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Abstract
Long-term monitoring networks that generate data on pest abundance are the foundation of integrated pest management. 
Monitoring can estimate local risk from pests and identify when pests first arrive in particular fields. However, while data 
on pest abundance are collected for the purpose of making management decisions in individual fields, it is often unclear how 
such data can be used to make landscape scale predictions of risk from pests. We addressed this by using inverse-distance 
weighted interpolation models to generate predictions of abundance for multiple potato crop pests from long-term monitor-
ing data. Specifically, we collected 30,999 abundance datapoints of four pests for 4 to 11 years and used interpolation to 
predict abundance of each pest across a 40,250 km2 area; these predictions were compared to observed pest data to validate 
our approach. We show predicted pest abundance was strongly and positively correlated with observed abundance for each 
of the four pests studied, with Spearman rank correlations from 0.5 to 0.8. Moreover, our interpolation approach was robust 
to variation in the type of monitoring data used, although interpolation parameters that produced the best fit to observed data 
differed slightly across species and ranged from 1 to 2. This suggests that variation in the biological traits of pests can affect 
interpolation models, and that models should be tailored to individual species. Overall, our study shows that interpolation 
is a powerful tool to integrate pest monitoring data into predictive maps that can guide management for crop pests across 
broad spatial scales.

Keywords  Geographical information systems · Integrated pest management · Landscape ecology · Potato · Predictive 
modeling

Key message

•	 Pest monitoring is integral to pest management. While 
monitoring provides data on pest abundance in individual 
fields, these data are rarely used to make regional predic-
tions of pest abundance

•	 We linked long-term monitoring data and interpolation 
models to assess if pest data from individual fields could 
predict regional variation in pest abundance

•	 We found the interpolation models effectively pre-
dict observed pest abundance, suggesting an effective 
approach for regional pest management

Introduction

One of the foundational principles of integrated pest man-
agement (IPM) is that to make effective management deci-
sions, producers should rely on pest monitoring. Monitor-
ing networks inform growers about the abundance of pests, 
allowing for management decisions to be made based on 
known action thresholds. Across broad landscapes, pest 
monitoring also provides insight into the movement of pests, 
allowing producers to better anticipate when pests will arrive 
in their fields (Rosenheim and Gratton 2017). Yet, while 
pest monitoring is conducted in most agroecosystems, the 
ability to generate predictions of pest risk across regions is a 
nascent field (Rosenheim and Gratton 2017). To address this, 
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scientists are increasingly using ecoinformatics approaches, 
whereby large-scale datasets collected across broad spatial 
and temporal scales are incorporated into ecological and 
statistical models to make inferences about pests (Bekker 
et al. 2007; Kelling et al. 2009; Michener and Jones 2012; 
Rosenheim and Gratton 2017).

In agricultural systems, many of the most common large 
datasets that are suitable for eco-informatics approaches 
assess pest abundance across regions. By trapping pests 
at regular intervals across space, the size and distribution 
of pest populations over time can be estimated. However, 
logistical challenges associated with pest monitoring across 
broad scales include the fact that sampling locations are 
often non-uniform and can depend on the landscape, coop-
eration with landowners, and the manpower available to 
check traps. This can limit the ability to use landscape-level 
data to make broad inferences about pest abundance. Inter-
polation has emerged as one tool to address this problem, 
as interpolation techniques can be used to make inferences 
about pest abundances across broad regions based on point 
counts in individual fields (Li and Heap 2011). By project-
ing pest populations, interpolation allows monitoring data 
collected from multiple locations to provide insight across 
broad production regions (Liebhold et al. 1993).

While interpolation approaches could promote sustain-
able pest management, interpolation assumes that nearby 
samples provide information about unsampled locations 
(Fleischer et al. 1999). This means that pest abundances at 
sites that are close geographically should tend to be similar, 
with similarities in abundance inversely related to distance. 
Yet, this assumption may not hold if there is variation in 
landscape composition, on-farm diversity and management, 
or pest life history across sites (Hardin et al. 1995; Costa-
magna et al. 2012; Rosenheim and Gratton 2017; Walter 
et al. 2020). Thus, for any particular system, interpolation 
models should be validated to determine if they provide 
robust predictions of particular pests. In such cases where 
interpolation models can be developed and validated, they 
may be used within decision support systems to provide real-
time information on pest populations (Jones et al. 2010).

