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Generalist predators’ complex feeding relationships make it difficult to predict their
contribution to pest suppression. Alternative prey can either distract predators from
attacking pests, weakening biocontrol, or provide food that support larger predator
communities to enhance it. Similarly, predator species might both feed upon and
complement one another by occupying different niches. Here, we use molecular gut-
content analysis to examine predation of western flower thrips (Frankliniella occidentalis)
by two generalist predatory bugs, Geocoris sp. and Nabis sp. We collected predators
from conventional and organic potato fields that differed in arthropod abundance and
composition, so that we could draw correlations between abundance and biodiversity
of predators and prey, and thrips predation. We found that alternative prey influenced
the probability of detecting Geocoris predation of thrips through a complex interaction.
In conventionally-managed potato fields, thrips DNA was more likely to be detected
in Geocoris as total abundance of all arthropods in the community increased. But the
opposite pattern was found in organic fields, where the probability of detecting thrips
predation by Geocoris decreased with increasing total arthropod abundance. Perhaps,
increasing abundance (from a relatively low baseline) of alternative prey triggered greater
foraging activity in conventional fields, but drew attacks away from thrips in organic fields
where prey were consistently relatively bountiful. The probability of detecting Geocoris
predation of thrips generally increased with increasing thrips density, but this correlation
was steeper in organic than conventional fields. For both Geocoris and Nabis, greater
Nabis abundance correlated with reduced probability of detecting thrips DNA; for Nabis
this was the only important variable. Nabis is a common intraguild predator of the smaller
Geocoris, and is highly cannibalistic, suggesting that predator-predator interference
increased with more Nabis present. Complex patterns of thrips predation seemed to
result from a dynamic interaction with alternative prey abundance, alongside consistently
negative interactions among predators. This provides further evidence that alternative
prey and predator interference must be studied in concert to accurately predict the
contributions of generalists to biocontrol.
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INTRODUCTION

The ability of generalist predators to switch among different
prey species often is exploited in conservation biological control
(Symondson et al., 2002). For example, plantings of wildflowers
or other perennial refuges can provide pollen, nectar, and
habitat for prey that can help build predator abundance and
diversity (Patt et al., 1997; Blitzer et al., 2012; Balzan et al.,
2016; Gurr et al., 2017). However, to be effective, predators
must willingly leave the refuge and move into adjacent crop
fields (Blaauw and Isaacs, 2012). For example, Middleton and
MacRae (2021) found that several kilometers of wildflower
plantings around potato (Solanum tuberosum L.) fields yielded
a dramatic >50% increase in predator abundances in the refuge.
However, these natural enemies did not readily leave the refuge
for the cropping fields such that predation of Colorado potato
beetle (Leptinotarsa decemlineata Say) eggs was not increased
(Middleton and MacRae, 2021). A seemingly simpler approach
would be to increase abundance of prey other than pests in
the cropping field itself, so that predators can be conserved in-
place (Agustí et al., 2003). Settle et al. (1996) found that plant
thatch and reduced insecticide applications allowed generalist
predator populations to build in Indonesian rice paddies,
feeding on detritus-feeding prey, before plants emerged and
were colonized by herbivores; the predators then switched to
attacking pests as detritivores declined and herbivores increased
(see also Brust, 1994; Stoner et al., 1996; Johnson et al., 2004).
However, here too success is not guaranteed. For example, Halaj
and Wise (2002) found that adding straw mulch to cucurbit
plantings built densities of detritus-feeding prey and greatly
enhanced generalist predator abundance, but pest control was
not improved because the predators never switched to attacking
herbivores. These examples highlight that alternative prey can
indirectly enhance the biocontrol effectiveness of generalists in
some situations, but disrupt it in others (Eubanks and Denno,
2000a,b; Harmon and Andow, 2004; Koss and Snyder, 2005;
Symondson et al., 2006).

