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Abstract

BACKGROUND: Invasive species threaten the productivity and stability of natural and managed ecosystems. Predicting the
spread of invaders, which can aid in early mitigation efforts, is a major challenge, especially in the face of climate change. While
ecological niche models are effective tools to assess habitat suitability for invaders, such models have rarely been created for
invasive pest species with rapidly expanding ranges. Here, we leveraged a national monitoring effort from 543 sites over
3 years to assess factors mediating the occurrence and abundance of brownmarmorated stink bug (BMSB, Halyomorpha halys),
an invasive insect pest that has readily established throughout much of the United States.

RESULTS: We used maximum entropy models to estimate the suitable habitat of BMSB under several climate scenarios, and
generalized boosted models to assess environmental factors that regulated BMSB abundance. Our models captured BMSB dis-
tribution and abundance with high accuracy, and predicted a 70% increase in suitable habitat under future climate scenarios.
However, environmental factors that mediated the geographical distribution of BMSB were different from those driving abun-
dance. While BMSB occurrence was most affected by winter precipitation and proximity to populated areas, BMSB abundance
was influenced most strongly by evapotranspiration and solar photoperiod.

CONCLUSION: Our results suggest that linking models of establishment (occurrence) and population dynamics (abundance)
offers a more effective way to forecast the spread and impact of BMSB and other invasive species than simply occurrence-
based models, allowing for targeted mitigation efforts. Implications of distribution shifts under climate change are dis-
cussed.
© 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Supporting information may be found in the online version of this article.
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1 INTRODUCTION
The spread of invasive pest species is a major threat to global bio-
diversity and agricultural production.1,2 Understanding the fac-
tors that shape the geographical distributions and population
dynamics of invasive species has been a key issue in agroecology
in recent decades, particularly in the current context of global
change.3–5 Niche-based species distribution models are one of
themost effective tools to assess dynamics of invasive species fac-
ing current environmental changes6–8 and their use has become
more popular as new powerful statistical techniques and geo-
graphical information system (GIS) tools become available. How-
ever, application of species distribution models has primarily
focused on endangered species or biodiversity indicators, and sel-
dom on insect pests in agroecosystems, particularly for pests with
rapidly expanding distributions.
Many invasive insect species have wide host ranges and

broad environmental tolerances, allowing them to rapidly
expand their range in invaded regions. Moreover, empirical evi-
dence has shown that climate change has caused many spe-
cies, including insects, to shift their native distributions or
realized niche.9–12 Climate change also plays a key role in alter-
ing the distribution and population dynamics of invaders that
are expanding their range, thus potentially exacerbating the
damage caused by certain invasive agricultural pests.13–15 How-
ever, few studies have assessed whether the environmental fac-
tors that mediate the occurrence of invasive pest species also
drive population dynamics of invaders. Understanding these
dynamics is critical to better assess factors that determine
where invasive species are likely to be distributed, and areas

where they are likely to have the greatest ecological impacts
(i.e. outbreaks).
Here we assessed facs of the brown marmorated stink bug

(BMSB), [Halyomorpha halys (Stål), Hemiptera: Pentatomidae], a
native Asian species that was introduced to the United States in
the mid-20th century and has since spread throughout much of
North America and Europe.16 BMSB is a generalist herbivore that
feeds on nearly 170 described hosts, including many important
crops that have been severely impacted across its introduced
range.16,17 BMSB is also known for its dispersal capacity, which
allows it to move among crops, unmanaged forests and between
urban and agricultural settings.18,19 BMSB has proven challenging
to manage, because in addition to its broad host range, it associ-
ates with humans by inhabiting dwellings in the winter,20–22

which in turn makes it more difficult to identify limiting predictors
if the species is able to mitigate exposure through behavior. In
recent years, scientists have focused on controlling the spread
of BMSB and managing damage to crops, but populations have
been detected in 46 states, it is considered to be established in
32 states across the United States, and its range continues to
expand. Moreover, BMSB is considered to be both an urban nui-
sance pest and an agricultural pest in at least 15 states.16,23 Far
from representing a problem only in the United States, it has also
more recently invaded regions in Europe, where severe damage
has been reported, particularly in pear and hazelnut
orchards,24,25 Chile26 and regions of the Caucasus.27

