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Project Overview 
Georgia Institute of Technology (Georgia Tech) and Purdue University have partnered to investigate the future demand for 
supersonic air travel and the environmental impact of supersonic transports (SSTs). In the context of this research, 
environmental impacts include direct carbon dioxide (CO2) emissions, noise, and fuel consumption. The research is 
conducted as a collaborative effort to leverage the capabilities and knowledge available from the multiple entities that make 
up the ASCENT university partners and advisory committee. The primary objective of this research project is to support the 
FAA in modeling and assessing the potential future evolution of the next-generation supersonic aircraft fleet. The research 
in this project consists of five integrated focus areas: (a) establishing fleet assumptions and performing demand assessment 
(completed last year); (b) performing preliminary SST environmental impact prediction (ongoing); (c) developing modeling 
approaches to model SSTs within the FAA Aviation Environmental Design Tool (AEDT); (d) performing vehicle and fleet 
assessments of potential future supersonic aircraft; and (e) performing physics based modeling of SSTs and performing 
conceptual design using the Framework for Advanced Supersonic Transport (FASST). 
 
To better understand the potential demand for supersonic air travel, the team developed a parametric airline operating-cost 
model to explore the sensitivities of key vehicle, operational, and cost parameters on the required yield that an airline would 
need to target for ticket prices on potential new supersonic aircraft. The current model, however, assumes fixed parameters 
for key vehicle metrics, which can be changed but do not include sensitivities to key vehicle design choices such as vehicle 

 

 

 

 



size, design cruise Mach number, and maximum range. This task will examine the implications of the physical and technical 
dependencies on airline operational cost. Through the vehicle performance sensitivities, such as passenger capacity and 
design cruise Mach number, the combined “sweet spot,” i.e., the most profitable vehicle for an airline to operate, can be 
determined. To accomplish this goal, the existing vehicle models created in the prior year will be utilized and supplemented 
with the additional vehicles proposed in this period of performance. These vehicles together will serve as the foundation to 
create credible sensitivities regarding parameters such as vehicle size and design cruise Mach number. These sensitivities 
will then be embedded in the airline operating-cost estimation model and used to explore the combined vehicle and airline 
operational space to identify the most economically feasible type of supersonic vehicle. 
 
In an independent complementary approach, to consider the demand and routes for supersonic aircraft, the Purdue team 
developed a ticket pricing model for possible future supersonic aircraft that relies on the “as-offered” fares, before the novel 
coronavirus (COVID-19) pandemic, for business-class and first-class tickets on routes expected to have passenger demand 
for supersonic aircraft. Via an approach considering the number of passengers potentially demanding fares at business class 
or above on a city-pair route, the distance of that city-pair route, an adjustment to increase the over-water distance of the 
route where the aircraft can fly supersonically to allow for the shortest trip time, and the range capability of a low-fidelity 
modeled medium SST (55-passenger capacity) to fly that route with the shortest trip time, the Purdue team identified a 
network among 257 airports that could potentially allow for supersonic aircraft service in a network of routes with at least 
one end (i.e., the origin or destination) in the United States (US).  
 
Work undertaken this year included expanding the US-touching network to a worldwide network. This change to a worldwide 
network required the identification of a global fleet of aircraft (type and number of aircraft) as well as the passenger demand 
on each route. By providing these potential routes as input to the Fleet-Level Environmental Evaluation Tool (FLEET) 
simulation, the allocation problem in FLEET then determines which routes would be profitable for the airline to offer 
supersonic transportation and how many supersonic aircraft would operate on these routes, providing a prediction of which 
routes might have supersonic aircraft use and the number of supersonic flights operated on those routes at dates in the 
future. Because of the evolution of the existing fleet of subsonic aircraft and changes to the cost-estimation module of 
NASA’s FLight Optimization System (FLOPS), the Purdue team developed an acquisition and operating cost model that is used 
to estimate these costs for all aircraft modeled in FLEET. During this year’s efforts, the Purdue team also began work to adapt 
FLEET to analyze the operations and environmental emissions of business jet operations. This task entails estimating travel 
demand of business jet aircraft, the fleet size and mix that serve that demand, the worldwide network of operations, and 
the development of the resource allocation model that estimates the optimal utilization of aircraft to satisfy travel demand. 
 
One major accomplishment of the project during the performance period is the preliminary results for the design of a 65- 
passenger SST cruising at Mach 1.7 for 4,250 nmi. The preliminary results are arrived at through computational fluid 
dynamics (CFD)-based vehicle shape optimization, engine cycle modeling using Numerical Propulsion System Simulation 
(NPSS), and noise modeling using NASA’s Aircraft Noise Prediction Program (ANOPP), and mission analysis and detailed 
takeoff and landing analysis that incorporates variable noise reduction system (VNRS) using FLOPS. These modeling 
approaches and programs are all integrated into FASST, which allowed Georgia Tech to generate interdependency results 
between fuel burn (or maximum takeoff weight [MTOW]) and certification cumulative noise levels (in EPNdB; effective 
perceived noise in decibels). The other major accomplishment is Georgia Tech’s support of the environmental assessment 
(EA) study of Greensboro airport in order for a potential supersonic airframe manufacturer to perform flight tests. The EA 
study required Georgia Tech to model a generic transport SST that is representative of the potential supersonic airframer’s 
concept except with marginal noise characteristics (small cumulative noise margin). The rationale is to account for noise at 
the current limiting, highest-noise case (bounded within the existing subsonic, Stage 5 noise certification limits of 
compliance) so that developmental SST configurations operated at or below this upper MTOW can be built, tested, and refined 
to these noise goals. Georgia Tech generated all the necessary performance attributes and imported them into AEDT to 
generate noise contours for Greensboro. Both the vehicle performance and AEDT databases are provided to the FAA, who in 
turn worked with Greensboro airport to perform the actual environmental assessment. The final major accomplishment 
during the period of performance is the development of a methodology to construct regression models to be used in the 
full-flight simulation for FAA’s AEDT. The current method is to rely on a base of aircraft data (BADA) databases; however, 
there is currently no BADA database for supersonic transports. Georgia Tech has successfully developed a regression 
methodology to predict fuel burn, net thrust, and drag coefficient values over the entire span of mission.  
 
Purdue used its FLEET tool to produce initial estimates of the fleet-level impact of future supersonic aircraft operating on the 
worldwide network. The SSTs required for these fleet-level analyses were provided by the Georgia Tech vehicle modeling 
tasks with FASST, to maintain consistent aircraft modeling throughout the project. The studies provide a glimpse into future 

 

 

 

 



supersonic air travel by using physics-based models of supersonic vehicle performance. Future work should build on current 
estimates to conduct more detailed vehicle and fleet performance.  
 

Project Introduction 
Georgia Tech and Purdue partnered to investigate the effects of supersonic aircraft on the future environmental impacts of 
aviation. Impacts assessed at the fleet level include direct CO2 emissions and fuel consumption. The research is conducted 
as a collaborative effort to leverage capabilities and knowledge available from the multiple entities that make up the ASCENT 
university partners and advisory committee.  The primary objective of this research project is to support the FAA in modeling 
and assessing the potential future evolution of the next-generation supersonic aircraft fleet.  
 

Milestones 
Georgia Tech had three milestones for this year of performance: 

1. Generate interdependency results showing trades between fuel burn and cumulative noise levels 
2. Support FAA in an EA using FASST and AEDT 
3. Provide FASST SST descriptions and characteristics in Microsoft PowerPoint format 

 
For Purdue, the proposal covering this year of performance included several milestones: 

1. Update the aircraft cost coefficients  
2. Expand the FLEET route network to include global routes 
3. Analysis of alternate SST aircraft concepts 
4. Develop a FLEET-like model to analyze business jet operations 

 
Previously, the aircraft cost information needed for FLEET simulations, including the acquisition and operating costs, were 
generated using the cost module in FLOPSv8. The cost module is no longer available in FLOPSv9, which both Purdue and 
Georgia Tech are using for vehicle sizing and performance estimation, so a new cost model with similar functionality was 
needed and developed during this year’s effort. 
 
To increase the utility of FLEET and the insights that can be gained by analyzing the introduction of an SST into the fleet, the 
Purdue team expanded the network of operations from the US-touching network to a global network. The airports in the 
network are still the original 257 airports, but the routes among them in the FLEET network now include all global routes 
with regularly scheduled service. This update to FLEET also included the identification of the worldwide size and mix of 
aircraft used by airlines to provide service and meet passenger demand. 
 
Finally, the team began work to enable the analysis of environmental emissions and impact of a supersonic business jet on 
operations. This entails the creation of a FLEET-like tool that mirrors the analysis of airline operations but is adapted to 
capture the features of business jet operations. 
 

Major Accomplishments 
Major accomplishments of the project during the period of performance include the generation of preliminary results for the 
design of a 65-passenger SST cruising at Mach 1.7 for 4,250 nmi, with interdependency results between fuel burn (or 
maximum takeoff weight) and certification cumulative noise levels (in EPNdB). These results were obtained through CFD 
based aerodynamic shape optimization of the aircraft geometry, NPSS engine modeling, noise modeling in ANOPP, and 
mission analysis coupled with detailed takeoff and landing analysis incorporating VNRS through FLOPS.  
 
In addition, Georgia Tech supported the EA study of the Greensboro airport in order for a potential supersonic airframe 
manufacturer to perform flight tests. This was accomplished by modeling a generic SST representative of the potential 
supersonic airframer’s concept except with a small cumulative noise margin Georgia Tech generated all the necessary 
performance attributes and imported them into AEDT to generate noise contours for Greensboro, shared these databases 
with the FAA, , who in turn worked with Greensboro airport to perform the actual environmental assessment. Lastly, Georgia 
Tech developed a methodology to construct regression models to be used in the full-flight simulation for FAA’s AEDT, 
sidestepping the current way of relying on BADA databases, which do not even exist for supersonic transports. As such, this 
methodology can now predict fuel burn, net thrust, and drag coefficient values over an entire mission flight envelope.  
 

 

 

 

 



One major accomplishment of the Purdue team during this year’s effort was the successful expansion of the network of 
operations from 1,149 US-touching routes among 257 airports to 5,503 worldwide routes; this increases the analytical 
capability of FLEET and enables a more comprehensive assessment of the impact of supersonic transportation on the 
environment. The updated FLEET models can identify routes on which an SST can provide profit to airline operations and the 
associated environmental emissions. Because of the available data, this update also moved the FLEET baseline year of analysis 
from 2005 to 2011. With the addition of more historical data, which includes the impact of COVID-19 on airline operations 
and travel demand in 2020 and 2021, the demand and emissions projections until 2050 are more realistic. 

