Alternative Jet Fuel Test and Evaluation Project 31

Lead investigator: Zachary West, University of Dayton Project manager: Bahman Habibzadeh, FAA

OCT 15, 2025 Alexandria, VA

This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 31 through FAA Award Number 13-C-AJFE-UD under the supervision of Bahman Habibzadeh. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the FAA.

Project 31

Alternative Jet Fuel Test & Evaluation

University of Dayton Research Institute

PI: Zachary West

PM: Bahman Habibzadeh

Cost Share Partner(s): Global Bioenergies, Boeing, Shell, IHI, Neste, GE Aviation, NRC Canada, LanzaTech, REVO, and University of Dayton

GE Aerospace

Research Approach:

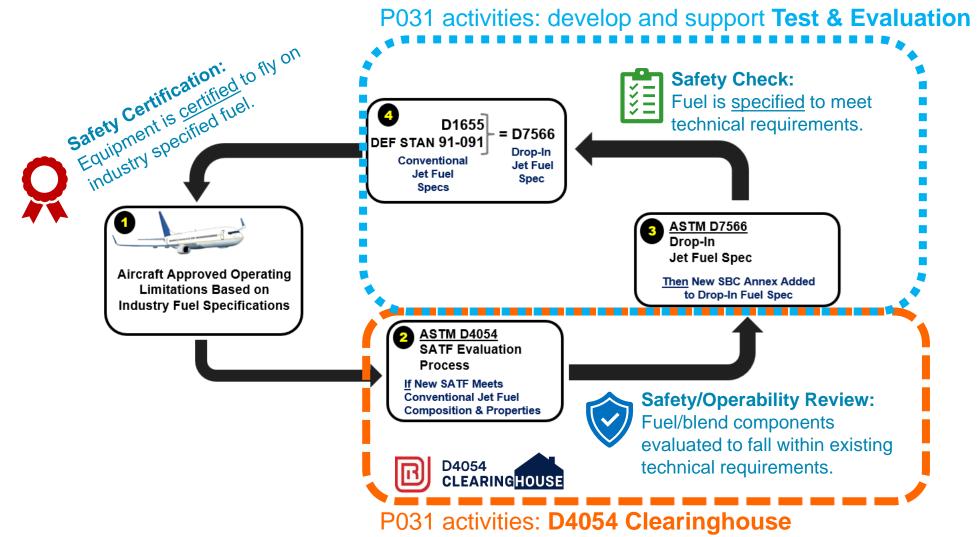
- Provide fuel property and composition testing & evaluation
- Facilitate the D4054 OEM review panel/approval process
- Act as liaison between new producers and OEMs
- Collaborate with UK & EU Clearing Houses
- Goals:
 - New or modified ASTM D7566 approved annex for prospective synthetic blend components (SBC)
 - Modification of ASTM D1655 to allow co-processing of alternative materials
 - Improve the D4054 process to enable faster, safer, and more reliable routes to synthetic aviation turbine fuels (SATF)

Objective:

- Coordinate and conduct performance testing to support the evaluation of novel alternative jet fuels for ASTM approval and commercial adoption
- Develop the analytical tools necessary for commercial application of SATF

Project Benefits:

- ASTM research reports for OEM approval and adoption of D7566 annexes
- Management of **D4054 qualification process** of new fuel pathways
- Coordination of fuel qualification to enable increased supply of secure and safe synthetic blending components (SBC) and synthetic aviation turbine fuels (SATF)