Another complexity when considering generalist predators
as biocontrol agents, is that they often feed on one another
in addition to pests (Rosenheim, 1998; Paul et al., 2020).
Intraguild predation is most disruptive when a predator both
infrequently feeds on the pest and heavily attacks the pest’s key
natural enemy (Finke and Denno, 2004; Ives et al., 2005). It is
important to note that biological control can be disrupted even
when predators do not commonly feed on one another, if a
predator species reduces its foraging activity to avoid becoming
a victim of intraguild predation (Preisser et al., 2005, 2007).
Often, prey and predator abundance and diversity interact to
determine how often intraguild predation occurs (Finke and
Denno, 2002). When predator abundance is relatively high and
herbivores are uncommon, intraguild predation offers a way for
predators to escape food limitation (Hironori and Katsuhiro,
1997). However, when prey is relatively plentiful, generalists
might often encounter and kill herbivorous or detritus-feeding
prey rather than natural enemies (Lucas et al., 1998). More
broadly, a high diversity of other prey might allow predators
to move into separate feeding niches that lead to fewer

predator-predator encounters, and thus less intraguild predation
(Schmitz et al., 1997; Letourneau et al., 2009; Schmitz, 2009;
Dainese et al., 2017; Jonsson et al., 2017; Greenop et al., 2018). Of
course, in the field, abundances of alternative prey and intraguild
predators might widely vary from site to site and throughout the
year, leading to complex indirect effects on pest suppression by
generalists (Snyder, 2019).

Here, we use molecular gut-content analysis to track predation
of herbivorous western flower thrips (Frankliniella occidentalis)
by the predatory bugs Geocoris sp. and Nabis sp. [molecular
identification failed to reveal a confident species determination
for either predator; Krey et al. (2021)] in potato (S. tuberosum)
fields. The crops were managed by growers using organic or
conventional management practices, which creates site-to-site
differences in predator and prey communities (Koss et al.,
2005; Crowder et al., 2010; Krey et al., 2021). Both predator
taxa are generalists that presumably feed on a broad diversity
of arthropods, with thrips typically being among the most
abundant herbivores at our study sites (Krey et al., 2021). Our
central hypotheses were that (1) greater arthropod abundance
and/or diversity would increasingly draw attacks away from
thrips, reducing the probability of detecting thrips predation
by Geocoris and Nabis, but that (2) this could be counteracted
by reduced predator-predator interference in fields with more
robust arthropod communities, indirectly enhancing foraging
efficiency by the generalists.

MATERIALS AND METHODS

Our project had three complementary components. First, we
developed a species-specific PCR primer that allowed detection
of DNA of F. occidentalis. Second, we surveyed densities of Nabis
and Geocoris predators, thrips, and other arthropods that might
serve as prey, in organic and conventional potato fields managed
by cooperating commercial growers (see Krey et al., 2021). Third,
during these arthropod community surveys we used molecular
gut content analysis to test a subsample of Nabis and Geocoris
adults for the presence of F. occidentalis DNA, using model fitting
to attempt to link detection of thrips DNA to management and
arthropod community metrics.

Primer Design
To design primers to test for F. occidentalis consumption, all
of the thrips cytochrome c oxidase subunit I (COI) sequences
available on GenBank were downloaded with the search criterion
“thrips and (coi or co1 or cox1)” which resulted in ∼567
hits (search conducted in September, 2011). We also generated
34 COI barcode sequences from thrips specimens collected in
Washington potato fields. After removal of duplicate sequences
and sequences that would not align (using MUSCLE; Edgar,
2004) with the barcode region (Hebert et al., 2003), and
adding ours, we were left with an alignment that included
530 operational taxonomic units (OTU). After using maximum
likelihood (Garli 0.95, default settings; Zwickl, 2006) to build a
tree from these terminals, OTUs were arranged in the data set
in a similar fashion to the relationships shown in the maximum

Frontiers in Ecology and Evolution | www.frontiersin.org 2 February 2022 | Volume 10 | Article 752159

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/
https://www.frontiersin.org/journals/ecology-and-evolution#articles


fevo-10-752159 February 23, 2022 Time: 12:18 # 3

Smith et al. Thrips Predation by Generalist Predators

likelihood tree. This facilitated easy searches for DNA sites that
were different from the other species (especially closely-related
ones), and therefore potentially specific to F. occidentalis. Seven
pairs of primers were initially designed such that the 3′ base
was as unique to F. occidentalis as possible. Primer properties
(e.g., self-complementarity, melting temperature, % GC-content)
were examined using Primer3 (Rozen and Skaletsky, 1998).
Initial testing showed that one pair worked better than the
others, so we optimized it for amplification of F. occidentalis
(see below). The primers we identified were Frank-84-F (5′-
CTTTTAAACTATTTATTAGAAATGAC-3′) and Frank-323-R
(5′ GTTCCTGCACCATCTTTTGAT-3′) (from 12 COI alleles
we generated from F. occidentalis; GenBank accession numbers:
MZ677036-MZ677047). The numbers in the primer names reflect
the position of the 5′ base relative to an alignment of the barcode
region of COI (Hebert et al., 2003) amplified using the Folmer
et al. (1994) COI primers. These primers produce a 240 bp
amplicon.