We leveraged a widespread monitoring network for BMSB that
encompassed 543 sites over 3 years (2017–2019) across the con-
tiguous United States28 to assess abiotic factors that mediated
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establishment (occurrence) and impact (abundance) of BMSB. We
used niche-based ecological models to assess whether the envi-
ronmental factors that determine BMSB establishment were the
same as, or different from, factors that mediated BMSB abun-
dance. Such analyses could aid in mitigating the spread of BMSB
into new regions (preventing new occurrences) and regulating
BMSB abundance where populations are already established
(managing existing populations). We also assessed how the range
of BMSBmay shift under future climate scenarios, given that stud-
ies have shown that BMSB populations in North America are
adapting to changing climate conditions.29,30 Overall, our study
shows how widespread monitoring networks can be linked with
niche-based models to comprehensively explore factors shaping
the dynamics of invasive pest species.

2 MATERIALS AND METHODS
2.1 Study system
Our study assessed occurrence and abundance of BMSB popula-
tions across the contiguous United States (Fig. 1). BMSBwere sam-
pled from 2017 to 2019 across both recently invaded regions and
regions where BMSB is a well-established agricultural pest (Fig. 1).
At each site, we deployed three, clear sticky panel traps baited
with the commercial BMSB Dual lure (Trécé, Inc., Adair, OK, USA).
This lure contains its aggregation pheromone, a combination of
the stereoisomers (3S,6S,7R,10S)-10,11-epoxy-1-bisabolen-3-ol
and (3R,6S,7R,10S)-10,11-epoxy-1 bisabolen-3-ol, and the phero-
mone synergist, methyl (E,E,Z)-2,4,6-decatrienoate,31 and has
been shown to be highly attractive to BMSB adults and
nymphs.32–35 Baited traps were fastened on to wooden stakes
spaced at 50 m intervals (after cases in the literature28,33). Traps
were placed at interfaces between natural habitat patches and
crop fields that were suitable hosts for BMSB. Traps were
deployed in early spring and collected once every 2 weeks until
late autumn at each site to ensure we captured most of the BMSB
activity period. Our network included 276 sites in 18 states in
2017, 268 sites in 17 states in 2018, and 280 sites in 17 states in
2019; from these sites we collected 24 476, 28 902, and 38 131

BMSB adult individuals, respectively, per year. We standardized
the counts for modeling analyses as average BMSB adults per trap
per site per week. To account for misidentification or vagrant indi-
viduals not from an established population, we excluded from
analyses the sites which only one BMSB in total was recorded.

2.2 Environmental variables
To assess factors affecting BMSB occurrence and abundance, we
collected climate data for all sites (Table 1). For most metrics, we
acquired gridded variables describing climatic conditions from
the Parameter Regression of Independent Slope Model
(PRISM)36 that links meteorological data, digital elevation models,
and spatial data to calculate spatially-explicit climate. These vari-
ables were calculated per month (averaged over metrics for each
day in the month) using terrain variables within a regression
framework to interpolate observations from a dense network of
weather stations to 800 m resolution grids.37,38 We included min-
imum temperature of the coldest month (January), maximum
temperature of the warmest month (July), and total precipitation
in January and July We used accumulated growing degree days
per year (base temperature 10°C) obtained from the US National
Phenology Network (www.usanpn.org). Annual evapotranspira-
tion was obtained as a ∼1 km cell sized raster from the MOD16
Global Evapotranspiration Product.39

We also selected six biologically meaningful landscape variables
that may affect BMSB populations (Table 1). We used a digital ele-
vation model at 30 m spatial resolution to estimate the elevation
of each site,40 and the land cover class each year as a categorical
predictor obtained from the US Geological Survey (USGS) Crop-
land Data Layers.41,42 Based on land cover data, we also calculated
(i) distance to water (Euclidean distance to nearest permanent
water) and (ii) distance to urban areas (Euclidean distance to near-
est population area with more than 2500 residents). We included
soil pH (10 km spatial resolution) as a proxy for potentially differ-
ent plant communities that host BMSB. Our final landscape vari-
able was based on the combination of photoperiod and solar
radiation, calculated using the solar radiation analysis tool in