In potato agroecosystems of Washington State, we have 
conducted sampling of four major insect pests of economic 
importance for 4 to 11 years: (i) potato tuberworm (Phthori-
maea operculella Zeller; PTW), (ii) beet leafhopper (Circu-
lifer tenellus Baker; BLH), (iii) green peach aphid (Myzus 
persicae Sulzer; GPA), and (iv) potato psyllid (Bacteri-
cera cockerelli Šulc; PP). Since 2014, the monitoring data 
have been provided to growers with maps showing inter-
polated densities. Similar approaches have been used for 
Colorado potato beetle, western corn rootworm, and brown 
marmorated stinkbug in other systems (Weisz et al. 1995; 
Beckler 2004; Venugopal et al. 2015). However, few stud-
ies have validated interpolation approaches for pests, which 

is problematic because interpolation could be affected by 
non-normal pest distributions (Zuur et al. 2010; Park et al. 
2012) or due to pest management practices on farms (which 
strongly affect pest densities but are hard to quantify). Our 
study addresses this with an extensive exploration of the use 
of interpolation for pest management in an agroecosystem 
with a complex of major pests.

Methods

Pest monitoring network

Data on abundance of each pest were collected as part of a 
monitoring network that spanned the potato-growing region 
in Washington State, USA (Fig. 1) and covered 175 km E-W 
and 230 km N-S. Data on abundance of PTW and BLH were 
collected from 2007 to 2017, GPA was collected from 2009 
to 2017, and PP was collected from 2014 to 2017 (Table S1). 
For each pest, abundance was measured weekly from each 
site (Fig. 1), beginning at plant emergence (April/May) 
and concluding at the vine kill stage (September/October) 
(Table S1).

Adult male PTW were monitored with 1 pheromone trap 
per site, with lures placed inside corrugated plastic delta 
traps with sticky liners (Trécé, Adair, OK); liners were 
changed weekly. Each trap was hung from a PVC pipe stand 
30 cm above the soil. BLH were monitored using 2 yellow 
sticky cards per site (13 × 8 cm), mounted on small stakes 
10 cm above the soil; these traps were placed along field 
edges outside of the range of irrigation. GPA were moni-
tored by placing a small bucket (5 L, 20 cm diameter) under 
potato plants that were shaken to dislodge insects, with 15 
plants per field. While this method targets the wingless colo-
nizing aphids, winged migratory aphids are also counted 
when found. PP was monitored with four yellow sticky 
cards, with traps placed inside fields within 10 m of the 
edge and hung just above the plant canopy; trap height was 
adjusted as plants grew.

Interpolation methods

Interpolation is a process where data on a response vari-
able from individual sites are used to predict landscape-scale 
variation in the response (Li and Heap 2011). Interpolation 
functions, including inverse distance weighting, assume that 
predictions can be made by assuming spatial autocorrelation 
in the response (Li and Heap 2011). In other words, if a par-
ticular site has a high abundance of an insect, other nearby 
sites should have similar abundance, and sites farther away 
will be less similar. For example, inverse distance weight-
ing estimates a response across a region from observations 
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at sampled sites, and the distance to the predicted site, as 
follows:

where yj is the interpolated value of response variable at pre-
dicted site j based on the observed pest abundances from the 
monitoring network (sites i = 1 to n), the distance between 
sites i and j (dij), and the power parameter p. In this model, 
the power parameter determines the strength of the spatial 
autocorrelation; if p = 1 all sites are weighted using only 
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the inverse of their distance, but if p > 1, the weight of each 
point in the observed network has an exponentially decreas-
ing effect on predicted abundances with increasing distance 
from the site. The location of sites in our monitoring net-
work was measured to 4 decimal places which correlates 
with a distance of around 11 m, such that 11 m was the cell 
size for interpolations.

We used inverse distance weighting as our interpolation 
metric because it is more robust to zero-inflated data than 
kriging. Kriging also requires parameters derived from a 
fitted variogram (Gräler et al., 2016; R Core Team 2020), 
which could not be accomplished in weeks with low insect 
presence (fewer than ten sites). In contrast, the inverse dis-
tance-weighted (IDW) approach can generate results for any 

Fig. 1   A map of all sampling sites overall years where sampling occurred
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week where three or more sites had insects present. With 
this method, our interpolations can generate predictions even 
when pest presence is low. While the accuracy of results 
with only three observation points is likely to be low, we 
chose this approach to maximize site inclusion and increase 
the probability of detecting outbreaks. A week with low pest 
presence but high pest abundance may overpredict abun-
dance for the remaining sites, but those high abundances 
may signal the beginning of an outbreak or large migration 
event.