 
Task 1 - SST Aerodynamic Modeling 
Georgia Institute of Technology  
 
Objectives 
There are two primary objectives of the SST aerodynamic modeling task: 

• Aerodynamic shape optimization of the SST outer mold line (OML) for a given cruise Mach number (for a fixed 
planform area and wing capture area) 

• Generation of parametric drag polars for the optimized vehicle that capture aerodynamic performance across the 
entire flight envelope as a function of wing planform area and inlet capture area 

 
Research Approach 
 
Analysis Workflow 
A general analysis process was developed to obtain the aerodynamic performance of multiple aircraft designs. This process 
was then automated with Python and implemented by using Georgia Tech’s high-performance computing facilities. Because 
the analysis workflow was automated and easily parallelizable, many designs could be analyzed at once. Hundreds of 
aerodynamic analyses could be completed in a matter of hours, allowing for rapid evaluation of designs and generation of 
drag polars. 
 
Starting from a set of design variables, the first step was to generate a computer-aided design (CAD) representation of the 
aircraft geometry. This process was done using Engineering Sketch Pad (ESP), a lightweight, open-source CAD tool developed 
by MIT [1]. ESP allows users to easily script generation of complex geometries and to expose design parameters. Therefore, 
changing global parameters, such as the sweep angle or taper ratio, would automatically and seamlessly scale and reposition 
the different sections of the wing. After a new geometry was defined, it was then saved to a generic CAD file (the EGADS 
format in the current workflow) and tessellated for later use in CFD analysis. 
 
The OML is tailored to maximize lift/drag (L/D) at the design cruise Mach number as a surrogate to minimize mission fuel 
burn. The optimization is broken down into three stages: two initial phases focusing on the fuselage and vertical tail (VT) 
design, and one main stage focusing on the wing planform optimization. Both inviscid (Euler) and Reynolds-Averaged Navier-
Stokes (RANS) CFD analyses are used in a multi-fidelity optimization approach to reduce design time and cost. NASA’s Cart3D 
[2] is the inviscid solver used and Siemens’ STAR-CCM+ [3] is the RANS solver used. The following sections detail each 
airframe design phase. 
 
Fuselage Design 
Using the number of passengers set by requirements, the fuselage design, in terms of minimum cabin length and width 
requirements, is constrained by the cabin layout. While slender fuselages are preferable for supersonic cruise performance, 
care must be taken to avoid an excessively long body, as takeoff rotation constraints necessitate longer and thus heavier 
landing gears. Once the cabin layout is frozen, additional refinements are conducted on the fuselage nose and tail cone 
sections, in terms of length and cross-sectional radius, to optimize for cruise L/D. During this fuselage design process, the 
wing planform is frozen. A design of experiments (DoE) is developed, with the length of the nose, length of the tail, and 
cross-sectional radii for various stations of the fuselage as independent variables. CART3D with a single-pass viscous 
correction is used for the aerodynamic analysis. The results from this DoE are used to train a neural network surrogate, 
which in turn is used to optimize the vehicle for cruise L/D. The resulting fuselage design is then frozen and used in the 
wing optimization stage. 
 

 

 

 

 



 

Figure 1. Cabin layout for a 65-passenger aircraft. 

Vertical Tail Design 
The VT is designed primarily based on two critical Federal Aviation Regulations (FAR): §25.147 for directional control under 
two-engine inoperative (2EI) conditions and §25.237 for crosswind requirements. Directional stability is analyzed using first-
order principles and semi-empirical relations, rather than CFD. Design variables considered are wing planform area, aspect 
ratio, taper ratio, leading edge sweep, and thickness to chord. The goal is to find the smallest VT planform area that satisfied 
the requirements for the furthest feasible VT location relative to the wing. A symmetric biconvex airfoil is used, with a 
thickness-to-chord ratio (t/c) fixed to a value that ensures an adequate cross-sectional thickness for the rudder actuators but 
is small enough to not penalize supersonic cruise performance. The rudder chord length to mean aerodynamic chord fraction 
is set to 0.35. 
 
Wing Planform Design 
Since the aerodynamic performance of the vehicle is strongly dependent on the wing planform, most of the optimization 
effort is focused on this component. As such, RANS CFD is used to analyze the performance of each design perturbation. 
The wing is defined by two sections, inboard and outboard, and five airfoil profiles. Global variables like taper ratio, aspect 
ratio, sweep, and dihedral apply to the entire wing, whereas the delta variables control the difference between the inboard 
and outboard sections. The wing break location variable determines the spanwise extent of the inboard section relative to 
the outboard, for a fixed total span. Biconvex airfoils are used to define the wing, with twist and camber being part of the 
design space. The maximum camber is limited to half the specified t/c ratio.  
 
Given the dimensionality of the problem and the cost of each function call, there is a need to be strategic about how this 
optimization exercise is carried out. As such, a gradient-free active subspace approach is first used to reduce the 
dimensionality of the design space using less expensive inviscid CFD. Then, adaptive sampling is performed in this reduced 
design space with RANS simulations to improve the L/D. A high-level overview of this process is shown in Figure 2. The goal 
of the active subspace method [4] is to reduce the high-dimensional input space of some function to a lower-dimensional 
subspace, the so-called active subspace. For instance, given a function 𝑓𝑓(𝐱𝐱), where 𝐱𝐱 ∈ ℝ𝑑𝑑 is a high-dimensional input vector, 
the following approximation is made: 

𝑓𝑓(𝐱𝐱) ≈ 𝑔𝑔(𝐳𝐳) = 𝑔𝑔(𝐖𝐖𝑇𝑇𝐱𝐱) (1) 
 
where 𝑔𝑔(𝐳𝐳) is an approximate predictor of 𝑓𝑓(𝐱𝐱), and 𝐖𝐖 ∈ ℝ𝑑𝑑×𝑘𝑘  is a projection matrix that maps the inputs 𝐱𝐱 to a low-
dimensional representation 𝐳𝐳 ∈ ℝ𝑘𝑘 , which are referred to as the active variables with 𝑘𝑘 < 𝑑𝑑 . In other words, the active 
subspace method aggregates potentially many design variables into a few modes that best capture the variability of the 
output. As a result, optimization with respect to the active variables is more efficient because the size of the design space 
is exponentially reduced. Fitting a surrogate to predict the output of interest is also made easier as the active subspace 
alleviates the infamous “curse of dimensionality.” The main difficulty of the active subspace method is in finding the matrix 
𝐖𝐖 that best approximates the variability of 𝑓𝑓(𝐱𝐱). Although most dimensionality reduction methods are unsupervised, the 
active subspace is a supervised approach. This implies that the reduction of the input spaces is not based on the similarity 
between design vectors; rather, it is informed by the functional dependence between the input and the output spaces. 
 
The classical active subspace approach for dimensionality reduction proposed by Constantine relies on gradient information 
of the objective function, which can be challenging to obtain. Gradient-free approaches have been proposed in the literature 
[5, 6, 7], but these methods require extensive sampling of the objective function, which can be costly in scenarios where 
the objective is being evaluated by high-fidelity codes like RANS solvers. To counter this drawback, Mufti et al. [8] have 
proposed a gradient-free and multi-fidelity approach whereby a lower fidelity and relatively cheaper code, in this case Cart3D, 
is used to extract an approximation of the RANS active subspace. The requirement for this approach is an initial DoE that 
samples the design space. Each case in this DoE is evaluated in Cart3D and L/D is recorded. The proposed multi-fidelity 

 

 

 

 



approach is then applied to obtain a reduced representation of the design variables based on the lower fidelity results. 
Although the inviscid L/D results from Cart3D are not as accurate as those obtained with RANS, both tend to have similar 
behaviors. Therefore, it is reasonable to assume that an active subspace computed using inviscid results is a good 
representation of the corresponding subspace that would be obtained with RANS results. Mufti et al. have demonstrated that 
this assumption holds for the design of transonic airfoils and wings. Although using lower fidelity results to compute the 
active subspace has drawbacks and does reduce the accuracy of the method, it also significantly reduces the cost of 
computing the active subspace. For the purposes of this work, this tradeoff between accuracy and computational cost is 
considered acceptable. 
 

 

Figure 2. Aerodynamic optimization process. DOE, design of experiments; RANS, Reynolds-Averaged Navier-Stokes. 

Once the reduced representation of the design variables is determined, the RANS optimization process begins. The objective 
function is maximized through an adaptive sampling approach, using the efficient global optimization (EGO) method [9]. To 
start the process, a warm-start DoE is run to train a Kriging surrogate model. The Kriging model not only provides a prediction 
of the objective function at nonsampled points, but it also provides an estimate for the model prediction uncertainty between 
two sampled points. These two ingredients are used in the EGO method to balance “exploration” vs “exploitation” of the 
design space. In the current context, “exploration” refers to sampling in regions where model uncertainty is high, and 
“exploitation” denotes sampling in regions close to the optimum. After the initial warm-start DoE and model training, a small 
number of candidate points are selected that maximize the “expected improvement” criterion of the objective function. These 
samples are then evaluated in RANS, the Kriging model is retrained, the expected improvement is recomputed, and the 
process repeats until a user-defined stopping condition is met. In this fashion, the aerodynamic performance of the vehicle 
is improved iteratively. The sample size of the warm-start DoE and the number of additional samples required is dependent 
on the dimension of the design space and, as such, the active subspace dimensionality reduction in the previous step is 
critical for minimizing the overall design time and cost.  
 
Note that for some vehicles, the optimization process would converge on a wing design with an excessive sweep and aspect 
ratio. The resulting vehicle would then have a large wing weight during the system analysis, which would severely hinder 
mission performance. This is because the wing planform design is purely aerodynamic and lacks any structural consideration. 
To circumvent this issue, an upper limit on wing weight has been added to the adaptive sampling approach. As a result, the 

 

 

 

 



EGO algorithm searches for new samples that maximize the expected improvement of the objective while having a high 
probability of meeting the wing weight constraint following the process described in [10]. For this purpose, the wing weight 
is estimated from a given planform using the FLOPS weight equations [11]. From these weight estimates, an additional 
Kriging model is trained, which is then used to predict the likelihood of a new design to satisfy the weight constraint. Figure 
3 shows an example of a design optimized without and without the wing weight constraint. 
 

 

Figure 3. Comparison between an unconstrained and a wing weight–constrained optimum. Wwing, wing weight; L/D, lift-to-
drag ratio. 

Drag Polar Generation for Optimized Vehicle 
Once the vehicle with the highest cruise L/D is obtained, to enable mission analysis, drag polars for every point in the 
operating envelope are generated in the form of a table with Mach, altitude, lift coefficient (CL), and drag coefficient (CD) as 
the columns. Generating a drag polar that covers the entire envelope is quite costly to perform solely with RANS CFD. 
Therefore, a hybrid approach is used, as shown in Figure 4. First, the less expensive Cart3D is used to generate a set of 
“baseline polars” for all Mach number and angle-of-attack (AoA) combinations. Note that since Cart3D is an inviscid solver, 
altitude is not an input because it only impacts viscous forces. RANS CFD is then used to sample a subset of the low-fidelity 
flight conditions. In this case, a total of 15 RANS samples are considered. The flight conditions for these RANS cases were 
chosen strategically to minimize the root mean square error of the surrogate model and the number of high-fidelity cases 
required to achieve that. Because altitude was not a consideration for the low-fidelity CFD, random values were assigned to 
each RANS sample in a way that spread them out uniformly in the expected range of Reynolds number. These viscous results 
are then used to calibrate the inviscid polars to account for viscous effects. This is achieved using hierarchical Kriging [12], 
which is a type of multi-fidelity surrogate model. In this situation, the low-fidelity data are the numerous Cart3D results and 
the high-fidelity samples are the few RANS CFD solutions.  