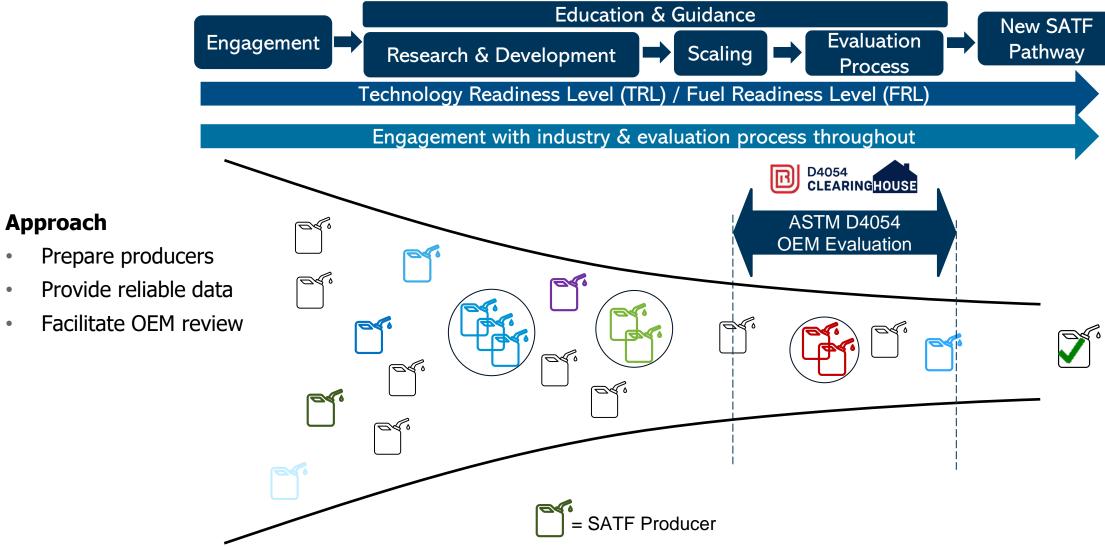

Major Accomplishments (to date):

- Approved 4 new and 1 major modification to ASTM D7566 Annexes (ATJ-SPK, CHJ, HC-HEFA, ATJ-SKA, ISB-SPK)
- Developed D4054 Fast Track Process
- Developed advanced chemical analysis methods: FCM-101, FCM-102, FCM-107
- Testing of CSIR-IIP, Revo, Marathon SAK, OMV ReOil, Methanol-to-Jet, UPM, and CleanJoule
- Guided Co-processing pathways in ASTM D1655

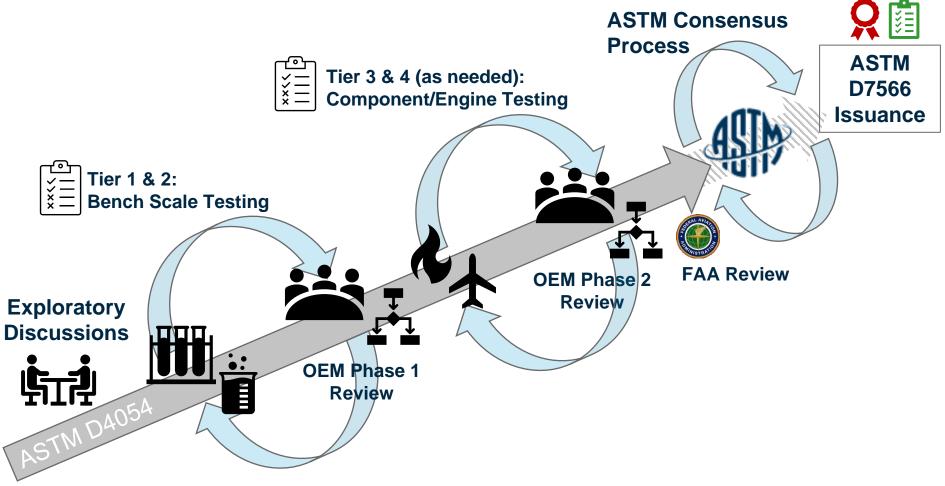
Future Work / Schedule:

- Continue guiding fuel producers through D4054 process
- Continue fuel testing & evaluation
- Continue OEM panel and report reviews toward ASTM approvals
- Advance test method capabilities for SBC/SATF adoption/evaluation

Motivation: Enable Safe and Reliable Synthetic Aviation Turbine Fuels (SATF)