Analysis of robustness of inverse distance weighting 
approach

In a series of sensitivity analyses, we assessed the robustness 
of our interpolation approach to (i) variation in the weight 
parameters, (ii) number of sites used in the interpolation 
(neighbor parameter), and (iii) several data transformations. 
These analyses were designed to test the robustness of our 
interpolation approach to our data treatments. Moreover, by 
varying weight parameters and the number of sites used in 
the interpolation, we were able to assess whether interpola-
tion methods that provided the best fit differed across pest 
species.

Variation in weighting by distance The inverse dis-
tance weighting method requires three primary inputs: (i) 
observed pest abundances at sampled sites, (ii) the distance 
between sampled sites and predicted locations, and (iii) the 
power parameter. As the power parameter, p, increases, sites 
that are further away from the sampled point receive less 
weight (i.e., spatial autocorrelation occurs at a more local 
rather than regional scale). We tested five values of p for 
each insect tested: (i) 1, (ii) 1.5, (iii) 2, (iv) 2.5, and (v) 3. 
The lowest value (1) only assigns the inverse of distance as 
spatial autocorrelation, whereas a value of 2 represents the 
standard value in IDW calculations (Shepard 1968). With 
regards to biological traits of each pest, as the distance 
an organism can travel increases, the distance over which 
spatial autocorrelation occurs should also increase, and a 
lower value of p should fit better (Taylor 1984; Liebhold 
et al. 1993; Vinatier and Tixier 2011). We thus hypothesized 
that pests that move over larger distances (GPA, BLH, PP) 
would be best predicted with a low power parameter, while 
insects that move locally (PTW) would be best modeled with 
a high value.

Neighbor parameter The other parameter we varied 
within interpolation models was the neighbor parameter 
(N), which is the number of observed sites to use in inter-
polations. N can vary from 1 (predictions are based only 
on the closest site) to the total number of sites sampled 
(which varied for each pest across years). Variation in this 
parameter might be important because a lower neighbor 
parameter assumes that sites that are farther away do not 

affect predictions and thus might decrease the impacts of 
outliers far from predicted sites. We tested four values for 
the neighbor parameter: (i) Nmax (total number of sampled 
sites for each pest in each year), (ii) 10, (iii) 5, and (iv) 3. 
We hypothesized that insects with greater dispersal ability 
would experience dispersal from distant sites and be more 
accurately interpolated by using all sampled sites, but insects 
with less dispersal capacity would only be influenced by dis-
persal from nearby sites and would be better predicted using 
a neighbor parameter that is spatially constrained.

Data transformations Insect count data are rarely nor-
mally distributed, rather often fitting a Poisson or negative 
binomial distribution. This is because count data often have 
many sites with low pest abundance and only a few sites of 
high pest abundance. Without transforming data, sites with 
relatively high abundance may cause overprediction in inter-
polation models. Normalizing the count data with a natural 
log transformation is one method to reduce the impact of 
outliers within count datasets, and this was one data trans-
formation tested (using a ln + 1 transformation to deal with 
sites with values of pest abundance that were 0). A second 
data transformation commonly used in landscape models is 
to use only sites where pests are present (i.e., abundance > 0) 
to make predictions. Such a data transformation eliminates 
sites that have 0 pest abundance and focuses on making pre-
dictions only with sites that have positive pest abundance.

Overall, we tested four models, each of which had a dif-
ferent data transformation. The standard model used raw 
abundance data (base, all data) and included all sites whether 
they had a 0 or non-0 pest abundance. The second model (ln, 
all data) used all sites but performed a ln + 1 transformation 
on pest abundances at each site. The third model used only 
sites that had non-0 pest abundance with no transformation 
(base, presence only). The final model used only sites that 
had non-0 pest abundance and conducted a ln transformation 
(ln, presence only).