 
Parametric Drag Polars Capturing Impacts of Changing Wing Planform Area and Inlet Capture Area 
Aerodynamic optimization is conducted for a fixed-wing planform area and inlet capture area. However, as part of vehicle 
sizing and mission analysis, both the engine size and wing planform area are allowed to scale. To account for the impacts 
of these changes on the aerodynamic performance of the vehicle, it is desirable to have a set of drag polars that are a 
function of these design variables. This objective is efficiently achieved through a proper orthogonal decomposition (POD) 
reduced-order model (ROM).  
 
A parametric ROM approximates the prediction of a function by mapping an m-dimensional input vector to a d-dimensional 
output vector. Unlike a conventional surrogate model, the quantity being predicted is a high-dimensional vector. The 
development of parametric drag polars at a high level is illustrated in Figure 5 and mostly follows the work shown in [13], 
where a similar approach was used for a parametric engine deck. The main steps are as follows: First, a DoE is created to 
sample the design space spanned by wing planform area and inlet capture area. A total of 10 samples are defined with 
unique combinations of the two design variables. The nacelle length is correlated with the inlet capture area and is thus a 
fallout. A multi-fidelity mission drag polar is generated for each of the samples in the DoE using the process outlined in the 
preceding section. These drag polars are then used as observations to train the ROM. Once the modes and coefficients for 
the POD model are obtained, a radial basis function is used as the interpolating mechanism for the POD coefficients such 
that drag polars can be predicted at previously unseen values of the design variables. 
 

 

 

 

 



 

Figure 4. Schematic depicting multi-fidelity drag polar generation process. Alt, altitude; AoA, angle of attack; MF, multi-
fidelity; CL, lift coefficient; CD, drag coefficient.  

 

 

Figure 5. Schematic demonstrating the construction of the parametric drag polars. Alt, altitude; CL, lift coefficient; CD, 
drag coefficient.  

 
Results 
 
Fuselage Design 
Table 1 shows the variables and ranges for the fuselage OML DoE. Figure 6 shows the L/D trends against each of the design 
variables at the design point that maximizes cruise L/D. Analysis of the DoE results through the surrogate model reveals a 
plateau in L/D for the nose length variable and a natural maximum for the tail length. The radius at the start of the cabin, 
the radius at two-thirds cabin length, and the radius at the end of the cabin have a peak cruise L/D at the minimum allowed 
value due to the cabin constraint. The radius at one-third cabin length does not have a peak cruise L/D at the minimum 
radius, and instead has a maximum cruise L/D at 1.2 times the minimal allowed radius. The radius at the midpoint of the 
tail does have a peak L/D at the upper bound of the design range. 
 

 

 

 

 

 



Table 1. Fuselage outer mold line design of experiments. 

Parameter Min 
Value 

Max 
Value 

Parameter Min 
Value 

Max 
Value 

Nose length 200 in 1,200 in Radius at 1/3 of cabin length 54 in 81 in 

Cabin length 1,122 in 1,122 in Radius at 2/3 of cabin length 54 in 81 in 

Tail length 200 in 1,200 in Radius at end of cabin 54 in 81 in 

Radius at start of cabin  54 in 81 in Radius at midpoint of tail 12.5 in 37.5 in 

 
 

 

Figure 6. Profiler of fuselage design of experiment surrogate model. 

 
Vertical Tail Design 
The chosen VT planform area is 375 ft2, which requires a 28° rudder deflection under two-engine inoperative (2EI) conditions 
defined by FAR §25.147. This deflection is 2° lower than the assumed reasonable limit of 30° and thus provides a buffer. 
Figure 7 shows the rudder deflection required as a function of VT planform area to maintain a straight heading under 2EI 
conditions (left), along with the rudder deflection required as a function of crosswind speed (right). The sub-figure on the 
right in Figure 7 shows that to satisfy FAR §25.237, a rudder deflection of approximately 15° at 25 kts crosswinds is needed, 
which is well below the assumed limit of 30°. Table 2 presents a summary of the final VT design parameters. 

 

  
Figure 7. Rudder deflection required to counter yaw from two-engine inoperative (2EI; left) and crosswind (C.W.; right) 

conditions. 

 

 

 

 

 

 

 



Table 2. Vertical tail design parameters. 

Vertical Tail Parameter Value 

Planform area (ft2) 375 

Aspect ratio 1.5 

Taper ratio 0.25 

Leading edge sweep (degrees) 45 

Thickness to chord (average) 0.04 

 
Mach 1.7 Vehicle Wing Design 
For this study, the planform area of the wing is fixed at 5,125 ft2. In total, there are 18 geometric variables (Table 3) with 
angle of attack being the 19th design variable. One hundred warm-start cases are executed to sample the design space 
initially, followed by an additional 100 adaptive samples. The adaptive sampling is stopped when the expected improvement 
in L/D is on the order of 0.01. Figure 8 shows the distribution of L/D over the warm-start and adaptive samples. As depicted 
in this figure, the majority of the adaptive sampling cases (blue and purple) have L/D values between 9 and 10 at cruise. 
Some adaptive samples with lower L/D (between 5 and 9) correspond to early points in the adaptive sampling; i.e., during 
the “exploration phase” of the optimization.  

Table 3. Wing design variables and bounds. 

Parameter Lower 
Bound 

Upper 
Bound 

Parameter Lower 
Bound 

Upper  
Bound 

Overall taper 0.1 0.3 Delta c/4 sweep break [deg] -20 0 
Overall AR 2.25 4 Section 1 (twist, max camber) [0, 0%] [1.5, 0.5(t/c)] 
Overall c/4 sweep [deg] 40 60 Section 2 (twist, max camber) [-5, 0%] [5, 0.5(t/c)] 
Overall dihedral [deg] -5 5 Section 3 (twist, max camber) [-5, 0%] [5, 0.5(t/c)] 
Delta taper break 0 0.3 Section 4 (twist, max camber) [-5, 0%] [5, 0.5(t/c)] 
Delta dihedral break [deg] -5 5 Section 5 (twist, max camber) [-5, 0%] [5, 0.5(t/c)] 
Wing break location 0.3 0.6    

 

 

Figure 8. Distribution of lift to drag (L/D) over warm-start and adaptive sampling. 
 
Figure 9 shows a comparison of baseline and optimized wing planforms with the design variable values compared in Table 
4. The major differences in the optimized vehicle relative to the baseline are the larger sweep, an inboard shift in the wing 

 

 

 

 



break location, and a change in the twist distribution and camber of the wing. The highest L/D for this vehicle at cruise is 
10.16 for a 𝐶𝐶𝐿𝐿 of 0.156, which is a 9.25% improvement over the baseline vehicle peak L/D, which occurs at a 𝐶𝐶𝐿𝐿 of 0.146. 
 

Table 4. Comparison of baseline and optimized wing design variables. 

Parameter Baseline Optimized Parameter Baseline Optimized 
Overall taper 0.1 0.109 Delta dihedral break [deg] 0 0.08 
Overall AR 2.5 2.519 Section 1 (twist, max camber) [0, 0%] [0.77, 0.92%] 
Overall c/4 sweep [deg] 52.5 61.65 Section 2 (twist, max camber) [0, 0%] [0.93, 0.34%] 
Overall dihedral [deg] 0 -0.62 Section 3 (twist, max camber) [0, 0%] [1.44, 0.53%] 
Delta taper break 0.2 0.138 Section 4 (twist, max camber) [0, 0%] [-2.23, 0.56%] 
Delta c/4 sweep break [deg] -10 -11.60 Section 5 (twist, max camber) [0, 0%] [-0.76, 0.42%] 
Wing break location 0.45 0.347    

 
 

 

Figure 9. Comparison of baseline and optimized wing planforms. 

 

Figure 10. Multi-fidelity drag polar at cruise conditions. CL, lift coefficient; CD, drag coefficient.  
 
Figure 10 shows the multi-fidelity drag polar at cruise conditions for the optimized vehicle. Black points represent the three 
RANS samples at this flight condition. The high-fidelity curve in this figure shows the drag polar that would have resulted if 
only the RANS data points were used to fit the surrogate and to extrapolate to the entire flight envelope. Likewise, the blue 
points are the inviscid data from Cart3D, and the blue low-fidelity curve represents the drag polar obtained from the low-

 

 

 

 



fidelity data only. The red multi-fidelity curve thus depicts the final drag polar for this vehicle, generated by the multi-fidelity 
surrogate using both inviscid and RANS data. The effect of the multi-fidelity surrogate can be summarized by an upward 
shift of the inviscid drag polar, which can be attributed to the effect of friction drag. 
 
Mach 2.0 Vehicle Wing Design 
The design of the Mach 2.0 vehicle closely follows the approach described previously for the Mach 1.7 vehicle. The same 
variable listed in Table 34 was used, 100 warm-start cases were initially generated, and roughly 100 additional cases were 
adaptively generated until the expected improvement was below a given threshold. However, to accommodate the higher 
cruise Mach number, the wing sweep bounds were shifted by 10°; i.e., the lower and upper bounds were 50° and 70°, 
respectively. Also, the optimization of the Mach 2.0 was performed with a constraint on the estimated wing weight. This is 
because an unconstrained optimization would produce a wing planform with an unreasonably high wing weight. A wing 
weight upper limit of 53,000 lbs was assumed based on the estimated wing weight of the Mach 1.7 vehicle. 
 
The table below lists the optimized design parameters of the Mach 2.0 aircraft with a wing weight constraint. Many of the 
parameter values are similar to those of the Mach 1.7 design, with the sweep being noticeably larger, as expected for the 
higher cruise Mach number. The highest L/D at cruise, among the feasible designs, was 9.68 at a 𝐶𝐶𝐿𝐿  of 0.156. This 
aerodynamic performance is 4.72% smaller than the Mach 1.7 optimum, which is explained by the higher design cruise 
speed. Note that this is still higher than the maximum L/D of the baseline. Figure 11 provides a comparison of the Mach 1.7 
and 2.0 optima. 
 

Parameter Baseline Optimized Parameter Baseline Optimized 
Overall taper 0.1 0.098 Delta dihedral break [deg] 0 0.24 
Overall AR 2.5 2.607 Section 1 (twist, max camber) [0, 0%] [0.86, 0.98%] 
Overall c/4 sweep [deg] 52.5 63.63 Section 2 (twist, max camber) [0, 0%] [1.30, 0.62%] 
Overall dihedral [deg] 0 -0.914 Section 3 (twist, max camber) [0, 0%] [0.19, 1.05%] 
Delta taper break 0.2 0.199 Section 4 (twist, max camber) [0, 0%] [-1.84, 0.86%] 
Delta c/4 sweep break [deg] -10 -7.838 Section 5 (twist, max camber) [0, 0%] [-0.74, 0.41%] 
Wing break location 0.45 0.347    

 
 

 

Figure 11. Comparison of the Mach 1.7 and 2.0 optima. Wwing, wing weight; L/D, lift-to-drag ratio; AR, aspect ratio; TR, 
taper ratio; ∧, wing quarter chord sweep. 