Figure 1. Map showing the geographical extent of the study. Sites monitored in each of three study years (2017–2019) are shown in different colors
(points overlap across years). The diameter of the circles in each year represents the average weekly captures of adult Halyomorpha halys per three
pheromone-baited traps throughout each season at each site.
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ArcGIS 10.5 (ESRI, Redlands, CA, USA) and the SRTM digital eleva-
tion model.
Before analyses, all environmental layers were re-sampled to

30 arc-seconds grid cell size43 and variance inflation factors
(VIFs) were calculated44 (Supporting Information, Table S1). VIFs
showed no significant multicollinearity between our selected vari-
ables except maximum temperature in summer, where the VIF
was slightly above a recommended threshold of 5 (5.14). How-
ever, we retained this variable in the analyses as it has been
deemed ecologically important for BMSB distributions.45–47

2.3 Model development
Factors affecting BMSB occurrence were assessed using maxi-
mum entropy (MAXENT) models and factors affecting abundance
with generalized boosted models (GBMs). MAXENT models were
used as they often outperform other algorithms (i.e. GARP, CART)
with presence-only data48,49 and are far less sensitive to sample
size.50 MAXENT models compare presence locations with ran-
domly selected points within a potential habitat to find the largest

spread (maximum entropy) of current conditions relative to a
‘background’ of environmental variables. These analyses create
maps of habitat suitability and determine contributions of specific
variables on patterns of occurrence.
GBMs were created using the ‘gbm’ package51 in R.52 GBMs

employ machine-learnicbine the strengths of regression trees
and boosting to fit a parsimonious model from the outputs of
individual trees.53 By combining many simple models, GBMs can
include different types of predictor variables and can accommo-
date missing data, both of which improve predictive performance
while minimizing the risks of overfitting.48 In addition, GBMs are
sufficiently flexible to include non-linear relationships and interac-
tions between predictors and responses.54,55 One of the reasons
we chose GBM is that, although training generally takes longer,
GBM performs generally better than other similar algorithms,
such as Random Forests, if parameters are tuned correctly.56,57

This is mainly because GBMs try to add new trees that comple-
ment the already built ones, thereby providing better accuracy
with fewer trees.55

Figure 2. The relative contribution of each climate and landscape metric in MAXENT (occurrence) models and GBMs (abundance). Values shown are the
result of the ten-fold model averaging. Scale bars show the proportion of variance explained by each factor in the combined models with both climate
and landscape factors. (i) cdl: landcover class; (ii) dem: elevation; (iii) evapot: evapotranspiration; (iv) gdd: growing degree days; (v) hidro: distance to water
bodies; (vi) ppt_jan: precipitation in January; (vii) ppt_jul: precipitation in July; (viii) tmax_jul: maximum temperature in July; (ix) tmin_jan: minimum tem-
perature in January; (x) soilph: soil pH; (xi): sol_pho: interaction solar radiation and photoperiod; (xii): urban: distance to urban areas.

Table 1. Climate and landscape variables included in the models, with associated means and ranges (in parentheses), original data resolution, data
sources, and units

Variable Code Mean (minimum–maximum) Original resolution Source Units/classes

Climatic
Maximum temperature summer tmax_jul 30.5 (23.2–36.7) 30 arc-seconds PRISM °C
Minimum temperature January tmin_jan −3.3 (−16.3–7.4) 30 arc-seconds PRISM °C
Precipitation summer ppt_jul 88.7 (0.1–316.4) 30 arc-seconds PRISM mm
Precipitation January ppt_jan 511.6 (11.4–2614.9) 30 arc-seconds PRISM mm
Evapotranspiration evapot 48.6 (16.6–72.0) 927 m MODIS mm/yr
Growing degree days gdd 996 (547–1415) 2500 m USA-NPN NA
Landscape
Distance to water bodies hidro 19.8 (0.2–191.7) 30 arc-seconds GLWD m
Distance to urban areas urban 400.5 (0–4110.6) 30 m USGS m
Land cover class cdl categorical 30 m Cropscape 82-classes
Soil pH soilph 5.9 (5.0–8.1) 1000 m FAO NA
Photoperiod/solar radiation sol_pho 12 515 (1.6–255 618) 30 arc-seconds PRISM kJ h m−2