Model validation

With any parameter set for each pest, we predicted abun-
dances based on the interpolation models for each week in 
each year. We used leave-one-out cross-validation to test 
effectiveness of the models using the gstat package in R 
(Gräler et al. 2016). This validation method is the most 
adaptable for datasets where the sample size varies over time 
and reduces the influence of outliers. Cross-validation avoids 
this problem by using the “leave-one-out” cross-validation 
(LOOCV) approach. This approach runs many validations 
with varying partitions for data used to test and train the 
model and then averages the results. By using an n-fold, the 
test partition is one data point in each model run, and the 
train partition is n – 1 (all of the data except the test point). 
This process is repeated until each site has served as a test 
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point. We ran a total of 320 models (4 insects × 4 data trans-
formations × 4 neighbor parameters × 5 power parameters).

We used Spearman rank correlation between observed 
and predicted values from the leave-one-out cross-vali-
dation to assess the accuracy of interpolation models 
for each combination of predictors for each insect pest 
(Gauthier 2001). We also applied the ’estimated marginal 
means’ method to generate pairwise comparisons of the 
variance explained by the power and neighborhood param-
eters using the emmeans package (Lenth et al. 2019). This 
technique is used to describe the effect of factors in the 
fitting of a model across a regular grid or surface. For 
each insect, we applied a linear regression model to the 
ln-transformed data with the residual as the response vari-
able and generated pairwise comparisons within each set 
of parameters. Finally, to understand the distance at which 
spatial-autocorrelation occurs, we used the ncf package in 
R (Bjornstand and Cai 2020) to plot correlograms from 

May 1 to September 30, encompassing a typical growing 
season. We repeated these analyses for years where all 
pests were sampled.

Results

Monitoring data

The monitoring network collected a total of 80,290 GPA, 
23,233 PP, 2251 PTW, and 82,694 BLH across the total tem-
poral extent. For each insect, the average trap catch by Julian 
day for each year (Fig. 2a), and the average trap catch over 
the entire sampling period (averaged across years) (Fig. 2b) 
show that abundances were variable both within and across 
seasons. However, PP and GPA had much greater between-
year variation compared to BLH and PTW.

Fig. 2   Fig. 2a shows the average trap catch within each year sampled 
for each pest. The colored lines represent the total average trap catch 
per week (7 Julian days) across all years, while the gray lines show 

the average trap catch for each year. Figure 2b shows the total aver-
age trap catch across all years sampled for each pest. The confidence 
interval is represented by the gray shading
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Effects of data transformations on interpolation 
models

We found significant positive correlations between observed 
and predicted abundance with no data transformation for 
three pests: BLH (rs = 0.46; P < 0.001), PTW (rs = 0.58; 
P < 0.001), PP (rs = 0.39; P < 0.001) (Fig. 3a). However, 
the models had a correlation coefficient close to 0 for GPA 
(rs = 0.04), showing a poor fit to the observed data (Fig. 3a). 
We predict that the poor fit to the GPA data may be due to a 
single outbreak year, where high counts of wingless aphids 
in certain fields may have acted as “outliers” that inflated 
predictions at other sites. However, using a presence-only 
model did not improve correlations for pests except for 
PP (rs = 0.77, P < 0.001), while BLH (rs = 0.41, P < 0.001) 
and PTW (rs = 0.30, P < 0.001) have a reduction, and the 
fit of the GPA interpolation model was largely unaffected 
(rs = 0.03, P = 0.009) (Fig. 3a).

Our first two analyses suggested that the data were not 
normally distributed and that eliminating the absence data 
did not improve the accuracy of the interpolation. This 

suggests that outliers caused over-inflated predictions. We 
addressed this by using a log transformation on the data, 
which increased correlation coefficients for each pest, 
and GPA in particular: BLH (rs = 0.62, P < 0.001), GPA 
(rs = 0.59, P < 0.001), PTW (rs = 0.58, P < 0.001), and PP 
(rs = 0.85, P < 0.001) (Fig. 3a). However, a combination of 
log transformation and presence-only data did not improve 
the fit. We thus used the log transformation with all data 
(presence/absence) as our “standard” model in the sections 
to follow for subsequent analyses.