 

  

 

 

 

 



Task2 - SST Propulsion System Modeling 
Georgia Institute of Technology  
 
Objectives 
The propulsion system plays an important role on performance metrics, such as fuel burn, gross weight, and takeoff field 
length, and in environmental metrics, such as noise and emissions. As such, the objective of the propulsion system modeling 
was to develop the capability to analyze and predict the necessary data to model those metrics of interest. The developed 
model needed to provide thrust and fuel flow as a function of Mach number, altitude, and throttle setting. Engine dimensions 
needed to be predicted and provided to aerodynamic analysis to assess aircraft drag. The engine weight needed to be 
predicted as part of the overall aircraft empty weight. Additionally, the propulsion analysis must provide the necessary 
information to model the noise produced by the engine.  
 
Research Approach 
Much of the details for the propulsion model were described in the last report [14]. As a brief summary, the propulsion 
system models a mixed-flow turbofan (MFTF) engine cycle. The engine cycle performance is modeled using Numerical 
Propulsion System Simulation (NPSS), and the dimensions, flowpath and weight are modeled using Weight Analysis of Turbine 
Engines (WATE++). This report focuses on changes applied to the propulsion model over the last year. For further details on 
the propulsion model, the reader is directed to the report from previous years and an AIAA article [21]. 
 
Propulsion Performance: Model 
Several updates have been made to the propulsion cycle model. The pressure losses in ducts were previously set as constant 
values. This was updated so that the duct losses now scale with the square of corrected airflow in the duct, as described by 
Walsh [15]. The mixer loss model was also updated to better account for losses due to mixing as the flow conditions at the 
mixer change with flight condition, throttle, and variable nozzle throat. This is important for the noise power-management, 
which will be explained in the Off-Design Analysis section. The mixer loss model is based on the works of Frost [16] and 
Zola [17] and accounts for momentum losses due to unequal total pressures on the bypass and core side, friction losses in 
the chute of the mixer, and incomplete mixing losses. The turbine mean-line analysis was updated to ensure a 50% reaction 
design. This was done to ensure consistency with the efficiency correlations used. The number of stages for all 
turbomachinery can be adjusted to ensure reasonable work-coefficients (i.e., pressure ratio per stage). Since part of the 
mean-line analysis allows varying the design speed of the shafts and the radii of the turbomachinery, the stresses on the 
blades can change. To ensure that the allowable metal temperature used in the cooling flow model was appropriate to the 
blade stresses experienced, a turbine creep life model was implemented that uses a Larson-Miller correlation to estimate the 
creep life of the blades, given the metal temperature and predicted stress on the blades.  
 
Propulsion Performance: On-Design Sizing 
Engine cycle analysis previously used throttle ratio, the ratio of design turbine inlet temperature to maximum turbine inlet 
temperature, as a means of varying the theta-break, the Mach number at which the engine becomes temperature limited. 
However, with the turbine-creep life analysis setting a reasonable blade temperature, it was desirable to vary the maximum 
(max) turbine inlet temperature to trade cooling-flow penalties with the performance benefits of a higher turbine inlet 
temperature. This meant that for a given range of throttle ratio, the range of design turbine inlet temperature would shift 
with max turbine inlet temperature. Additionally, it was possible to set a throttle ratio that would place the theta-break at a 
higher Mach number than cruise. Because the point of picking a theta-break is to control the thrust lapse at cruise, it was 
decided to size the cycle such that design turbine inlet temperature was varied to target a desired corrected fan speed (i.e. 
thrust lapse) at top-of-climb when operating the top-of-climb turbine inlet temperature at maximum turbine inlet 
temperature. This ensures that both the max turbine inlet temperature and the thrust lapse at top-of-climb can be varied in 
a manner that ensures a more reasonable range of top-of-climb thrust lapse. This process is enabled by the multi-design 
point setup which allows perturbing design point parameters to meet targets at other flight conditions. 
 
Propulsion Performance: Off-Design Analysis 
In the last report, we detailed two different power-management schemes that utilize the fuel flow and a variable nozzle 
throat control. The first was an efficiency approach, used throughout the majority of the flight, by holding a peak efficiency 
line on the fan as the thrust was reduced. The second method favored noise when reducing thrust and is used only for 
landing and takeoff (LTO) noise analysis. This works by initially decreasing thrust along the 100% speed line of the fan, 
resulting in constant airflow and a greater reduction in fan pressure ratio and therefore jet velocity. This approach results in 
significantly more airflow in the bypass duct, which increases the Mach number and extraction ratio at the mixer. The mixer 

 

 

 

 



model described above enables capturing the performance losses as a result of using this power-management scheme. The 
noise power-management approach has been further improved by favoring lower fan speed over lower fan pressure ratio at 
low thrust. This was done to favor a reduction in fan noise, which is dominant during the lower thrust used at approach. The 
fan operating point is always constrained by limits on the mechanical actuation of the nozzle throat as well as stall margin 
limits.  
 
Propulsion Weight 
As mentioned earlier, the stress predicted by the flowpath model is used to determine the turbine rotor blade creep life, 
which enables setting a reasonable allowable metal temperature. This in turn allows varying the maximum allowable turbine 
inlet temperature, which affects the amount of cooling air required to maintain the desired metal temperature. Additionally, 
noise results showed a significant reduction in noise from the fan rotor-stator spacing variable. To avoid exploiting the 
benefits of increasing rotor-stator spacing, the flowpath model is updated to reflect the increases in the length and weight 
of the engine. Additionally, an efficiency penalty is imposed on the fan to reflect the pressure losses that would occur in the 
extended distance between the rotor and stator due to both end wall friction losses and rotor wake mixing.  
 
Results 
The propulsion system modeling described in this section supports the design space exploration described and explained 
in Task 5. The results shown in Table 5 and Table 6 are the propulsion cycle performance and geometry and weight for the 
selected design discussed in Task 5.  
 

Table 5. Engine performance for current selected design. 

Engine Metric 
Aerodynamic 
design point 

M1.2/39kft/ISA 

Top-of-Climb 
M1.7/55kft/ISA 

Takeoff 
M0.3/SL/ISA+18F 

Fan pressure ratio 2.17 1.92 2.17 

Bypass ratio 3.21 3.58 3.21 

Overall pressure ratio 25.49 20.77 25.42 

Compressor exit temperature (T3) [R] 1,357 1,540 1,460 

Burner exit temperature (T4) [R] 3,173 3,536 3,360 

Turbine inlet temperature (T41) [R] 3,083 3,436 3,266 

Corrected airflow at the fan face [lbm/s] 908.8 839.3 919.3 

Percent of design corrected fan speed  100.0 94.5 100.0 

Thrust [lbf] 10,415.6 6,757 32,143 

Thrust specific fuel consumption TSFC � 𝑙𝑙𝑙𝑙𝑙𝑙
𝑙𝑙𝑙𝑙𝑙𝑙∙ℎ

� 0.847 1.029 0.642 

Nozzle pressure ratio 4.58 7.71 1.99 

Jet velocity [ft/s] 2,003 2,396 1,481 

 
 

 

 

 

 



Table 6. Engine geometry and weight for current selected design. 

Engine Geometry Variable Value 

Fan diameter [in] 67.2 

Inlet capture area [in2] 3,401 

Engine pod length [in] 438 

Engine pod weight [lb] 11,464 

 
Task 3 - Mission Analysis 
Georgia Institute of Technology  
 
Objectives 
The objective of mission analysis was to synthesize and size the supersonic transport for a specified design mission. The 
top-level requirement for sizing the current SST was to cruise at Mach 1.7 carrying 65 passengers for 4,250 nmi.  
 
Research Approach 
As with previous work, Georgia Tech researchers leveraged the Framework for Advanced Supersonic Transports (FASST) 
modeling and simulation (M&S) environment to model the supersonic vehicles for this task. This framework is based on the 
Environmental Design Space (EDS). The goals of EDS and FASST are the same: to provide a modeling and simulation 
environment that enables tradeoffs and interdependencies among aircraft system-level metrics. The difference is that EDS 
was designed for subsonic aircraft; therefore, modifications were implemented to enable the modeling and simulation of 
supersonic aircraft. In the case of FASST, the system-level metrics of highest interest are the vehicle weight, design mission 
fuel burn, and LTO certification noise. The flow diagram for the FASST environment (Figure 12) shows the inputs, outputs, 
and interconnections between each discipline’s analysis module in the modeling and simulation environment. 
 

 

Figure 12. Framework for Advanced Supersonic Transport (FASST) flow diagram. 

 

 

 

 



The requirements and design mission were specified by the research team and outlined in the following sections. Some of 
the high-level requirements were the number of passengers (65), the design Mach number (1.7), and the design mission 
range (4,250 nmi). The configuration exploration and aerodynamics drag polar generation are performed in a local setting, 
outside of FASST, and are described in Task 1. The resulting drag polars are fed into the mission analysis and vehicle sizing 
module. The engine cycle modeling is performed in NPSS, and flowpath and weight estimation is conducted with WATE. The 
engine architecture is a mixed-flow turbofan. The propulsion system modeling, discussed in Task 2, provides an engine 
deck, engine weight and engine dimensions to the mission analysis and vehicle sizing module. For the vehicle mission 
analysis and sizing, FLOPS is used. FLOPS uses the inputs of engine deck, drag polar, and other vehicle configuration 
parameters to estimate the overall empty weight of the aircraft. FLOPS then iterates on the vehicle gross weight to complete 
the mission prescribed by the designer. FLOPS also scales the engine thrust and wing area to produce the designer specified 
wing-loading and thrust-loading. If the engine is scaled in FLOPS, it is subsequently rescaled in the engine analysis to obtain 
an updated engine performance and weight. This iteration continues until the engine no longer requires scaling. After sizing, 
the vehicle is analyzed through a series of off-design missions.  
 
Reference 18 offers more description of the mission segments within FLOPS; they are climb, cruise, refueling, payload 
releases, accelerations, turns, hold, and descent [18]. Many of these mission segments are developed for modeling military 
aircraft. The mission segments used for this study are climb, cruise, loiter, and descent, and the performance of each 
segment is done using a step integration method to compute fuel burn, elapsed time, distance covered, and changes in 
speed and altitude. The mission profile used for this study is shown in Figure 13. Also shown in Figure 13 is the reserve 
mission that is flown to compute reserve fuel. The reserve fuel has an additional safety margin of 5% of total trip fuel. 
 

 

Figure 13. Mission profile for 65-passenger, M1.7 supersonic transport. 

For the climb segment, FLOPS offers users a choice of providing a climb profile or it may be optimized by the program. The 
latter option is used for this sizing exercise. More specifically, the optimization option of minimum fuel to climb (as opposed 
to minimum time to climb or minimum time to distance) is chosen for the climb optimization. For this climb optimization, 
FLOPS divides the climb into a series of energy steps. Within each energy step, the combination of speed and altitude that 
maximizes the objective—in this case, inverse of minimum fuel—is determined.  
 