Study System
Potato fields in eastern Washington state host a diversity
of herbivores. Key pests that are the subject of insecticide
applications are the green peach aphid [Myzus persicae (Sulzer)],
which is an important virus vector, and the Colorado potato
beetle which is a defoliator (Koss et al., 2005). Western flower
thrips and a diverse group of leafhoppers are among the
most abundant herbivores in these fields (Krey et al., 2021),
and are sometimes, although relatively rarely, controlled using
insecticides (Kaur, 2021). The detritus-feeding fly Scaptomyza
pallida (Zetterstedt) reaches remarkable abundances in these
fields, often making up >50% of all arthropods, and appears to
be a key alternative prey for generalist predators (Krey et al.,
2021). Geocoris are among the most abundant natural enemies,
sometimes making up >50% of all predators (Koss et al., 2005).
Nabis are less abundant, typically representing ca. 10% of the
predator community, but are relatively large predators that attack
larger insects such as Geocoris (Krey et al., 2021). Other common
predators include coccinellid and carabid beetles and a diverse
community of spiders (Koss et al., 2005; Crowder et al., 2010;
Krey et al., 2021).

Previously, we described arthropod communities in the same
fields considered here, while examining predation of aphids by
the same predator individuals (Krey et al., 2021). We found
that abundances of Nabis and Geocoris, and also total predator
abundance, predator richness, and overall arthropod richness,
were significantly higher in organic than conventional fields
(Krey et al., 2021). All other arthropod community attributes
that we considered (i.e., abundances of aphids [all adults were
M. persicae], western flower thrips, Colorado potato beetles, and
S. pallida; total arthropod abundance; and predator evenness) did
not significantly differ between organic and conventional potato
fields (Krey et al., 2021).

Arthropod Survey and Predator
Collections in Commercial Potato Fields
We sampled from 6 organic and 6 conventional fields in the first
year (2009), 9 organic and 8 conventional fields in the second

year (2010), and 6 organic and 6 conventional fields in the third
year (2011), with all fields managed by cooperating growers in
the Columbia Basin of central Washington in Adams, Benton and
Grant counties (see Krey et al., 2017, 2021). All organic fields met
organic standards defined by the United States Department of
Agriculture, and were the standard ca. 50 ha circles, under center
pivot irrigation, typical of the region. In this region, potatoes are
rotated with other crops such that no field was sampled twice.
Predators were collected in July–early August of each year, which
is the approximate midpoint of the growing season (Krey et al.,
2017), from 50 haphazardly selected plants using a D-vac suction-
sampling device using previously described methods (e.g., Koss
et al., 2005; Krey et al., 2017, 2021). Briefly, we haphazardly
identified 5 groups of 10 potato plants per field, walking in a
zigzag pattern from the field edge toward the center of the field,
for sampling. We held the collecting cone over each plant, gently
shaking the foliage for 20 s and changed collecting bags between
each group of 10 plants (Koss et al., 2005). D-vac bags containing
arthropods were immediately placed on dry ice, and up to 80
individuals of Geocoris and Nabis were removed using forceps,
placed individually in 95% EtOH in 1.5-mL microcentrifuge
tubes on ice for transport, and then transferred to a−80◦C freezer
to await DNA extraction; Chapman et al. (2010) found that this
methodology avoids contamination of predators with prey DNA.

Following the removal of predators for gut-content analysis,
all other remaining arthropods from each D-vac bag were
retained from vacuum samples and stored in a −20◦C freezer
before being sorted to allow us to describe overall prey
community structure (predators removed from samples for gut-
content analysis were included in predator-density estimates
for each field). Arthropods were generally identified to family,
but sometimes to genus or species for pests, as described in
Krey et al. (2017). D-vac bags were washed with a 10% bleach
solution and air-dried before being re-used, to further minimize
the risk of cross-contamination of DNA from one sampling
period to another.