Clearinghouse: Approach



ASTM D4054 Evaluation Process

Developing Data Package for Informed Technical Decisions

ASTM D4054 Tier 1 & 2		
Test Description	Method	Sample
Thermal Stability	ASTM D3241	
Setpoint Temperature 325 C		SBC
Setpoint Temperature 260 C		Blend
Thermal Stability Breakpoint (JFTOT)	ASTM D3241	Blend
Metals - Trace- ICP-MS	UDR FC-M-107	SBC & Blend
Electrical Conductivity	D2624/IP 274	SBC & Blend
Dielectric Constant vs Density	IP 638	SBC & Blend
Air Solubility (oxygen/nitrogen)	UDR FC-M-103	Neat + Blend
Preliminary materials compatibility (Nitrile,	D4054 Annex 3 (optical	
Fluorosilicone, Fluorocarbon (Viton) Elastomers	dilatometry)	SBC & Blend
Hydrocarbon composition	UDR FC-M-101	SBC & Blend
Trace materials - Organics	UDR FC-M-102	SBC & Blend
Paraffins, Cycloparaffins, Aromatics	ASTM D2425	SBC & Blend
Simulated Distillation	ASTM D2887	SBC & Blend
Density (recommendation -20, 15, 20, 60 C)	ASTM D4052	SBC & Blend
Viscosity (recommendation -40, -20, 25, 40 C)	ASTM D7042	SBC & Blend
Freezing Point	ASTM D5972	SBC & Blend
Acidity	ASTM D3242	SBC & Blend
Physical Distillation	ASTM D86	SBC & Blend
Carbon and Hydrogen Mass	ASTM D5291C	SBC & Blend
Aromatics	ASTM D6379	SBC & Blend
Nitrogen Content	ASTM D4629	SBC & Blend
Flash Point	ASTM D93	SBC & Blend
Net Heat of Combustion	ASTM D4809	SBC & Blend
Smoke Point	ASTM D1322	SBC & Blend
Naphthalenes (if smokepoint <25mm)	ASTM D1840	
Copper Strip (2h@100C)	ASTM D130	SBC & Blend
Total Halogens (Fluorine, Chlorine)	ASTM D7359	SBC
Existent Gum	ASTM D381 or IP 540	SBC & Blend
MSEP (Microseparometer Index)	ASTM D3948	SBC & Blend
Lubricity (BOCLE)	ASTM D5001	SBC & Blend
Mercaptan Sulfur	ASTM D3227	SBC & Blend
Carbon and Hydrogen Mass	ASTM D5291C	SBC & Blend
Sulfur Content	ASTM D5453	SBC & Blend
FAME	IP 585	SBC & Blend
True Vapor Pressure vs Temperature	ASTM D6378	SBC & Blend
Response to Lubricity Improver	ASTM D5001	SBC & Blend
Specific Heat vs Temperature	ASTM E2716	SBC & Blend
Surface Tension vs Temperature	ASTM D1331A	SBC & Blend
Isentropic Bulk Modulus vs Temperature	FED STD 791, Method 7507	SBC & Blend
Thermal Conductivity vs Temperature	ASTM D7896	SBC & Blend
Water Solubility vs Temperature	ASTM D6304	SBC & Blend
Dielectric Constant vs Density	ASTM D924	SBC & Blend
Electrical Conductivity and Response to Static Dissipator	ASTM D2624	SBC & Blend
Storage Stability - Peroxides	ASTM D3703	SBC & Blend
Storage Stability - Potential Gum	ASTM D5304	SBC & Blend
Flammability Limits	ASTM E681	SBC & Blend
Autoignition Temperature	ASTM E659	SBC & Blend
Hot Surface Ignition Temperature	ISO 20823	SBC & Blend
Derived Cetane Number	ASTM D6890	SBC & Blend
Additive compatibility	ASTM D4054 A2.2	SBC & Blend

- Tier 1 & 2: ~50 test methods (hundreds of data points)
- Used by OEMs to evaluate safety & reliability
- Used by Producers (and ASTM committee) to draft specifications

Impacts

Fuel Atomization

Freezing Point, Viscosity Distillation, Thermal Stability, Surface Tension

Fuel Gauging

Density, Dielectric Constant

Durability

Thermal Stability Lubricity Acidity **Exist Gum**

Heat

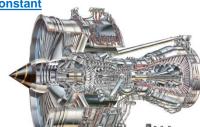
Exchangers

Specific Heat, Thermal Conductivity

Deposition (coking)