For the cruise segment, FLOPS has several options for suboptimization, and they are optimum altitude, optimum Mach 
number, or both to achieve max specific range or minimum fuel flow, fixed Mach number and altitude, fixed altitude and 
constant lift coefficient, and maximum Mach number for either fixed altitude or optimum altitude. For the 65-passenger 
Mach 1.7 SST, the option of fixed Mach number/optimum altitude for specific range is chosen.  
 
For the descent segment, FLOPS offers three options: prescribed profile, at constant lift coefficient, or at maximum L/D. For 
the SST of interest, the descent is flown with maximum L/D.  
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Although not part of the synthesis and sizing process, the detailed takeoff and landing module of FLOPS is used in order to 
provide detailed information on the takeoff and landing trajectories for the LTO noise analysis. The LTO noise prediction is 
discussed in the next task (Task 4 - LTO Noise Modeling). 
 
Finally, to synthesize and size the supersonic transport, FLOPS requires the following information:  

• Geometry definition of the optimized shape configuration from Task 1: Aerodynamics  
• Parametric high speed drag polars from Task 1: SST Aerodynamics Modeling 
• Landing and takeoff drag polars also from Task 1: SST Aerodynamics Modeling 
• Engine deck, engine weight, and max nacelle diameter and length from generated from Task 2: SST Propulsion 

System Modeling   
• Aircraft component weights from FLOPS internal empirical weight equations based on vehicle gross weight and 

geometric information provided   
• Two major vehicle scaling parameters, wing loading (W/S) and thrust to weight (T/W) ratio, are varied with each 

mission analysis execution to satisfy balanced field length and approach speed constraints while minimizing take-
off gross weight. 

 
Results 
The mission analysis result for the Mach 1.7 SST carrying 65 passengers for 4,250 nmi (excluding reserve mission) is listed 
below and depicted in Figure 14: 

• Takeoff: Mach = 0–0.30 at altitude of 0 ft 
• Subsonic climb: M = 0.30–0.95; altitude changing from 0 ft to 25,000 ft 
• Transonic supersonic climb: M = 0.95–1.4; altitude changing from 25,000 ft to 30,000 ft 
• Supersonic climb: M = 1.4–1.7; altitude changing from 30,000 ft to 47,910 ft 
• Cruise climb: constant cruise M = 1.7; altitude changing from 47,910 ft to 54,771 ft 
• Descent: deceleration from M = 1.7–0.30; altitude decreasing from 54,771 ft to 0 ft  

The reserve mission results are as follows: 
• Reserve fuel available: 28,139 lb (includes 5% of fuel used in main mission) 
• Total hold time: 30 min 
• Climb: from 0 to 30,000 ft, with Mach increasing up to 0.88 
• Cruise: 30,000 ft at M = 0.88 

 

Figure 14. Mission profile for medium supersonic transport. 
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Task 4 - LTO Noise Modeling 
Georgia Institute of Technology  
 
Objective 
The objective of this task was to study the impact of different takeoff trajectories and noise assessments for LTO noise. 
Alongside the team’s traditional VNRS trajectory and its associate variables, the Georgia Tech group took upon the modeling 
of noise abatement departure procedures (NADP) set forth by NASA and ICAO, again with respective associated trajectory 
variables. Furthermore, in the interest of quantifying noise reduction benefits both close to and distant from the aerodrome, 
the team considered a new metric based on integrated sound exposure level (SEL).  
 
Research Approach 
As for many tasks developed by the Georgia Tech team in the context of supersonic aircraft, the modeling and simulation 
was performed in the FASST. Within this framework, once the configuration is properly modeled, the code uses FLOPS’ 
detailed takeoff and landing module to calculate the takeoff trajectory. This information, along with many other engine and 
aircraft modeling parameters, is then passed on to ANOPP, which is also developed by NASA. The focus of this task is, 
therefore, to study the impact of the variables that control the takeoff trajectory on the noise assessment for a particular 
configuration. In essence, while this work is “nested” in the overarching design space exploration, the trajectory variables 
can be varied with no sizing impact to the configuration being studied. 
 
The previously mentioned VNRS consists of a series of pilot-initiated and automatic (i.e., no pilot control) changes to engine 
and airframe configurations during a takeoff run to help reduce noise. In addition to the VNRS trajectory, two NADP 
trajectories, identified as ICAO-A and ICAO-B, have been implemented into the off-design analysis to explore other potential 
takeoff procedures. The ICAO-A trajectory is meant to minimize noise near the aerodrome and the ICAO-B trajectory is meant 
to minimize noise farther away from the aerodrome. To better illustrate each takeoff procedure, Table 7 presents a rundown 
of each of the options. Also, it is worth pointing out that the programmed high lift devices (PHLD) mentioned in Table 7 
consist of a flap deflection schedule optimized for the aerodynamic efficiency for the required lift at each point in the takeoff 
trajectory, which is controlled by the flight management system. On a similar note, the programmed thrust lapse rate (PLR) 
is used differently by the VNRS and NADP procedures. In the former, it is an automatic thrust reduction controlled by FADEC 
and implemented immediately after the aircraft clears the obstacle during takeoff; in the latter, it is used as the engine 
cutback setting. Finally, the various highlighted aspects of each takeoff procedure are variables in our DoE that control 
aspects of the trajectory. 
  

 

 

 

 



Table 7. Trajectories breakdown.  

 VNRS NADP-1 (ICAO-A) NADP-2 (ICAO-B) 
Takeoff start Initiate the takeoff run with a specified power reserve (VARTH) 
After the obstacle Reduce power to specified 

lapse (PLR), engage PHLD 
schedule and adopt a 
constant flight path (GFIX) 
and fly up to specified 
altitude (HSTOP_1) 

Maintain current flight 
setting and fly up to 
specified altitude 
(HSTOP_1a) 

Keep current thrust setting 
constant, adopt a constant 
flight path (GFIX_1b) and fly 
up to specified speed 
(VSTOP_1b) 

 Transition to constant 
thrust and constant speed 
and fly up to specified 
altitude (HSTOP_2) 

 Engage PHLD schedule and 
fly up to specified speed 
(VSTOP_2b) 

Pilot-initiated cutback Cutback engine setting set 
automatically by FLOPS 

Cutback engine setting set by the PLR variable in the next 
step 

  Transition to constant 
thrust and speed, reduce 
power to specified lapse 
(PLR) and fly up to specified 
altitude (HSTOP_2a) 

Transition to constant 
thrust and speed, reduce 
power to specified lapse 
(PLR) and fly up to specified 
altitude (HSTOP_3b) 

  Transition to constant 
thrust and flight path 
(GFIX_3a) and fly up to 
specified speed (VSTOP_3a) 

Transition to constant 
thrust and flight path 
(GFIX_4b) and fly up to 
specified speed (VSTOP_4b) 

  Adopt a constant flight path 
(GFIX_4a), engage the high 
lift devices schedule and fly 
up to specified speed 
(VSTOP_4a) 

 

Final segment Fly off the aerodrome (50,000 ft distance from break release) with the previous settings 
 
As previously stated, the noise assessment for each aircraft configuration is done using NASA’s ANOPP program. In 
performing these assessments, some assumptions were made in selecting and using different ANOPP modules. Table 8 
presents a breakdown of the ANOPP input file structure and the rationale applicable to each module or section. 
 
  

 

 

 

 



Table 8. Modules used in aeroacoustics analysis. 

Component ANOPP Module Acronym Rationale 

Trajectory 
Source Flyover 
Module 

SFO 

Considered separate trajectories (prescribed by FLOPS) for the sideline 
and the cutback/approach noises assessments – the difference being that 
the sideline trajectory did not include a cutback section after the second 
segment acceleration – and both cases used a VNRS takeoff trajectory 

Airframe 
Fink’s Airframe 
Noise Module 

FNKAFM 
Standard module to predict the broadband noise from the dominant 
components of the airframe and based on a method developed by Fink 
for the FAA 

Jet 
Single Stream 
Circular Jet 
Noise Module 

SGLJET 
The single stream jet mixing noise was calculated with a methodology 
based on SAE ARP 876 as this is known to be the best representation of 
the current nozzle type 

Fan 
Heidmann Fan 
Noise Module 

HDNFAN 
The fan inlet and discharge noises were assessed separately for their 
tone and broadband contributions using a methodology based on 
correlations to model and full-scale test data 

Treatment 
Fan Noise 
Treatment 
Module 

TREAT 

Given that the chosen fan module assumes that the inlet and discharge 
ducts are without acoustic treatment, the attenuation spectra are applied 
to separate predictions of the inlet and aft radiated source noise 
produced by the source noise module and a total attenuated fan noise 
prediction is produced 

Combustor 
Combustion 
Noise Module 

GECOR 
The combustor noise was predicted with a methodology developed by 
General Electric, and later adopted by the SAE A-21 Committee 

Shielding Wing Module WING 
Used to compute the geometric effects of wing shielding or reflection on 
the propagation of engine noise (depending on the engine 
placement/configuration) 

 
Finally, the key metric of merit for the LTO analysis for design/cycle selection is certification EPNL (effective perceived noise 
level), Georgia Tech has been starting to explore the potential for alternative noise metrics that better account for the whole 
noise footprint of the aircraft. While the most obvious means to do this would be to measure the noise footprint as predicted 
by AEDT, Georgia Tech currently does not have an automatic FAAST to AEDT pipeline, which would be needed to include 
AEDT results in our design space studies. For this reason, a new noise metric was considered where SEL was integrated along 
the flight path. Potentially this could be a more holistic method of comparing takeoff noise impacts, as opposed to only 
examining the three certification points, and better minimize noise footprints in a region of interest. By using this metric in 
combination with the ICAO-A and ICAO-B takeoff procedures, the Georgia Tech team plans to explore whether our current 
design space exploration procedure is optimizing for certification noise to the detriment of the overall noise footprint. 
 
Results 
Certification noise is a key metric for the design space exploration in described in Task 5, and the procedures described in 
this section allow the Georgia Tech team to analyze how this metric varies across the design space.  

 
Task 5 - Design Space Exploration 
Georgia Institute of Technology  
 
Objective 
The objective of this task was to explore a large design space of engine, airframe, and operational parameters to assess the 
interdependencies of fuel burn and LTO noise. In conceptual design, the final performance and environmental impact of a 
given vehicle is unknown. A key task in conceptual design is to parameterize the vehicle model such that different vehicle 
designs can be generated and evaluated. Doing so allows an assessment of how different parameters affect the metrics of 
interest and what the tradeoff between metrics looks like. By understanding these tradeoffs in the context of current 
regulatory limits, it enables designers to better understand how to design vehicles to meet current regulations and it allows 
policy makers an understanding of the implications of modifying current regulatory limits.  
 