Molecular Gut-Content Analysis
In total, we tested between 5 and 71 Geocoris per field
(mean = 48.7 ± 2.32 SE) and between 1 and 82 Nabis per
field (mean = 30.5 ± 2.73 SE). Total DNA was extracted
from these crushed field-collected predators using the QIAGEN
DNeasy Blood & Tissue Kit following the manufacturer’s animal
tissue protocol (QIAGEN Inc., Chatsworth, CA, United States).
PCRs (25 µL) consisted of 1× Takara buffer (Takara Bio Inc.,
Shiga, Japan), 0.2 mM of each dNTP, 0.25 mM of each primer,
0.625 U Takara Ex TaqTM (Takara Bio Inc., Shiga, Japan),
and template DNA (3 µL of total DNA). PCRs were carried
out in Bio-Rad PTC-200 and C1000 thermal cyclers (Bio-
Rad Laboratories, Hercules, CA, United States). The optimized
thermal cycling protocol was an initial denaturation at 94◦C,
followed by 45 cycles of 94◦C for 45 s (denaturing), 53◦C for
45 s (annealing) and 72◦C for 30 s (extension). Electrophoresis
was used to confirm amplification using 10 µL of PCR product
in 1.5% SeaKem agarose (Lonza, Rockland, ME, United States)
stained with GelRed (0.1 mg/µL; Phenix Research, Chandler,
NC, United States).
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Data Analyses
We used the extensive literature on ecological interactions
among arthropods in potato fields in our study region, described
above, to construct a set of putative models (Supplementary
Table 1). Based on this known arthropod community structure
and interaction network, the factors we considered in our
modeling effort were (i) abundances of the key possible prey
species M. persicae, L. decemlineata, F. occidentalis, and S. pallida;
(ii) abundances of the focal predators Geocoris sp. and Nabis
sp.; (iii) total abundance, species richness, and evenness of
predators; and (iv) total abundance, richness, and evenness of
all arthropods (Supplementary Table 1). Richness was calculated
as the sum of species and evenness using the metric Evar,
without rarefaction, as described in Crowder et al. (2012). We
examined the impact of arthropod community metrics and
farming system on the probability of detecting predation of
western flower thrips by Geocoris and Nabis using GLMMs with a
binomial distribution and logit link function in the glmmTMB
package in R (Brooks et al., 2017). Models included random
effects of field and year. First, we made a simple comparison
of the likelihood that thrips DNA was detected in Nabis and
Geocoris predators collected from organic versus conventional
farms. Next, we constructed 35 candidate models that tested
the relative importance of each of the arthropod community
metrics and their potential additive and interactive effects
with farming system (Supplementary Table 1). We z-score
transformed arthropod community metrics prior to running our
models. We checked assumptions using the DHARMa package
in R and did not detect any issues (e.g., overdispersion) (Hartig,
2021). While we considered all combinations of arthropod
community metrics and farming system, we did not consider
all possible combinations of arthropod community metrics
because (1) they are often highly correlated, which would
cause multicollinearity issues (Supplementary Figure 1), and
(2) the possible candidate model set considering all possible
combinations is quite large. We then ranked models based on
Akaike Information Criterion (AICc) and identified those that
were most supported (1AICc < 2.0) (Burnham and Anderson,
2002). Briefly, AICc is a statistical technique intended to select
a “best” model among a series of candidate models. AICc has
a second order bias correction for AIC [AICc = AIC + (2K
(K + 1)/(n − K − 1)] for when sample sizes are small
but converges to AIC as sample sizes increase. Change (1)
in AICc values are on a continuous scale of information
relative to other models in the set, where low 1 values have
higher relative support (Burnham and Anderson, 2002; Burnham
et al., 2011). We assessed multicollinearity for candidate models
using the performance package in R (Lüdecke et al., 2020).
Multicollinearity was not an issue (VIF < 5).

RESULTS

Western Flower Thrips Primer
Western flower thrips primers were tested for specificity
against 174 invertebrate morphospecies including: Araneae (14),
Chilopoda (1), Coleoptera (29), Diptera (32), Hemiptera (40),

