less likely 
to be associated with PPCP presence, respectively. Parameters with a colon indicate two-way interaction terms. 
Parameters are arranged by decreasing coefficient estimate value.
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could be explained by age, but given that patterns 
were observed across sites and years, our results 
suggest that inter-species variation in PPCP 
presence is greater than intra-species variation. 
In addition to pollinator traits, heightened PPCP 
exposure for B. vosnenskii and A. texanus may be 
due to production practices across sampling loca-
tions, where farmers may be applying wastewater 
byproducts to soil (Karnjanapiboonwong et al. 
2010; Shahriar et al. 2021). While we are not 
aware of wastewater byproduct applications at 
our sampling locations (e.g., manure or sludge), 
prevalence of human-associated pollutants in 
conventional and organic farms is common 
(Humann-Guilleminot et al. 2019).

Beyond species-specific patterns, our results 
suggest that human development and plant abun-
dance mediated PPCP presence across all three 

taxa. This result is consistent with previous find-
ings in aquatic systems, where the source con-
centration (e.g., amount of development) and 
paths to trophic transfer (e.g., number of plants) 
are correlated with the presence of PPCPs at 
higher trophic levels (Richmond et al. 2018). 
For example, PPCP concentrations in aquatic 
systems can be directly proportional with human 
population size and inversely proportional to 
distance from a human population center (Bendz 
et al. 2005; Meyer et al. 2022b). PPCPs also can 
transfer between trophic levels (Richmond et al. 
2018), which may lead to non-linear processes 
and consequences, such as our data showing a 
negative interaction between plant abundance and 
human development. Consequences of PPCPs 
within food webs are challenging to predict, 
although they can cause biological responses 

Figure 4.   Distributions of most influential model coefficients for the final averaged model using 80% of original data as 
training data. Model averaging protocols were repeated 1000 times, with each iteration starting with a species-stratified, 
random subsample. Vertical, dashed lines indicate the coefficient of the parameter that appeared in the final averaged 
model, when 100% of the data were used. Vertical, dotted lines indicate the adjusted standard error of the coefficient 
of the parameter that appeared in the final averaged model, when 100% of the data were used. Labels within each facet 
reflect the percent of coefficients that were positive (i.e., greater than 0) and negative (i.e., less than 0).
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at physiological (Feijão et al. 2020), behavioral 
(Brodin et al. 2013), population (Hoppe et al. 
2012), community (Lee et al. 2016), and ecosys-
tem (Richmond et al. 2019) levels. Aside from 
PPCPs eliciting direct biological responses, 
PPCPs may co-occur with numerous human dis-
turbances, such as nutrient pollution, that may 
further obfuscate clear associations between bio-
logical consequences and PPCP exposure.

To our knowledge, this is the first study to 
detect PPCPs in bee tissues that were preserved 
and pinned in a manner similar to natural history 
collections. While not originally intended for the 
present study, detailed field notes and extensive 
covariate collection created the opportunity for 
us to evaluate PPCP presence across taxa while 
testing potential mechanistic drivers of PPCP 
presence. Considering the growing number of 
pharmaceuticals (Daughton and Ternes 1999) 
and changes in pesticides used on national 
and global markets (Douglas et al. 2020), pre-
served collections, such as those in natural his-
tory collections, may offer ripe and previously 
untapped opportunities to explore contaminant 

accumulation and mixtures within biota. For 
example, lake sediment cores have been used to 
reconstruct inter-decadal PPCP contamination 
loadings (Anger et al. 2013). Similarly, natural 
history collections may empower reconstructions 
of exposure, accumulation, and co-contaminant 
histories, all of which may be useful for detail-
ing how PPCP loading and mixtures may change 
through time.

4.1. � Synthesizing PPCP patterns across 
ecosystem types

Over the past three decades, the study of 
PPCPs has expanded rapidly, and growing evi-
dence suggests that PPCPs are pervasive micro-
pollutants across aquatic and terrestrial systems 
alike. Our results suggest that much like aquatic 
systems, PPCPs tend to concentrate closer to 
areas with increased human development and 
have potential to enter food webs when vectors 
for trophic transfer are present. Additionally, our 
results demonstrate species-specific differences 
for PPCP uptake. Similar to patterns observed 
in PPCP accumulation in aquatic and riparian 
systems (Meador et al. 2016; Richmond et al. 
2018), B. vosnesenskii and A. texanus had higher 
probabilities of PPCP detections relative to A. 
mellifera, implying that life histories, behavior, 
or physiological differences between taxa may 
play a role in PPCP uptake.

Broadly, our results present novel opportuni-
ties for assessing PPCP presence throughout food 
webs and suggest similarities to how terrestrial 
and aquatic systems accumulate PPCPs. Where 
PPCP data are rarer, pairing human develop-
ment, environmental, and ecological data may 
aid managers in flagging systems that are more 
associated with PPCPs, and thus susceptible to 
declines in ecosystem function and services (e.g., 
pollination). Regardless of the exact trajectory, 
our study lays a foundation for future basic and 
applied PPCP research and creates a synoptic 
view of how organic contaminants may mobi-
lize within aquatic and terrestrial environments.

Figure  5.   Distribution of pseudo-R2 values from all 
averaged models in the permuted analysis. The verti-
cal dashed line represents the mean of the distribution 
(pseudo-R2 = 0.197), and vertical, dotted lines represent 
1 standard deviation from the mean (sd = 0.07).
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