Effect of parameters on interpolation models

For each pest, our interpolation models were robust to the 
power (Fig. 4a, Table S2) and neighbor (Fig. 4b, Table S3) 
parameters, though increasing the parameter also increased 
the range of predicted residuals and their outliers. However, 
because there were equivalent levels of positive and nega-
tive residuals, this leads to minimal differences in average 
residuals across power parameters. We found no statisti-
cal difference in fit of interpolation models based on either 

Fig. 3   Panel a shows the difference between observed trap catch and 
interpolated trap catch values across all years using Spearman rank 
correlation. The rank correlation is run for each combination of insect 
and data transformation (type), but only using interpolated data with 
the default interpolation parameters (power parameter of 1.5, neigh-

bor parameter of n). Panel b is a histogram of ln-transformed trap 
catch abundance for each pest across all years. This demonstrates that 
all the data are not normally distributed and are closest to a Poisson 
distribution
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parameter (Tables S2, S3). However, within each pest, there 
were minor differences in which power parameter generated 
the highest R2 value between predicted and observed values 
(Fig. S1). Based on our analysis of spatial autocorrelation, 
we found that the range of positive spatial autocorrelation for 
BLH is 12.85 ± 8.84 km, GPA is 29.65 ± 14.24 km, PTW is 
39.16 ± 11.92 km, and PP is 23.15 ± 12.81 km (Fig. S2-S5, 
Table S4). To test how the model performed across a grow-
ing season, we calculated the Spearman rank correlation for 
each insect across each week of sampling in each year and 
plotted it by Julian day (Fig. 5).

Discussion

Our study shows that linking long-term pest monitoring data 
with interpolation models generates predicted pest abun-
dances that are strongly positively correlated across large 
regions, as the Spearman rank correlations ranged from 0.50 
to 0.80 for each insect (Fig. 3a), demonstrating a monotonic 
relationship between predicted and observed abundance for 

insects that are also reflected in the average R2 values that 
range from 0.30 to 0.70 (Supp. Figure 1). These high posi-
tive correlations are striking given that potatoes are inten-
sively managed, with often calendar-based applications of 
insecticides (Schreiber et al. 2018). Such insecticide sprays 
and other management tactics could strongly affect local pest 
densities. However, without access to management data or 
unmanaged sentinel plots, we are unable to make inferences 
about the effects of management on pest abundance. Thus, 
climatic factors which can cause autocorrelation across large 
distances (Koenig 2002), which we observed for each pest 
studied, are likely the primary drivers of regional population 
dynamics. Indeed, we found that pest abundances were spa-
tially autocorrelated at up to 40 km, which suggests a strong 
effect of climatic drivers (Liebhold et al. 2004; Wagner and 
Fortin 2005; Illan et al. 2020). However, land-use patterns 
may also play a role in auto-correlation, as landscape homo-
geneity could affect the insect populations (Bianchi et al. 
2006).

Interpolation models can provide growers with effective 
predictions of pest abundances using data from a regional 

Fig. 4   Panel a is a boxplot of the mean residuals (observed – pre-
dicted) for each combination of insect and power parameter with 
a default neighbor parameter of n. Panel b is a boxplot of the mean 
residuals for each combination of insect and neighbor parameter with 

a default power parameter of 1.5. Both only use the ln-transformed 
data. Each dot represents an outlier, and the whiskers on each boxplot 
represent the standard error
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sampling network. However, when looking at correlations 
between observed and predicted insect abundance within 
seasons, we did not see linear patterns. Rather, there were 
humps and sigmoidal curves that reflected variable model 
performance within seasons (Fig. 5). Although we were 
unable to compare statistically the performance at any given 
week given small sample size, visual inspection of graphs 
shows peak model performance typically occurred in the 
middle of the growing season. This is perhaps not surpris-
ing given that each pest in our monitoring network is poly-
phagous and can overwinter and reproduce on weedy hosts 
outside of potato fields and migrate into fields early in the 
season (Cook 1967; Van Emden et al. 1969; Cameron et al. 
2002; Butler and Trumble 2012). This also means concentra-
tion of non-crop host plants may affect both the timing and 
abundance of pest entry into field. Sampling these non-crop 
hosts would be logistically difficult due to the sheer num-
ber of potential host species and their random distribution 
across a landscape. Moreover, if traps deployed in each field 

fail to effectively estimate the population dynamics of initial 
dispersing individuals, models may underestimate popula-
tions until they build up in fields. Similar problems with 
models may occur at end of season because potato fields 
are harvested at variable times, driving dispersal of pests 
out of fields asynchronously across the region (Love and 
Stark 2003; Schreiber et al. 2018). Overall, these results 
suggest interpolation will be most effective in the middle 
of the growing season when potatoes throughout the region 
are rapidly growing and have formed a canopy. However, 
producers should continue to sample insect populations, 
especially early and late in seasons, to test for congruence 
with the model.