Hymenoptera (36), Lepidoptera (6), Neuroptera (6), Orthoptera
(1), Thysanoptera (1), Gastropoda (6) and Nematoda (2), 93 of
which were collected from WA potato fields during this study
(Supplementary Table 2). PCR of DNA extractions from all of
these invertebrate species failed to produce an amplicon with the
thrips primers. Examining an alignment of the primers and thrips
COI sequences, at least one of these primers has a mismatch
at the 1st or 2nd position of the 3′ end in all thrips species
closely-related to F. occidentalis. A mismatch within the first
two bases at the 3′ end of a primer usually prevents successful
extension in PCR, as was confirmed while developing a general
aphid COI primer using the same PCR reagents used herein
(Chapman et al., 2010). Furthermore, there is a 3-base (single
codon) deletion in COI that occurred early in the evolution
of the thrips suborder Terebrantia, which contains ∼40% of
extant thrips species (see Buckman et al., 2013), and includes
F. occidentalis. The reverse primer (Frank-323-R) spans this
region such that there is a 3-base insertion in insects outside
of the Terebrantia relative to the primer. This insertion occurs
between the 1st and 2nd 3′ bases and is probably the main
reason that these primers did not amplify any of the taxa
in Supplementary Table 2. Given these mismatches and the
completely negative non-target test results above, we can be
reasonably assured that our primer is specific to the strain of
western flower thrips that occurs in Washington potatoes and
false positives are reasonably accounted for. False negatives are
difficult to address because they are difficult to define. A false
negative could arise from (1) a meal of a prey item that has
a mutation that stops the primer from annealing or extending
(apparently rare from the above testing) or (2) collecting a

FIGURE 1 | Probability of detection of western flower thrips DNA in
(A) Geocoris and (B) Nabis by farming system. Figure shows the predicted
values from the models including farming system alone using the “plot_model”
function in the sjPlot package in R. Bars show 95% confidence interval.
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TABLE 1 | Model selection results for arthropod community and farm management (conventional = 0, organic = 1) that influence the probability of detecting thrips DNA
in Geocoris guts.

Model Factor 1 (first listed) Factor 2 (second listed) Factor 3 (interactions if tested) 1AICc* df Weight

Management * Thrips abundance −0.30 (0.29) 0.18 (0.11) 0.80 (0.29)** 0 6 0.28

Nabis abundance −0.40 (0.13)** 0.2 4 0.26

Management * Total abundance −0.39 (0.31) 0.58 (0.26)* −0.93 (0.27)*** 1.5 6 0.14

Management + Nabis abundance −0.17 (0.30) −0.39 (0.13)** 2.5 5 0.082

Management * Scaptomyza abundance −0.41 (0.34) 0.51 (0.22)* −1.25 (0.38)*** 3 6 0.063

Thrips abundance 0.29 (0.11)** 3.4 4 0.052

Only models having >5% of model weights are shown. Numbers in columns “Factor 1 (first listed)” through “Factor 3 (interactions if tested)” indicate model estimate ± SE.
“Factor 1” and “Factor 2” correspond to the first and second variable mentioned in the corresponding row. Variables were standardized using z-scores, and the
standardized coefficients are shown. Bolded values indicate the individual model parameter’s 95% confidence intervals do not overlap zero. Year and field were included
as random effects. The next-best model not shown had 1AICc = 4.1 and weight = 0.036. *** 99.9% confidence intervals do not overlap zero, ** 99% confidence intervals
do not overlap zero, * 95% confidence intervals do not overlap zero.
*Akaike Information Criterion with a correction for small sample sizes.

predator after the DNA in their gut contents has degraded past
the point of detectability with our primers. The latter could
arise after a variable time period after feeding depending on
meal size and metabolic rate of the predator between the time
of feeding and collection. Therefore, the rate at which we have
detected feeding should be considered a lower bound on the
actual predation rate.

Factors Impacting Predation
When ignoring arthropod community attributes or abundance
of particular species, and making a simple comparison between
organic and conventional potato fields, we found no differences
in the probability of detection of western flower thrips DNA in
Geocoris [β=−0.33± 0.34 (SE), P = 0.33; Figure 1A] nor Nabis
[β=−0.21± 0.48 (SE), P= 0.66; Figure 1B] collected in the two
farming systems.

However, we did find evidence for impacts of intraguild
predation when examining our full model set. For probability
of detection of western flower thrips DNA in Geocoris,
three models had high support (i.e., 1AICc < 2.0; Table 1).
The best-supported model included an interaction between
management (organic versus conventional) and thrips
abundance, with probability of detection consistently
increasing at sites with more thrips but with a steeper
relationship in organic than conventional fields (Table 1
and Figure 2A). The second-best model suggested there
was a decreasing probability of thrips detection in Geocoris
with increasing Nabis abundance (Table 1 and Figure 3A).
The third best-supported included an interaction between
farm management and total arthropod abundance, with the
probability of thrips detections increasing in conventional
fields with relatively higher arthropod abundance, but the
probability of thrips detection decreasing in organic fields
with relatively higher arthropod abundance (Table 1 and
Figure 2B).