Thermal Stability, Gum, **Distillation, Trace Elements**

Material Compatibility Aromatics, Acidity, Copper


Strip, Trace Elements

Servo **Mechanisms**

Bulk Modulus

Handling Safety

Flash Point, Auto-ignition, Flame Speed, Electrical Conductivity

Fuel Metering Density

Fuel Pumping

Freezing Point, Viscosity Distillation

Aircraft Range

Net Heat of Combustion, Density

Cold Start & Alt re-light

Flash Point, Heating Value Distillation, Viscosity

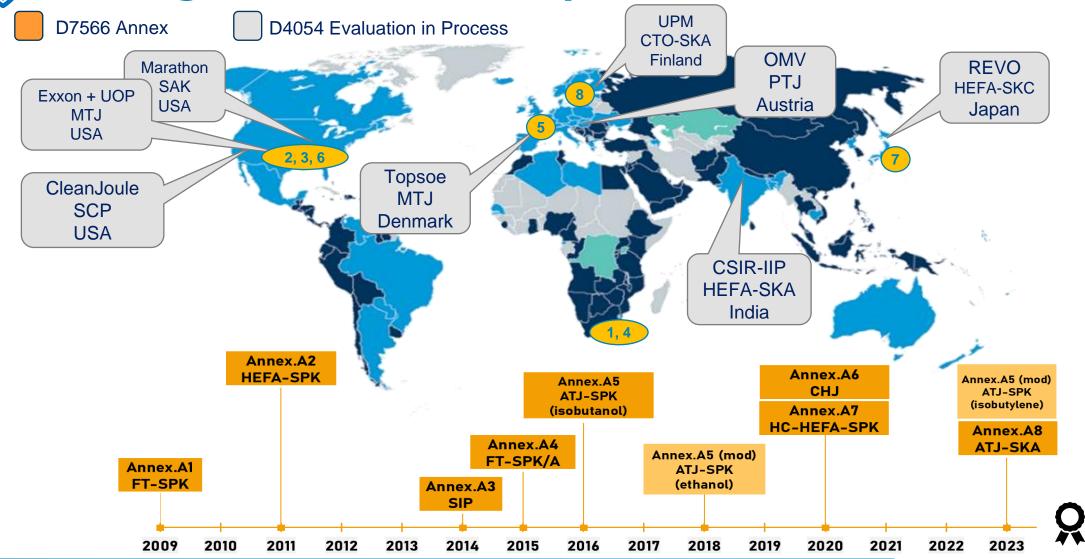
Hot-End Life

Thermal Stability, Acidity **Aromatics, Sulphur**

Emissions

Aromatics, Sulphur Distillation

Clearinghouse: Recent Accomplishments


Actions (Since Apr '25)	Impacts
15+ Producer interactions	 Educated 11+ producers about D4054 process, D7566 qualification, & navigating technical requirements for their unique initiatives 3 new producers working to supply sample to Clearinghouse for evaluation
11 OEM technical review panel sessions	 Made progress/advancements towards the following activities: ASTM D1655 Generic CoProcessing ASTM D7566 MTJ-SPK Annexure HEFA-SKA (CSIR-IIP) pathway development MTJ-CKA pathway development Tire-pyrolysis oil (TPO) pathway

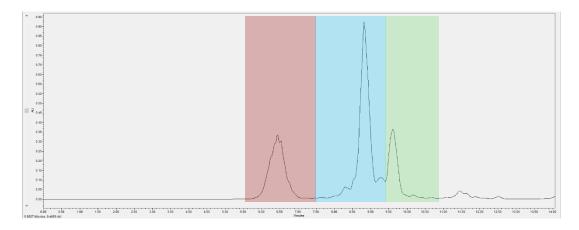
Clearinghouse: Prior Accomplishments & Current Efforts

Test & Evaluation: Approach & Recent Accomplishments

Approach:

- Understand industry needs via stakeholder interactions at ASTM, CRC, IASH, etc...
- Determine technical gaps and shared questions
- Develop relevant solutions

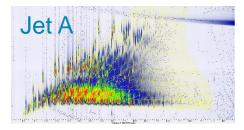
Actions (Since Apr '25)	Impacts
ASTM D6379 Interlaboratory Study (ILS) Participant	 Data contribution assists with robustness assessment of method details Leveraged samples to demonstrate equivalency between D6379 and FCM-101/FED STD 791 Method 7508 → increased accessibility to relevant methods
ASTM D2425 Robustness Study Participant [On Going]	 Anticipate improved understanding for D6379 pre-separation implementation → will share learnings with aviation community

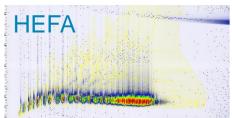


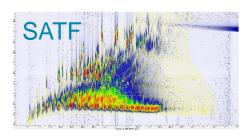
Test & Evaluation: ASTM D6379 Interlaboratory Study (ILS)

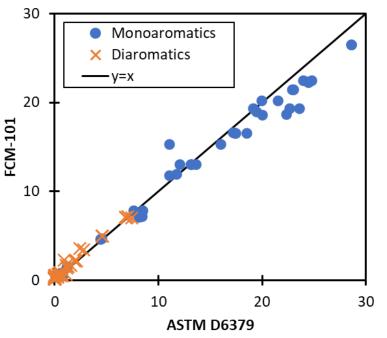
 ASTM D6379 is standard test method (STM) used in specifications to quantify saturates, monoaromatics and diaromatics via high performance liquid chromatography with refractive index detection (HPLC-RI)