Elevation dem 350.1 (1.1–1702) 3 arc-seconds USGS m

Note: NA, not available.
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We generated MAXENT models (with default settings) and
GBMs with six climate and six landscape variables as predictors
and observed BMSB occurrence and abundance at each site as
responses (Fig. 2). Both occurrence and abundance models can
suffer from imperfect detection,58,59 but we did not account for
detection in models for three reasons. First, data were collected
by trained personnel accustomed to identifying BMSB. Second,
no machine learning methods currently exist to account for
imperfect detection, and machine learning methods such as
GBMs enable fitting of complex structures (non-linearities, inter-
actions) that would be computationally challenging in an occu-
pancy framework. Third, ‘occupancy’, after accounting for
imperfect detection, is a latent variable that cannot be validated
on independent data because the true state of independent data
is unknown.60 As our primary objectives were model validation
and prediction, we considered our approach to be the most
appropriate. Finally, we acknowledge that the introduced models
would potentially estimate a truncated niche, as they do not
account for native Asian populations, and therefore might under-
estimate BMSB potential distribution in the United States.61,62 To
control for this effect, we calculated the realized niche occupied
by native and introduced populations, as well as the predicted
habitat suitability based on these two models (Supporting Infor-
mation, Fig. S1). Nevertheless, because the purpose of this study
was to explore and compare factors driving BMSB distribution
and abundance in the contiguous United States, we argue that
the introduced US BMSB populations represent the best source

of information to calculate their realized niche in the
United States.

2.4 Model performance and evaluation
We assessed MAXENT models using area under the receiver oper-
ating characteristic curve (AUC) of plots and binary omission
rates,63,64 which are widely recognized as reliable performance
metrics for species distribution models,65–67 although we also
acknowledge potential limitations that have been identified (see
Lobo et al.68). AUC is a threshold-independent metric that weights
omission error (predicted absence in areas of observed presence)
and commission error (predicted presence in areas of observed
absence) equally. AUC juxtaposes correct and incorrect predic-
tions over a range of thresholds, and values of model fit range
from 0.5 (no better than random association) to 1 (perfect fit). Use-
ful models produce AUC values of 0.7 to 0.9 and ‘good discrimi-
nating models’ have values above 0.8.66 Final results of MAXENT
models were the average of ten model runs. We assessed GBMs
using Spearman's non-parametric rank correlation coefficients
(rho, ρ) between predicted and observed abundance values. We
used rank correlation coefficients because observed BMSB counts
were low at many sites (leading to deviations from normality) and
due to potential non-linear relationships between predicted and
observed abundance. To account for data independence, we ran-
domly selected 70% (573) of sites to train the models and 30%
(245) for validation.69

Figure 3. Predicted change in habitat suitability for Halyomorpha halys in the 2080s compared to current conditions under the climate scenarios (A) B1
(emphasis on global solutions to economic, social, and environmental sustainability, but without additional climate initiatives) and (B) A1B (a future world
of very rapid economic growth, low population growth and rapid introduction of new and more efficient technology) (both rated as moderate). Both
panels show changes in climatic habitat suitability from cold (decrease in suitability) to warm colors (increase in suitability). Green tonalities denote no
change in habitat suitability for BMSB.
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2.5 Predicting BMSB distribution under future climate
scenarios
Our final analysis involved predicting changes in habitat suitabil-
ity for BMSB under future climate change scenarios. We assessed
these scenarios to project how BMSB populations might expand
in the near and long-term future. We developed climate-only dis-
tribution MAXENT models and calculated the environmental
niche suitability under two climate change scenarios for 2080.70

Climate data for the IPCC (Intergovernmental Panel on Climate
Change) scenarios considered were generated with ClimateNA
version 5.10 software.71 We chose the A1B and B1 scenarios,
which are moderate scenarios often used in recent global change
studies to project future climatic conditions.72–75 Scenario A1B
assumed a balanced global energy portfolio, generating moder-
ate emission levels and describes a future world of very rapid eco-
nomic growth. Scenario B1 described a world with similar global
population than A1B but transitioning to sustainable energy, gen-
erating lower greenhouse gas emissions.76,77