Patterns were relatively straightforward for detection of
western flower thrips DNA in Nabis. Here, both well-supported
models included Nabis abundance, with the probability of thrips
DNA detection decreasing as Nabis abundance increased (Table 2
and Figure 3B).

DISCUSSION

A simple comparison of predators collected from organic versus
conventional fields did not show any significant difference in
the probability of detection of western flower thrips DNA
in either Geocoris or Nabis (Figure 1). However, this did
not mean that farming system had no impact. Our model
fitting efforts that considered several aspects of arthropod
community structure alongside management, revealed several
interesting interactions. Geocoris foraging in conventional fields
were more likely to have thrips DNA detections with increasing
total arthropod abundance (Figure 2B). The opposite pattern

FIGURE 2 | Probability of detection of western flower thrips DNA in Geocoris
versus (A) western flower thrips abundance and (B) total arthropod
abundance. Figure shows the predicted values from the best-supported
models using the “plot_model” function in the sjPlot package in R. Red lines
indicate conventional fields (red bands are 95% confidence intervals) and blue
lines indicate organic fields (blue bands are 95% confidence intervals).
X-variables were standardized in the candidate model set but are plotted on
the original scale for visualization.
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FIGURE 3 | Probability of detection of western flower thrips DNA in
(A) Geocoris and (B) Nabis by Nabis abundance. Gray bands are 95%
confidence interval. Figure shows the predicted values from the
best-supported models using the “plot_model” function in the sjPlot package
in R. X-variables were standardized in the candidate model set but are plotted
on the original scale for visualization.

was found in organic fields, however, with greater arthropod
abundance correlated with a lower probability of detection of
thrips predation by Geocoris. One possible explanation is that,
at the relatively low prey abundance and diversity typical of
conventional potato fields (Krey et al., 2021), increases in prey
trigger greater Geocoris foraging activity that leads a greater
chance that they will find and eat thrips. In contrast, the
plentiful prey in organic fields may instead draw attacks away
from thrips as Geocoris feast on other prey. Another possibility
is that very low arthropod abundances in conventional fields
correlated with recent insecticide applications, with sublethal
effects reducing overall predator foraging (Stark et al., 1995;
Biondi et al., 2013). In either case, observations of Geocoris
foraging behavior under low and high prey conditions, and
in the presence versus absence of insecticide residue, would
be needed to discern between these possible explanations. For
Geocoris we also observed an interaction between western flower
thrips abundance and the probability of detecting thrips DNA
(Figure 2A). However, greater thrips abundance correlated

with greater probability of thrips DNA detection, with the
interaction perhaps simply resulting from a steeper relationship
in organic than conventional fields (Figure 2A). In future
work, it may be helpful to separate thrips collected in suction
samples into life stages, or conduct open-field observations of
predator foraging, to further delineate which thrips life stages
were present and being attacked by which predator species.
A final possibility is that organic fields were weedier, which might
have complicated predator foraging to alter feeding relationships
(e.g., Blubaugh et al., 2021) in organic versus conventional
potato fields.

Interestingly, for both predator species, the probability of
detection of thrips predation generally decreased in fields
with higher Nabis abundance. This is consistent with greater
predator-predator interference where Nabis was more abundant,
leading either to reduced overall foraging or a switch away
from predation on thrips. Previous work suggests that either
explanation is possible. Nabis is an effective intraguild predator
of Geocoris (Snyder et al., 2006), and also is highly cannibalistic
(Takizawa and Snyder, 2011), such that predators might face
heightened risk when foraging where Nabis is abundant. Geocoris
in these fields do appear to feed more heavily on detritus-feeding
S. pallida flies, rather than attacking aphids, in fields where other
predator species are relatively more abundant; this suggests a
feeding-niche shift when the threat of intraguild predation is
higher (Krey et al., 2021). Altogether, these findings suggest
another case where the contribution of generalist predators to
biocontrol is reduced by altered foraging to reduce the risk of
intraguild predation (e.g., Prasad and Snyder, 2006; Hosseini
et al., 2021).