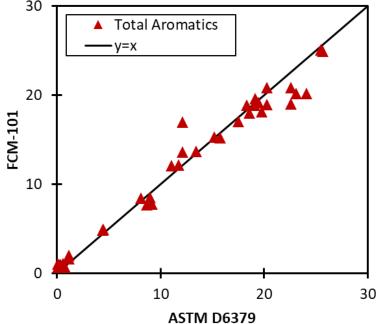
- UDRI participated in recent ILS to update method precision statement
 - 48 samples (included jet, SATF, & other distillate products)

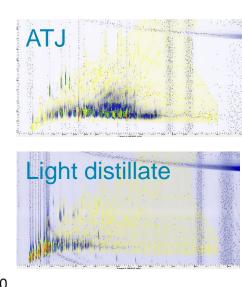


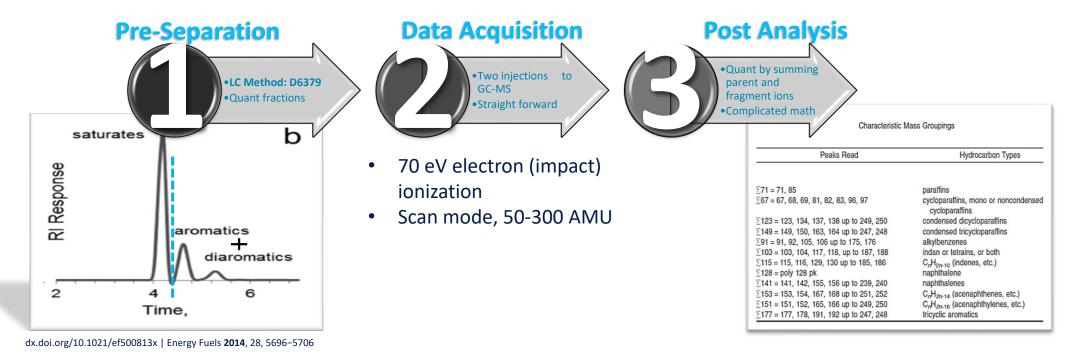





Test & Evaluation: ASTM D6379 ILS Results


- Leveraged samples to compare equivalency of GCxGC (FCM-101)
- Preliminary results show favorable comparison regardless of sample
 - Confirms prior findings: Striebich et al., Energy & Fuels, 2014 doi.org/10.1021/ef500813x

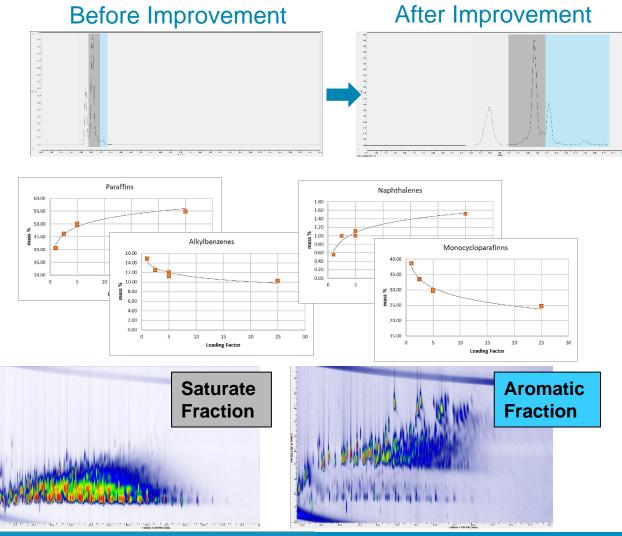




Test & Evaluation: ASTM D2425 Pilot Study

Hydrocarbon Types in Middle Distillates

- ASTM Standard Test Method (STM) D2425 used in D7566 to quantify hydrocarbon types
- Multiple challenges with the method: current pilot study investigating variability with Pre-Separation step



Test & Evaluation: D2425 Pilot Study—Current Investigation

Performed HPLC pre-fractionation (modified D6379) improvements:

- Additional column → more separation
- Optimized "loading factor" (amount of sample) → better separation
- Optimized fractionation timing → minimize coelution