3 RESULTS
3.1 Model performance and validation
Model validation showed both MAXENT (occurrence) models and
GBMs (abundance) accurately captured the current distribution of
BMSB in the United States. The three MAXENT models with cli-
mate variables only, landscape variables only, or climate and land-
scape variables combined had an AUC of 0.93, 0.89, and 0.95,
respectively. We also built a MAXENTmodel with the top three cli-
mate and top three landscape variables, which had an AUC of
0.94. The climate-only, landscape-only, and combined GBMs had
a ρ of 0.44, 0.48, and 0.44, respectively. The reduced combined
model had a ρ of 0.52 (Table S2).

3.2 Relative contribution of variables
Although both MAXENT models and GBMs effectively predicted
BMSB occurrence and abundance, the relative contribution of fac-
tors across these models differed considerably (Figs 2, S2 and S3).
This held whether we considered the single top variable in each
model, or whether a variable was one of the three top predictors.
In the MAXENT models, the distance to urban areas and January
precipitation were by far the most important factors mediating
BMSB occurrence, accounting for more than 80% of the variance,
followed by land cover and evapotranspiration (Figs 2 and S4). In
the GBMs, in contrast, BMSB abundance was primarily mediated
by evapotranspiration and the interaction between photoperiod
and solar radiation, followed by soil pH and land cover (Fig. 2).

3.3 Predicted effects of climate change on the
distribution of BMSB
Our models showed that habitat suitability for BMSB will likely
change considerably under future climate scenarios. Under both
moderate scenarios considered, areas of high suitability habitat
are expected to increase in future decades (Fig. 3). In general,
we found that habitat suitability will increase moving northward
over time, especially under the A1B scenario (Fig. 3(B)). On the
west coast, we also showed that habitat would becomemore suit-
able moving inland in future years, particularly in the northwest.
However, there were some areas that are expected to decline in
suitability by the 2080s, such as some parts of the Sacramento Val-
ley of California (Fig. 3). Overall, our models suggest that currently
2.3% of the contiguous United States has a BMSB habitat suitabil-
ity above 0.5, and less than 0.01% has suitability above 0.7. Those

values are predicted to increase to 13% and 7%, respectively,
under the A1B and B1 scenarios (Table S3).

4 DISCUSSION
We show that ecological niche models, created with data from a
nationwide monitoring effort, accurately predicted the occur-
rence and abundance of BMSB populations throughout the
United States. These results conform with those from studies
showing high predictive ability of ecological niche models that
are trained and tested over short time periods.78–80 While both
types of models were accurate, the most important factors medi-
ating BMSB occurrence differed from those regulating BMSB
abundance (Fig. 2), possibly reflecting different processes
involved in the establishment of an invasive species, as opposed
to those driving regional population dynamics.81,82 For example,
the most important predictor for BMSB occurrence was proximity
to populated areas, which may reflect human-assisted transport
of BMSB to urban locations, the availability of human structures
that can serve as overwintering sites for BMSB, and the diversity
of ornamental plants (e.g. Ailanthus altissima) acting as additional
resources to BMSB in the spring. However, it is important to note
that the different nature of the two model approaches and the
interaction of the presence and abundance data with the predic-
tors can also influence the ranking of the variables. Urban areas
might thus provide better availability of hosts for BMSB feeding
and oviposition in spring, which may in turn increase its abun-
dance and contribute to its subsequent spread in nearby areas.
However, for populations that are already established, climate fac-
tors had the greatest impacts on abundance.83 Overall, these
results suggest that predicting the distribution and population
dynamics of an invasive species requires complementary model-
ing approaches to assess both establishment and population
regulation.
BMSB has been spreading rapidly throughout the United States,