 

 

 

 



Research Approach 
All the modeling elements described above and in previous reports are part of a modeling and simulation environmental 
called FASST. FASST was used as the model to map alternatives to objectives. Alternatives were determined from a design of 
experiments, which included engine cycle, engine flowpath, thrust-loading, wing-loading, and LTO operational parameters. 
The engine cycle parameters include fan pressure ratio, overall pressure ratio, design turbine inlet temperature, max turbine 
inlet temperature, and extraction ratio (i.e., bypass ratio). The engine flowpath parameters include variables such as hub-tip 
ratio, tip Mach number, specific flow, etc. The LTO operational parameters include takeoff thrust setting, programmed lapse 
rate, second segment flight path angle, fixed-speed transition altitude, and cutback altitude. The design space exploration 
for the airframe geometry was done separately and described above in Task 1. From the available parameters, a DoE was 
used to generate alternatives. The design included a fractional factorial design and a random uniform sampling of several 
thousand additional designs. This was done as more sophisticated space-filling designs would take too long to generate 
given the number of designs desired. Additionally, the run time of FASST is fairly short and FASST can be distributed across 
~1,700 cores using HTCondor [19]. The results are analyzed and plotted using JMP v16 [20], and ranges are refined for 
subsequent analysis as needed.  
 
Results 
Interim results of this work resulted in paper published at AIAA Aviation 2022; interested readers are encouraged to consult 
that paper [21]. This section will focus on the current status of results, which includes several model updates since the 
publication of that paper. These results pertain to a 65-passenger aircraft designed for a Mach 1.7 cruise and a range of 
4,250 nmi. The results shown in Figure 15 demonstrate the type of results that can be obtained using FASST. The Pareto 
front is shown in pink and the currently selected design in green. These results are preliminary and require refining design 
variables ranges, as mentioned earlier, to fully resolve the Pareto front. Currently the Pareto front is not a smooth curve and 
appears to be missing designs at the lower noise margin. As such, additional runs will be performed to better resolve these 
trends. In identifying the Pareto front shown below, various constraints were imposed. These included limits on the takeoff 
and landing field lengths, approach speed, turbine creep life, and turbomachinery loading, as well as ensuring that each of 
the individual noise margins meets Chapter 14 requirements.  
 
Additionally, obtaining these results involved increasing the empirical weight factors in FLOPS by 10%. There remains 
uncertainty in the applicability of current empirical correlations for a commercial supersonic transport. Although various 
items such as fuselage are expected to be greater due to the larger pressure differential at the higher cruise altitude and the 
higher dynamic pressure experienced by the airframe as a whole, there remains uncertainty as to what the weight of different 
parts of the aircraft will be. This will ultimately affect the results of the tradeoff shown below.  
 
The results shown below are for a vehicle designed to cruise at Mach 1.7. In addition to the Mach 1.7 aircraft, a Mach 2.0 
and Mach 1.4 vehicle will be evaluated in order to demonstrate how the interdependency shifts with Mach number. As Mach 
number is perhaps the most important design variable for a supersonic aircraft, it is important for policy makers to 
understand the implications of changing Mach number on this interdependency. Similarly, the upcoming results will inform 
designers when selecting the cruise Mach number for a vehicle.  
 

 

 

 

 



 

Figure 15. Pareto front of ramp weight vs noise margin. 

 

Task 6 - SST Modeling in AEDT 
Georgia Institute of Technology  
 
Objective 
The primary objective of this task is to propose a methodology for the construction of models to predict fuel burn, net thrust, 
and the drag coefficient value over the entire span of missions that a given SST will be performing and to support the 
implementation of full-flight modeling capability for SSTs in AEDT. A sample data package for the NASA Supersonic 
Technology Concept Aeroplanes (STCA) concept has been sent to FAA subject matter experts to kick-off the implementation 
efforts in AEDT on a set of four origin–destination (OD) pairs.  
 
Research Approach 
The technical approach for this section of the report is organized into propulsion data and aerodynamic data regression 
subsections. Also note that the propulsion and aerodynamic data used in this task are from a different SST discussed in 
Tasks 1 to 5 due to their availability. 
 
Propulsion 
To generate coefficients for net thrust and fuel consumption for each SST concept, the engine deck data are regressed using 
a fifth-order least squares linear regression through JMP. In this case, net thrust and fuel flow are both regressed against 
static pressure ratio, total temperature ratio, Mach number, and power code (δ𝑠𝑠, θ𝑡𝑡, 𝑀𝑀, and 𝑃𝑃𝑃𝑃, respectively). This results in 
two regression equations with 31 coefficients (the unknowns) plus the intercept. For the sake of simplicity and efficient 
implementation within AEDT, note that both net thrust and fuel flow have the same regression equation form.  
 
Because it is not possible to obtain a good fit for the whole engine deck data using one regression equation, boxes of 
different Mach number, altitude, and power code interval combinations are designated in such a way that the union of the 
set of boxes encapsulates the design mission and other notional missions for the specific SST concept in question. The data 
from the engine deck are then filtered according to these boxes, and the regression exercise explained above is employed 
for each box, resulting in two regression equations, one for net thrust and one for fuel flow, for each designated box. Shown 
in Figure 16 is the box selection for the 55-passenger M 1.8 SST concept, with the box selection for the ascent phase of the 
design mission in green and the descent phase in blue. In this case, 7 boxes would result in 14 equations. Also note that 

 

 

 

 



the box selection is unique for each SST concept, because each concept has a different design mission. A concept with a 
higher cruise speed and altitude might require more boxes to be defined to obtain good regression results than would a 
concept with lower cruise speed and altitude. 
 

 

Figure 16. Propulsion box selection for 55-passenger M1.8 supersonic transport concept. 

To evaluate the goodness of fits for each box, the values for predicted value for net thrust and fuel flow that can be obtained 
using the regression equations and the values for net thrust and fuel flow from the concept engine deck are used to calculate 
percent error. Probability density function distributions are then constructed using JMP to visualize the error for each box 
individually. A standard deviation of less than 1, a mean equal to 0, and percent error values lower than 4% at the 97.5% and 
2.5% quantiles are all signs of a good regression. An example of these percent error distributions is shown in Figure 17. 
 

 

Figure 17. Percent error distribution example. 

 

 

 

 



After obtaining a promising set of regressions for a particular concept, the next step is to validate them against the concept’s 
design mission and off-design mission data generated using FLOPS. This will be explained in more detail in the validation 
section below.  
 
Aerodynamics 
To generate coefficients for the regression of the coefficient of drag for each SST concept, the design team provides raw 
FLOPS data that contain cardinal values of Mach number, CL, altitude, and their corresponding CD. The strategy that is 
exploited is to first regress the drag coefficient on those cardinal values using a stepwise fit before conducting a quadratic 
interpolation. By using this strategy with fewer CL cardinal values, introducing Mach number as a cardinal value, and 
empowering the quadratic interpolation rather than the stepwise regression, the results were much better (errors ranged 
between –1.4% and 1.8%). Hence, the team decided to exploit this strategy for all future aero regressions using the latter 
strategy with fewer CL. 
 
JMP is exploited to perform the stepwise regression of the drag coefficient on Mach number, altitude, and CL number. Because 
the behavior of the drag coefficient is quite different between subsonic, transonic, and supersonic phases, three different 
boxes are usually created and regressed against. The set of cardinal values to be chosen should always encompass the 
design mission in order to avoid extrapolation. Figure 18 shows an example of a supersonic regime equation obtained with 
the stepwise fit analysis. 
 

 

Figure 18. Form of the equation yielded by the stepwise fit on the cardinal values of Mach number (green) and lift 
coefficient (CL; yellow) and a continuous altitude. 

The design mission to which the validation is performed does not have specific cardinal values: Mach number, altitude, and 
CL number are continuous. To enable predictive power for any input combination that is in between the original cardinal 
values of the inputs, a custom-made Python script was developed to perform a quadratic interpolation. The quadratic 
interpolation has the following form (see Figure 19): 
 

 
 

Figure 19. Form of the quadratic interpolation. 
 

 

 

 

 



 

Figure 20. Total drag coefficient (CD) error distribution example. 

Figure 20 shows an example of total CD error distribution after the quadratic interpolation has been conducted. Boxes are 
evaluated on their own at first, and then the total error distribution is evaluated. Once the fit is satisfactory, the design 
mission comes in and is considered as the validation set. This will be discussed in the next section. 
 
Validation and Implementation in AEDT 
The validation exercise consists of using the propulsion and aerodynamic regressions to obtain values for thrust, fuel flow, 
and drag coefficient for the SST concept’s design mission and off-design mission data generated through FLOPS, and to 
compare the predicted values to the actual values from that data by calculating percent error and constructing probability 
density function distributions to visualize the results. To perform this exercise in a quick and efficient manner, a Python 
script was created that takes the propulsion and aerodynamic regression equations, as well as the data from the FLOPS 
mission, as inputs and calculates the percent error between the predicted regression outputs and the actual FLOPS outputs 
for net thrust and fuel flow. A flow chart that outlays how the validation process works and how the Python script was 
developed is shown in Figure 21. 
 

 

 

 

 



 

Figure 21. Validation process flowchart. 

Since the FLOPS mission data does not contain values for static pressure ratio and total temperature ratio, atmospheric 
models must be incorporated into the code in order to calculate these values as functions of altitude and Mach number. Note 
that different models were used for the troposphere (altitude <36,089 ft) and stratosphere (altitude >36,089 ft) portions of 
the mission data to account for the differences in how static pressure ratio and total temperature ratio behave between the 
two regimes. The box selection used for the propulsion and aerodynamic regressions is also incorporated into the script, 
and the script automatically uses the corresponding regression equation for the segments of the mission data that fall into 
the designated boxes. 
 
Assumptions That May Affect Modeling 
The following assumptions about the atmosphere model, specifically for total temperature ratio and static pressure ratio, 
are made during the regression. The equations to compute the static pressure ratio are as follows: 
 
 𝛿𝛿𝑠𝑠 = 𝑃𝑃

𝑃𝑃0
= (1 − 2.25577 ∗ 10−5 ∗ ℎ)5.25588 for altitudes below 11 km 

 
with P0 = normal pressure at sea level (standard day) = 101,325 Pa 
 

 𝛿𝛿𝑠𝑠 = 𝑃𝑃
𝑃𝑃0

= 1 + 𝐿𝐿𝑏𝑏
𝑇𝑇0

. (ℎ − ℎ𝑏𝑏)−
𝑔𝑔0𝑀𝑀
𝑅𝑅.𝐿𝐿𝑏𝑏 for altitudes above 11 km 

 
where 

- P0 = normal pressure at sea level (standard day) = 101,325 Pa 
- T0 = standard temperature at sea level [K] 
- Lb = standard temperature lapse rate = −0.0065 [K/m] 
- h = height above sea level [m] 
- hb = height at the bottom of atmospheric layer [m] 
- R = universal gas constant = 8.31432 [N·m/mol·K] 
- g0 = gravitational acceleration constant = 9.80665 [m/s2] 
- M = molar mass of Earth’s air = 0.0289644 [kg/mol] 

 
The equations to compute the static temperature ratio are as follows: 

 

 

 

 



 
𝑇𝑇
𝑇𝑇0

= 𝛿𝛿𝑠𝑠
𝐿𝐿𝑏𝑏∗𝑅𝑅
𝑔𝑔  for altitudes below 11 km 

where 
- 𝛿𝛿𝑠𝑠 = static pressure ratio  
- T0 = standard temperature at sea level [K] 
- Lb = standard temperature lapse rate [K/m] 
- R = universal gas constant = 8.31432 [N·m/mol·K] 

 
For altitudes above 11 km, the static temperature ratio is assumed constant: 
 
 

𝑇𝑇
𝑇𝑇0

= 216.5
288

= 0.751736 for altitudes above 11 km 

 
Using the appropriate static temperature ratio, the total temperature ratio is computed as follows: 
 

𝜃𝜃𝑡𝑡 =
𝑇𝑇𝑡𝑡
𝑇𝑇0

=
𝑇𝑇
𝑇𝑇0
∗ (1 + 0.5 ∗ (𝛾𝛾 − 1) ∗ 𝑀𝑀2) 

where 
- 𝛾𝛾 = ratio of specific heats for a calorically perfect gas and has a constant value of 1.4 
- M = Mach number  
- T = static temperature at a given altitude [K] 
- Tt = total temperature [K] 

 
Input Data Format 
For the first cut of the full-flight SST implementation in AEDT, the off-design missions for the NASA STCA are categorized 
into three classes: purely subsonic, purely supersonic, and mixed missions, and an OD pair was chosen for each of the 
categories. Table 9 lists the OD pairs and their airport (APT) IDs. 
 