 Plan: report effort to ASTM D02.04 working group Dec '25

Summary

- UDRI Clearinghouse and Test & Evaluation efforts ongoing
 - Both strongly work towards enabling safe and reliable Synthetic Aviation Turbine Fuels (SATF)
- Next steps:
 - Continue Clearinghouse operations
 - Report D2425 efforts
 - Identify additional test & evaluation areas
- Key challenges/barriers
 - Community understanding of ASTM specifications, e.g., D1655, D7566, and D4054
 - Highly technical documents with specific language → often misinterpreted/miscommunicated
 - What would you like the Advisory Board to help you with or provide comment on?
 - List of current manufactures for ASTM D7566 synthetic blending component (SBC) material

Clearinghouse Collaboration

- UDRI Clearinghouse working closely with UK and EU Clearing houses
- Active areas of collaboration:
 - D4054 Standardization Study (internal data audit)
 - D4054 Research Report Template
 - D4054 Process Improvements
 - Establish an online OEM portal
 - Develop SATF producer resources (presentation template & coaching)

Acknowledgements

FAA AEE for sponsorship & oversight—Bahman H., Ana G., & Anna O.

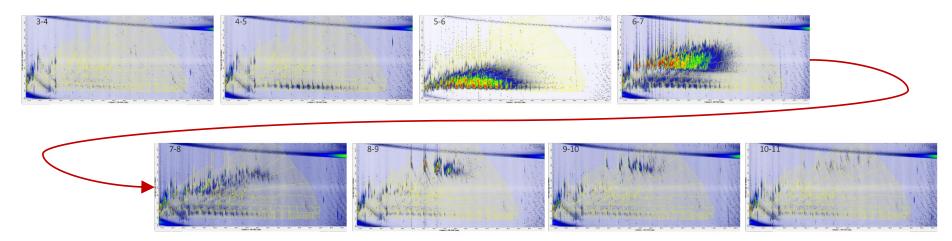
Participants

- UDRI Fuel Science Group Members: Carlie Anderson, Amanda Arts, Maria Baker, Shane Kosir,
 Susan Mueller, Linda Shafer, Willie Steinecker, Jim Thompson, & Steve Zabarnick (retired)
- Students: CJ Nesbit & Taylor Nicely

For more information on the US—Clearinghouse operations please contact: Zach West, Ph.D.

Zachary.West@udri.udayton.edu

Principal Research Engineer Group Leader, Fuel Science Fuels & Combustion Division


BACKUP

D2425 Pilot Study: Pre-Separation Methods

- UDRI uses modified D6379 method for pre-separation
 - Involves using HPLC + fraction collector
- Optimized fraction collection (verified using GCxGC)

- Plan to provide data to ASTM D02.04 coordinators
 - Work towards method improvements for aviation industry

Current Candidates (1/2)

- Marathon (USA) synthesized aromatic kerosene (SAK)
 - Feedstock: commercial sugars | Process: hydrodeoxygenation
 - SBC Product: 95+% monoaromatics
- CSIR-IIP (India) synthesized kerosene with aromatics (SKA)
 - Feedstock: FOG | Process: adapted HEFA
 - SBC Product: SPK with ~6-10% monoaromatics
- OMV ReOil (Austria) synthesized kerosene with aromatics (SKA)
 - "Plastic-to-Jet", approved for D4054 Fast Track process (<10% blend limit)
 - Feedstock: waste plastic | Process: pyrolysis oil + refinery ops
 - SBC Product: 4-10% monoaromatics, balance n-,iso-,cyclo-paraffins
- **Revo** (Japan) HEFA with higher cycloparaffins
 - Feedstock: FOGs | Process: HEFA
 - SBC Product: SPK with 40-50% cycloparaffins

Current Candidates (2/2)

- Methanol-to-Jet (MTJ) ExxonMobil/Honeywell UOP/Halder-Topsoe
 - Feedstock: Methanol | Process: dehydrogenation + oligomerization
 - SBC Products: 1) SPK and 2) CPK with >75% cycloparaffins
 - Seeking two different ASTM ballot pathways
- CleanJoule (USA) cycloparaffinic kerosene (CPK)
 - Feedstock: Isoprene | Process: oligomerization + hydroprocessing
 - SBC Product: single carbon number CPK
- UPM (Finland) synthesized kerosene with aromatics (SKA)
 - Feedstock: Crude Tall Oil (CTO) | Process: hydroprocessing + fractionation
 - SBC Product: <10% aromatics, balance n-, iso-, and cyclo-paraffins
- **Shell IH**² (US) CPK-0
 - Step 5: Tier 3-4 testing requested [PRODUCER ACTIVITY ON HOLD]
 - Feedstock: wood/cellulous | Process: hydropyrolysis + hydroconversion
 - SBC Product: ~100% cycloparaffinic