We also observed differences in the fit of models 
between pests that may be explained by pest life history. 
For example, power parameters determine how sites are 
weighted by distance, and insects that disperse over greater 
distances are modeled most effectively with a lower power 
parameter (Lu and Wong 2008). This system has both 

Fig. 5   The weekly Spearman rank correlation for each pest in each year sampled, using the interpolation parameters (power parameter of 1.5, 
neighbor parameter of n). Each week is equivalent to seven Julian days
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hemimetabolous (BLH, GPA, PP) and holometabolous 
(PTW) pests, and the hemimetabolous pests mature faster 
given that they only have one immature nymphal stage 
compared to the holometabolous pests that have larval and 
pupal stages. The green peach aphid has a mean generation 
time of 11 to 12 d (Hong et al. 2019) compared to 20 to 
40 d for potato tuberworm (Sporleder et al. 2004). There 
is also a difference in the amount of time each insect is 
mobile. PTW adults only live for 7 to 14 d (Sporleder et al. 
2004), GPA lives for more than 20 days (MacGillivray and 
Anderson 1958), and PP and BLH have adult lifespans of 
more than 40 days (Munyaneza and Upton 2005; Xiang-
Bing and Tong-Xian 2009). These differences may then 
affect the range of individual insects over their lifespan. 
A mark-recapture study of PTW shows few forage beyond 
250 m (Cameron et al. 2002), while potato psyllid regu-
larly moves more than 100 m over 3 d (Cameron et al. 
2013). Despite these differences, however, which we pre-
dicted would lead PTW to have a higher distance param-
eter, we found no significant difference in mean residuals 
within each pest based on power parameter (Fig. 4a). This 
suggests that despite variation in pest life history, inter-
polations were robust.

We also hypothesized that the largest neighbor parameter 
would produce the most precise results but found that sample 
density does not have a significant effect on the interpola-
tion results (Fig. 4b, Table S3). While sample density varied 
across years, from 25–80 sites, sites are 7.29 ± 0.36 km from 
each other on average. High sampling density can affect 
interpolations using different spatial interpolation methods 
(Hartkamp et al. 1999), but a meta-analysis of papers com-
paring interpolation methods found that sampling density 
did not improve outcomes (Li and Heap 2011). While the 
maximum range of spatial auto-correlation varies by year 
and by pest (Table S4), it still demonstrates that these four 
pests are spatially auto-correlated far beyond the range of 
their short-term dispersal. The high connectivity of potato 
fields in the sampling region (Illan et al. 2020) in addition 
to the relatively small sampling range (in terms of climatic 
variability) may explain the insensitivity of the results to the 
neighbor parameter.

Overall, our results suggest that interpolation methods 
currently used in decision support for potato growers in 
Washington produces a high degree of accuracy for all pests. 
We show that models produced predictions that were both 
biologically precise and strongly correlated with observed 
abundance. We hypothesize that the residual errors may be 
small enough to give growers a window to spray before cru-
cial pest population thresholds are reached, but there is a 
continued need to test the efficacy of these models in the 
field. The interpolation models shown here also complement 
phenology models (D’Auria et al., 2016; Cohen et al. 2020) 
that can aid growers in timing pesticide sprays.

We suggest that the robustness of our interpolation mod-
els is likely due to a combination of our robust monitor-
ing network, with 40 + sites used to estimate densities for 
each pest. Moreover, each insect sampled seemed to exhibit 
synchrony across sites due to climatic drivers, especially 
once they establish in the field. Furthermore, the lack of 
significant difference between neighbor parameters and 
Moran analysis suggests that the scale of auto-correlation 
may be higher than the average distance between sampling 
points due to the similarity of the local weather patterns. 
Thus, future sampling protocols may be able to decrease 
the number of sites, and therefore sampling effort, without 
any significant decrease in interpolation accuracy. Future 
research could attempt to incorporate other factors that 
affect pest damage, such as the ability of species like aphids 
and leafhoppers to transmit viruses and phytoplasma. More 
broadly, this interpolation is a powerful tool for precision 
agriculture that will contribute to future decision support 
tools and increase the long-term sustainability of agriculture.
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