Molecular gut content analysis allows the inference of
predation patterns under open field conditions, where predator-
prey interactions naturally occur, without the constraints of
caging or other artificial manipulations (King et al., 2008).
However, the method does have its limitations that must be
acknowledged. We could not discern how many thrips of what
stages were consumed, if they were alive when consumed, or
if the predator had eaten another natural enemy that had itself
eaten thrips. Of course, scavenging or intraguild predation do
not contribute to thrips suppression and might well weaken
it (Juen and Traugott, 2005). All of the results reported here
result from models that look for correlations among factors
that differ among sites, but were not directly manipulated. It
then remains uncertain whether the correlations reported here

TABLE 2 | Model selection results for arthropod community and farm management (conventional = 0, organic = 1) that influence the probability of detecting thrips DNA
in Nabis guts.

Model Nabis abundance Management Nabis abundance * Management 1AICc* df Weight

Nabis abundance −1.48 (0.26)*** 0 4 0.63

Nabis Abundance + Management −1.53 (0.27)*** 0.36 (034) 1.5 5 0.30

Nabis abundance * Management −1.48 (0.23)*** 0.34 (0.35) −0.058 (0.41) 4.3 6 0.075

Only models having >5% of model weights are shown. Numbers in columns Nabis Abundance through Nabis Abundance * Management indicate model estimate ± SE.
Variables were standardized using z-scores, and the standardized coefficients are shown. Bolded values indicate the individual model parameter’s 95% confidence
intervals do not overlap zero. Year and field were included as random effects. The next-best model not shown had 1AICc = 18.8 and weight < 0.001. *** 99.9%
confidence intervals do not overlap zero.
* Akaike Information Criterion with a correction for small sample sizes.
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reflect true cause-effect relationships. Additionally, arthropod
community metrics are often highly correlated (Supplementary
Figure 1), making it difficult to isolate individual effects. Clearly,
additional experimental work, ideally alongside observations
of predator foraging behavior, are needed to further elucidate
possible feeding relationships in this arthropod community.
This would be particularly powerful if enough different fields
could be sampled to construct and test the fit of Structural
Equation Models, which could include explicit examination of
indirect interactions suggested above (e.g., Blubaugh et al., 2021).
Unfortunately, logistical constraints prevented us from sampling
more fields in the study presented here.

Organic farming relies on natural processes, wherever
possible, as an alternative to chemical interventions to control
pests. This approach consistently leads to higher arthropod
diversity in organic than conventional fields, including among
natural enemies (Bengtsson et al., 2005; Hole et al., 2005; Crowder
et al., 2010, 2012). Yet, pest abundance also generally is higher
in organic fields, and greater natural pest suppression is not
always apparent (Hilbeck and Kennedy, 1996; Macfadyen et al.,
2009a,b; Schmidt et al., 2014; Muneret et al., 2018; Cloyd, 2020).
The findings presented here suggest ecological complexities
that might contribute to these general patterns. First, at the
higher arthropod abundances typical of organic fields, growing
abundance of possible prey correlated with reduced probability of
detecting thrips DNA in Geocoris. Second, greater abundance of
Nabis generally correlated with reduced probability of detection
of thrips DNA in both Geocoris and Nabis. Higher predator
abundance in organic fields, then, might lead to greater predator-
predator interference that defuses any gains for pest suppression.
So, robust arthropod communities may not necessarily translate
into more effective biological control.

CONCLUSION

The effectiveness of generalist predators as biological control
agents has long been questioned (DeBach and Rosen, 1991;
Symondson et al., 2002). This is because the same polyphagy
that allows predators to build their populations on detritus-
feeding or other non-pest prey, can sometimes also distract
them from attacking key herbivores (Harmon and Andow, 2004).
Likewise, predators that feed heavily on other natural enemies
might disrupt, rather than strengthen, net pest suppression
(Rosenheim, 1998; Venzon et al., 2001; Finke and Denno, 2004;
Janssen et al., 2007). We found evidence that these two disruptive
interactions might reinforce one another, as detection of thrips
DNA in predators was reduced both in the presence of abundant
arthropod prey and with increasing abundance of predators
perhaps drawn to those prey. This reinforces the complexity of
feedbacks that might be seen in open field situations, where prey
and predator abundance interact with one another in complex

ways (Paul et al., 2020). Molecular gut content analysis, despite
its limitations, may be a particularly powerful tool to detect these
relationships against the high background arthropod diversity
typical of real agricultural fields.
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