Table 9. Origin–destination pairs. 

Mission Type Departure APT Departure APT ID Arrival APT Arrival APT ID 

Purely Subsonic 
VNUKOVO 
(Moscow) 

11276 
COTE D AZUR 

(Nice) 
6052 

Purely Supersonic 
TETERBORO 
(Teterboro) 

30540 
FARNBOROUGH 

(Farnborough Military) 
6570 

Mixed 
TETERBORO 
(Teterboro) 

30540 
BENITO JUAREZ INTL 

(Mexico City) 
9457 

 
The process for the off-design mission has two steps: ground tracking and route writing. Figure 22 depicts the flowchart 
that outlines this process. 
 

 

 

 

 



 

Figure 22. Off-design mission flowchart. OD, origin–destination; FLOPS, Flight Optimization System. 

Validation of the Approach 
Due to huge discrepancy between the predicted fuel burn by the model based on the engine deck compared with that given 
by FLOPS 8.11, a cumulative fuel burn sanity check has been performed on the A320neo. The results of this sanity check are 
shown below. The missions that were used to generate this will later be flown in AEDT, and the team will be able to finish 
the validation phase stating how accurate the proposed model is compared to the current AEDT model for subsonic aircraft. 

Table 8. Propulsion validation. 

Box Actual Fuel Burn (lbm) Predicted Fuel Burn (lbm) % Error 

Cruise/climb 33,563.56 33,322.35 0.719 

Descent 515.53 514.66 0.168 

TOTAL 34,079.09 33,837.01 0.710 

 
Results 
The JMP table generated from FLOPS output is used to validate the previously generated propulsion and aero regressions. 
The box definitions for these regressions are modified to reduce the % error based on the updated FLOPS data. Figure 23 
and Figure 24 depict the modified box definitions for the propulsion and aero regressions, respectively. Table 10 and Table 
11 tabulate the validation of the regression fits against the FLOPS outputs for propulsion and aero, respectively. 

 

 

 

 



 

Figure 23. Propulsion box definition – NASA Supersonic Technology Concept Aeroplanes (STCA). 

 

 

Figure 24. Aero box definition – NASA Supersonic Technology Concept Aeroplanes (STCA). 
 

Table 10. Propulsion validation. 

Box Points per 
Box  
Training / 
Validation 

Net Thrust Fuel Flow 

Training Validation Training Validation 

Mean Std dev Mean Std dev Mean Std dev Mean Std dev 
1 5,184 /119 -0.0070% 0.8786 -9.0027% 2.3982 0.0016% 0.5750 -9.9362% 1.5499 

2 3,213 /40 0.0073% 1.2741 -5.8857% 3.6125 0.0047% 1.1494 -6.8557% 3.0681 

3 1,020 /12 -0.0216% 1.2524 
  

-0.0051% 0.5378 -0.9303% 1.0227 

4 1,134 /48 0.0009% 0.4347 
  

-0.0005% 0.2891 -4.3352% 1.3507 

 

 

 

 

 



Table 11. Aero validation. 

Mode Points/Box 
Training Validation 

Mean Std dev Mean Std dev 

Subsonic 72 / 36 0.0000% 0.0246 4.9182% 0.3294 

Transonic 144 / 138 -0.0002% 0.1159 3.7639% 2.3807 

Supersonic 84 / 33 0.0000% 0.0113 4.6703% 0.3037 
 
The final data package consisting of the JMP table with the predicted formula of the net thrust, fuel flow rate, and CD for each 
of the boxes have been provided to the FAA. The prediction formula can be exploited in diverse programming languages 
such as Python, C++, etc. to aid the implementation efforts in AEDT. Henceforth, the work will focus on supporting the 
implementation of the SST models and eventually developing full-flight modeling capability in AEDT. 

 
Task 7 - Environmental Assessment Process 
Georgia Institute of Technology  
 
Objectives 
The Georgia Tech team was tasked with supporting the EA of the planned SST testing by Boom Supersonic at Greensboro 
Airport. The process used by Georgia Tech to support this effort entailed the development of a generic SST that would be 
comparable to the planned Boom aircraft. Using the Georgia Tech FAAST tool, a design space exploration produced a field 
of aircraft that could be down-selected to a final configuration that met both Boom and FAA requirements for a notional SST 
to be used in the analysis for the EA. After the final vehicle was selected, acoustic analysis produced a set of noise power 
distance (NPD) curves, and trajectory analysis produced a set of fixed-point trajectories; both were imported into AEDT to 
produce a notional aircraft for use by the independent consultant hired by the FAA to conduct the EA. 
 
Research Approach 
Using the design process described previously in this report, the Georgia Tech team produced a field of potential 
configurations that could be used as the generic SST for the Greensboro EA as shown in Figure 25, which displays the filtered 
design space in terms of the MTOW over the Chapter 14 noise margin. Although Georgia Tech was able to generate a vehicle 
with up to ~7 dB margin to Chapter 14, the FAA requested that the Georgia Tech team select a vehicle with minimal noise 
margin to Chapter 14. The purpose of this was to analyze a more conservative vehicle in terms of noise performance, in case 
the test vehicle for the Greensboro airport underperformed Boom’s predictions for noise margin. This would mean that the 
EA would be conducted using worse-than-expected noise emissions to provide a buffer for uncertainty in regards to the 
noise performance of this novel concept. The characteristics of the final down-selected vehicle are shown below in Table 12. 
 

 

 

 

 



 

Figure 25. Design space exploration used for environmental assessment vehicle down-selection. 
 

  

 

 

 

 



Table 12. Generic supersonic transport (SST) characteristics. 

 Unit Value 

MTOW Lbf 412,815 

FPR (ADP, M1.2/39K) Ratio 1.925 

HPCPR (ADP, M1.2/39K) Ratio 12.13 

BPR (ADP, M1.2/39K) Ratio 4.2429 

Corrected mass flow @ fan face 
(ADP, M1.2/39K) 

Lbm/s 1,108.04 

Jet velocity ft/s 1,168.37 

TWR Ratio 0.3366 

WSR Psf 88.498 

Cutback noise EPNdB 96.01 

Approach noise EPNdB 98.99 

Sideline noise  EPNdB 92.83 
Cumulative noise EPNdB 287.83 
Cutback margin EPNdB 4.86 

Approach margin EPNdB 3.61 

Sideline margin EPNdB 6.34 

Cumulative margin EPNdB 0.81 

Design range nmi 4250 

Far TOFL (OEO) Ft 10,943.3 

Landing field length Ft 10,742.47 

 
With a generic SST selected, three types of analysis are required in order to proceed with AEDT simulations: a weight-range 
study, fixed-point trajectory generation, and NPD generation. A requirement for AEDT is to define the stage length of a 
trajectory (since stage length serves as a proxy for aircraft takeoff weight in AEDT) and, because the test vehicle for the 
Greensboro airport currently plans to operate at 80% of its MTOW, it was necessary to ensure that one of the stage lengths 
defined in AEDT aligned with this MTOW percent. A weight-range study was conducted to discover the range that would 
correspond with the 80% MTOW target, and the results from this study are shown below in Table 13. This study revealed 
that a range of 2,422 nmi would correspond to the 80% MTOW target; therefore, stage length 4 was selected to represent 
this range in AEDT to serve as the proxy for the 80% MTOW configuration in AEDT, and the fixed-point trajectory for takeoff 
generated for AEDT was simulated with this takeoff weight in FLOPS. The output from the FLOPS simulation was selectively 
sampled to capture the shape of key aircraft trajectory parameters (altitude, ground track distance, thrust, and speed), while 
reducing the total number of data points required to ease database entry of the trajectory into AEDT. After this sampling of 
the FLOPS output was completed, a table consisting of horizontal distance relative to brake release, true airspeed (kts), 
altitude above field elevation (ft), and net corrected total thrust per engine (lbf) was compiled. All of these metrics are shown 
below in Figure 26. Similarly, this process was conducted for the approach trajectory for the aircraft’s maximum landing 
weight. The trajectory information given to AEDT for approach is shown below in Figure 27. 
 
  

 

 

 

 



Table 13. Generic supersonic transport stage length chart. 

Stage Length Range Interval (nmi) Representative Range (nmi) Weight (lb) % Max Takeoff Weight 
1 0-500 400 264,738 0.641 
2 500-1,000 850 278,147.2 0.674 
3 1,000-1,500 1,350 293,832.4 0.712 
4 1,500-2,500 2,422 330,347.4 0.800 
5 2,500-3,500 3,200 359,738.2 0.871 
6 3,500-4,500 4,200 401,545.2 0.973 

 
 

  

 

Figure 26. Generic supersonic transport (SST) 80% maximum takeoff weight (MTOW) takeoff trajectory. 

 

 

 

 

 



  

 

Figure 27. Generic supersonic transport (SST) landing trajectory. 

NPD curves are a set of measurements from a single observer resulting from a series of steady level flyovers at various 
altitudes and throttle settings. NPD curves are expressed as four noise metrics: EPNL, SEL, maximum sound level (LAMAX), 
and perceived noise level tone-corrected maximum (PNLTM). The metrics that are used in this study will primarily be EPNL 
and SEL. The EPNL NPDs will be used in AEDT to verify that when the certification trajectory is simulated in AEDT, the 
predictions from AEDT for certification EPNL are within 1 dB of the ANOPP predictions to check consistency between the 
models. The SEL NPDs will be used to generation SEL noise contours, which will be one of the critical inputs when computing 
the area exposed to 65 dB day-night average sound level (DNL), one of the key parameters for the EA. NPDs along with the 
trajectories are included together in the dataset released to the FAA. 
 