and its population status still has not reached complete equilib-
rium, as it has in the native Asian range.84 Our models showed
that the most suitable areas for BMSB establishment are in the
Mid-Atlantic region and surrounding the Great Lakes, with addi-
tional favorable regions in south-eastern states and valleys of
the West Coast (Fig. S4). These regions include highly productive
croplands that are vulnerable to significant economic losses due
to BMSB each year. Importantly, our models predicted regions of
high suitability where BMSB has not yet been detected, suggest-
ing that its further spread and greater impacts on agriculture
may be anticipated (e.g. southern California, Treasure Valley,
Idaho). However, our models also suggest that BMSB is unlikely
to establish a continuous distribution throughout the contiguous
United States, given the lack of suitable habitat throughout much
of the central and southern United States (Figs 3 and S4). It is
worth noting that a previous model by Kriticos et al.6 had identi-
fied certain regions of Florida and the Gulf coast as favorable for
BMSB colonization whereas our models do not show those areas
at high risk of invasion. Our predictions seem to be at least par-
tially supported by observations from collaborators in Florida,
who have detected adults of BMSB but very rarely found nymphs
or eggs, suggesting BMSB have not established their population
in Florida and might not be a climatically suitable region.85

When analyzing factors affecting BMSB occurrence, we showed
that January precipitation was the most important climatic factor,
followed by evapotranspiration andminimum temperature. Inter-
estingly, BMSB are chill-intolerant, with rapidly increasing
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mortality at temperatures below 10 °C.29,86 The greater role of
precipitation, compared with temperature, however, has been
reported for multiple other insect taxa in North America4,87 and
for some non-insect taxa.9 The role of higher winter precipitation
and humidity potentially leading to a lower mortality of BMSB has
been reported to be important factors for other insect spe-
cies.88,89 Indeed, cold, dry air is known to exacerbate desiccation
stress for insect species,90 and as BMSB overwinters in aggrega-
tions, a mechanism considered to help reduce desiccation
stress,91 winter precipitation is likely another factor that is impor-
tant to survivorship. Increased precipitation during January likely
increases the relative humidity and reduces evapotranspiration
from overwintering bugs. However, BMSB have only been found
overwintering in dry, tight locations in nature in location such as
beneath the bark and deep within the wood of dead, standing
trees, but never in moist locations such as leaf litter or damp,
downed trees lying on the ground based on extensive surveys
by detector canine and human surveyors.84,91 Overwintering
BMSB also choose to shelter in dry locations overmoist sites in sig-
nificantly greater numbers.92 Studies of aggregating insect spe-
cies, specific abiotic conditions found within overwintering sites
and their impact on subsequent insect survivorship are rare as
articulated by Susset et al.93; their study of the ladybird beetle Hip-
podamia undecimnotata (Schneider) revealed abiotic conditions
within aggregation sites did not provide optimal conditions to
combat unfavorable temperatures or the potential for fungal
pathogen infection. Finally, higher humidity during this time of
the year might make natural hosts more abundant and more suit-
able, increasing BMSB abundance and their potential to establish
in crops the following season. It is clear that more detailed studies
of factors influencing overwintering survivorship success of BMSB
are warranted.
Distance to urban areas was the most important landscape var-

iable affecting BMSB occurrence, accounting for almost 41% of
the variance, making it the most important variable overall. Fac-
tors associated with human-dominated landscapes, including
roads and urban areas, similarly affect other invasive pests94,95

and non-pest insects.96 Our results suggest that BMSB is most
likely to establish in agricultural regions where it already repre-
sents a nuisance pest,97 because individuals that overwinter in
human structures may disperse into crop fields each spring, and
also because higher diversity of crops provide more options for
optimal BMSB development.98 However, the proximity to popu-
lated areas was not an important variable predicting BMSB abun-
dance. This suggests that once populations establish, they may
not need to rely on humans for overwintering or transport, and
population dynamics are primarily driven by climate. In other
words, if a BMSB population has already established, the proxim-
ity of human structures is no longer a critical factor for BMSB
abundance, which become more influenced by the regional
climate.
In contrast to MAXENT models, GBMs revealed that evapotrans-

piration had the strongest impacts on BMSB abundance, followed
by the interaction of solar radiation and photoperiod. Together,
these two predictors accounted for more than 50% of the vari-
ance in abundance. This suggests water availability, and sunlight
exposure, are limiting factors regulating BMSB populations. Other
studies have similarly shown that moisture can strongly affect
sap-feeding insects, both in their adult stage and especially dur-
ing nymphal development.4,99–101 Reduced evapotranspiration
and the associated temperature increase can impact survival of
insect herbivores that are unable to move to more suitable

sites,102 and could prove to be a factor in BMSB nymphal survival
in hotter and drier locations. Moisture is also a factor determining
the availability and suitability of host plants, increasing BMSB suc-
cess after they break diapause and start feeding. This in turn
enhances the potential for population increase and ultimately to
establish in crop hosts the following season. Policymakers and
growers might be able to use potential evapotranspiration to bet-
ter predict the risk of BMSB impact in the following year, allowing
them to make more proactive management decisions.
By analyzing future climate scenarios, we showed that BMSB

populations have a large potential to continue to expand within
the United States, and particularly northward. Similar expected
shifts have been reported for other insect species in the Northern
Hemisphere.103–105 The change in future habitat suitability was
similar under both climate scenarios, and both reflected steady
increases in the proportion of highly suitable habitat for BMSB
by 2080 compared with 2020 (Fig. 3). According to our models,
BMSB may expand its range considerably in future decades,
threatening crops in regions where it has not yet been detected.
Nevertheless, our models can be used to estimate areas at highest
risk of potential spread so that mitigation and eradication efforts
might be implemented in new regions. As reported by Stoeckli
et al.,14 BMSB is also expected to expand its current distribution
in Europe, where extensive range expansion into higher altitudes
and an increased number of generations per year is predicted
under several climate change scenarios.
While our models accurately described BMSB occurrence and

abundance, we note that substantial variance remained unex-
plained. We suggest that biotic factors, such as the presence
and abundance of competitors and natural enemies, also likely
affect BMSB distributions.80,106 For example, recent studies show
that parasitoid wasps can help suppress BMSB populations.107–
109 Similarly, other native stink bug species may compete with
BMSB for resources and limit their spread.110,111 Another source
of variance arises from the scale of the predictors, as most vari-
ables included in ecological niche models do not reflect microcli-
mates that can provide refugia for insects112; however, such
datasets are not yet available. However, the capacity of BMSB to
adapt physiologically to new environmental conditions may
affect the interpretation of predictions. Finally, variation in man-
agement strategies for BMSB, such as the intensity of pesticide
use, might affect regional distributions.113 Despite these con-
founding sources of variance, we showed that our models could
accurately capture variability in BMSB occurrence and abundance
at the national scale of the BMSB invasion. Finally, while it is com-
mon to consider climate and landscape factors independently,
they may interact in some contexts. For example, over longer
timescales, insect populations that are invading new areas due
to anthropogenic land-use change may be more likely to behav-
iorally adapt to climate change. However, the connectivity of
landscapes may be reduced due to landscape fragmentation,
decreasing the potential for population establishment and range
shifts due to climate change. Of course, a major step forward will
be to efficiently assess the interactive effects of climate and land-
scape factors, but this has proven too challenging to date, at least
for most observational studies.
Our study highlights the applicability of ecological nichemodels

for assessing the potential spread and impacts of an invasive pest
species in agroecosystems. Such models can in turn be used to
guidemitigation and eradication strategies before invaders estab-
lish in new regions, while maximizing the effectiveness of limited
resources available for tracking invasive spread. Moreover, we
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addressed the complementarity of two modeling approaches,
occurrence and abundance models, that offer different informa-
tion related to managing an invasive pest insect. While the dis-
tance to populated areas seems to be key for BMSB occurrence,
climatic factors, particularly those related to water availability,
were the most important drivers of BMSB abundance. This study
leveraged a rare, large-scale monitoring effort across most of
the contiguous United States that included sampling sites across
a wide range of environmental conditions. Thus, results presented
here are robust, and predictions made at such a continental level
are likely more reliable than could be achieved with a smaller
scale study. Our models thus represent a powerful tool for ecolo-
gists and policymakers to better understand expansion of an inva-
sive insect pest across diverse agroecosystems.
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