The other set of information the Georgia Tech team released to the FAA is an AEDT database updated to include the generic 
SST. The generic SST was included in the AEDT database by modifying an existing 777-200 aircraft file. Using the 777-200 
ANP aircraft definition as a template, the NDPs, the fixed-point trajectories, and some key metadata information was updated 
to the values specified in the dataset described previously. Once this data had been updated, an AEDT model of the approach 
and takeoff certification trajectories was conducted, the purpose of which was to test whether the AEDT simulation predicted 
certification ENPL within the tolerance of 1 dB of the ANOPP predictions. The results are shown below in Table 14, indicating 
that there was agreement between the ANOPP and AEDT predictions. 
 

Table 14. ANOPP and AEDT effective perceived noise level (EPNL) prediction comparisons (in EPNdBs). 

 ANOPP AEDT Delta 
Approach 98.99 98.93 0.06 
Flyover/Cutback 96.01 95.49 -0.52 
Sideline 92.83 92.02 -0.81 

 
 

 

 

 

 



Results 
The Georgia Tech team is supporting the Greensboro EA by providing aircraft trajectories, NPDs, and the AEDT database. 
The EA is ongoing at the time of writing; therefore, the Georgia Tech team will be refraining from publishing NPD dataset 
and SEL contour predictions. The Georgia Tech team intends to publish the team’s findings once the ongoing FAA study has 
been completed.  

 
Task 8 - Purdue Fleet Analysis 
Purdue University 
 
Objective 
The Purdue team pursued four subtasks as a part of the fleet analysis task. During this year, the Purdue team developed cost 
estimation models for the acquisition and operating cost of the subsonic aircraft models, expanded the network of airline 
operations from the US-touching network to a global network, created simple sizing and performance models for alternate 
supersonic aircraft, and developed a demonstration model for the estimation of operations and emissions of business jet 
aircraft. 
 
Subtask 1: Acquisition and Operating Cost Estimation Models 
 
Previously, the aircraft cost information needed for FLEET simulations, including the acquisition and operating costs, were 
generated using the cost module of FLOPSv8. The cost module is no longer available in FLOPSv9, and a new cost model with 
similar functionality was needed. The cost model needs to provide the costs information needed for FLEET, so the team 
named this the FLEET cost function (FCF). The FCF categorizes the cost items in exactly the same categories needed as inputs 
to FLEET:  

• Acquisition cost, 
• Direct operational cost (DOC, which includes flight and crew cost, maintenance cost, aircraft servicing cost, and 

insurance cost), and 
• Indirect operational cost (IOC, which includes ground property and equipment cost, passenger service cost, and 

other costs not directly related to flight service).  
Note that, while the fuel cost is usually considered part of the DOC, FLEET considers this separately to study the impact of 
future fuel prices and/or prices for alternative or sustainable jet fuels. Therefore, fuel cost is external to FCF.  
 
To build the FCF, four well-known cost models were used. For the acquisition cost, FCF uses a modified RAND DAPCA IV 
model from Raymer [22]. For operational costs, FCF uses a mixed model combining the Liebeck model [23], the ATA model 
[24], and a model originally developed by Johnson for FLOPS [25]. Although the different cost models mentioned have 
different baseline dollar years, all costs in the final version of FCF are converted to 2011 US dollars (USD) to reflect the newest 
starting year in the worldwide version of FLEET using a Consumer Price Index (CPI) inflation calculator from U.S. Bureau of 
Labor Statistics [26]. If the desired starting year of FLEET simulation is different from 2011, the CPI factor will need to be 
changed accordingly for all cost components. Using the CPI adjustment is straightforward and the information is readily 
available; not all aircraft-related costs will follow the CPI.  
 
Acquisition Cost Model 
A modified version of RAND’s DAPCA IV model from Raymer’s “Aircraft Design: A Conceptual Approach” (sixth edition) 
provided the acquisition cost estimation, and some calibration of this used previous FLOPS results and real-world data. 
Raymer’s version of the DAPCA model was modified and converted to 2011 USD values. The DAPCA model mainly uses empty 
weight, maximum velocity, and the number of aircraft to be produced in five years as variables to determine the acquisition 
cost, among a few other variables that have less effect on the result. Because empty weight and maximum velocity are aircraft 
parameters that are an input (maximum velocity) and an output (empty weight) of the aircraft sizing code, the number of 
aircraft to be produced in five years (Q) is the variable to adjust in order to calibrate the acquisition price. The models and 
acquisition prices used for calibration appear in Table 15, based on the available FLOPS aircraft models previously tested. 
The historical acquisition price is mainly from Boeing’s website [27], credible sources such as Jane’s [28], and aircraft industry 
enthusiast websites such as https://aerocorner.com/aircraft [29]. For calibration, the acquisition price of the aircraft is 
assumed to be the same as the advertised or published value. Note that the listed price from those sources may be different 
from the actual price airline companies pay to the manufacturer, because there are almost always additional deals made 

 

 

 

 



between manufacturers and airlines to bring the acquisition price lower than the listed or advertised price. Details of these 
discounts and actual sale prices are not publicly available. 
 

Table 15. Aircraft models used for acquisition cost calibration. 

Regional Jet ERJ 145 CRJ 200 CRJ 700 CRJ 900 
Acquisition cost 
[million 2005 USD] 

20.68 24.00 32.10 32.00 

Single-Aisle B737-300 B737-700 B737-800 B757-200 
Acquisition cost 
[million 2005 USD] 

37.90 56.50 67.75 81.60 

Twin-Aisle B767-200ER B777-200LR B747-400 A330-200 
Acquisition cost 
[million 2005 USD] 

113.23 220.50 220.75 143.30 

 
After testing and calibrations, a different value of Q is assigned to aircrafts of different sizes: for aircraft less than 100 seats 
in a two-class layout (regional airliner), Q is equal to 375; for aircraft larger than 100 seats but less than 200 seats in a two-
class layout (single-aisle airliner), Q is equal to 210; and for aircraft larger than 200 seats in a two-class layout (widebody 
airliner), Q is equal to 165. The resulting acquisition price for the historical aircraft models in Table 15 is as shown in Figure 
28. 
 

 

Figure 28. Acquisition prices for the historical aircraft models. FLOPS, FLight Optimization System; TOGW, takeoff gross 
weight. 

Direct Operating Cost Model 
The operational cost model is built with various models to have operational costs with a similar trend and scale as the 
previous operational costs predicted by FLOPSv8 with the limited input information. The Liebeck model [23] calculates the 
maintenance costs and pilot costs; the ATA model [24] calculates the insurance costs; and Johnson’s model [25] calculates 

 

 

 

 



the servicing costs and IOC. Note that, in theory, Johnson’s model should produce the same cost results or at least a similar 
trend compared with the current operational cost inputs to FLEET, which were generated by the cost module in the previous 
FLOPSv8. However, upon testing, the costs generated from FLOPSv8 do not always have a similar trend to the original version 
of Johnson’s model. Sometimes, Johnson’s model requires a significant number of additional inputs that the sizing code no 
longer uses and default input values that might have been used in the FLOPSv8 implementation were unknown to the Purdue 
team. As a result, the cost model for some cost components was chosen to be from Liebeck or ATA, which are well-known 
aircraft cost estimation methods.  

 
The operational costs are calibrated using the previous results from FLOPSv8 to the same scale, because calibrating the costs 
to have the same trend is extremely difficult without knowing the equations used. The 2011 Bureau of Transportation 
Statistics (BTS) database Air Carrier Financial Report (Form 41) data [30] was used as a guideline to determine if the pilot 
salary, maintenance cost, and insurance cost estimations are reasonable. 

 
The resulting operational costs have a similar scale and proportions to the previous cost input for FLEET. Figure 29 presents 
the resulted DOC (including fuel cost) and IOC for a Boeing 737-800 aircraft on a 2,950 nmi mission with the same payload 
and fuel burn/fuel cost. For the previous result from FLOPS, the total DOC (without fuel) is $8,495, and the total IOC is 
$22,252; for the result from FCF, the total DOC (without fuel) is $9,144, and the total IOC is $19,365, which has a total 
operational cost 7.3% lower. Notice that the difference in the resulting operational costs is model- and mission-dependent 
(i.e., the overall operational cost might end up being higher for some models but lower for other models on the same route), 
and the overall average difference in the operational costs is lower than 5%. 

 

 
 

Figure 29. Operational cost for Boeing 737-800 at a 2,960 nmi mission. FLOPS, FLight Optimization System; FCF, FLEET 
cost function; IOC, indirect operating costs. 

 
Subtask 2: Expand FLEET Route Network 
 
Overview of Worldwide Demand Data and Representation 
To extend FLEET’s capability to provide supersonic and subsonic aircraft allocation data on global routes (in addition to 
those present in the previous FLEET network of “US-touching” routes), the Purdue team updated FLEET’s route network to a 
worldwide route network. The global fleet demand data were obtained from the Official Airline Guide (OAG) Traffic Analyser 
[36]. The data were extracted from the OAG Traffic Analyser for years 2011 to 2020; OAG did not have relevant global fleet 
demand data available for any year earlier than 2011. Based on this global data availability, the team decided to move the 
initial year of FLEET simulation from 2005 to 2011 and update the initial network, passenger demand, and fleet composition 
accordingly.  
 
In 2019 (and all subsequent years), there are 5,317 routes in the FLEET network that connect a subset of WWLMINET 257 
airports. Comparing this with the previous “US-touching” route network in FLEET, this is a 170% increase in the number of 

 

 

 

 



routes, increasing from 1,974 routes (US-touching only) to 5,317 routes (worldwide). Figure 30 compares the worldwide 
route network with the US-touching only network, visually highlighting the increased routes in the new network. 
 

 

Figure 30. Comparing the worldwide route network with the existing US-touching route network in FLEET. 
 
Estimation of Fleet Size and Mix for Worldwide Operations 
The methods to determine the 2011 initial global fleet composition are similar to the methods described in Moolchandani’s 
thesis [31] to obtain the 2005 initial US fleet. However, the methods have been adapted accordingly with expansion to include 
a global fleet instead of just the US fleet. BTS data of the 2011 US fleet was the primary source to determine the detailed 
fleet composition. Boeing’s 2012-2031 Current Market Outlook Report [32] (hereafter called Boeing’s) and Oliver Wyman's 
2017 Global Fleet & MRO Market Forecast Summary [33] (hereafter called OW’s) were used as the primary sources to 
determine the global fleet size in 2011. The resulting 2011 initial global fleet is shown below in Table 16. Details about the 
worldwide fleet geographic regions, representative model, how the initial fleet divided into representative-in-class and best-
in-class models based on age, and the average age for each model is available at the end. 
 

Table 16. 2011 Initial global fleet. RIC, representative-in-class; BIC, best-in-class. 

 
 
Regions in the Global Fleet Network 
As shown in Table 16, the 2011 initial global fleet divides the global fleet into seven regions: Africa, Middle East, Asia Pacific, 
Latin America, North America, Commonwealth of Independent States (CIS; East Europe), and Europe. This follows the same 
geographic regions as in Boeing’s. Although FLEET is not able to utilize any of this detailed information during allocation, it 
may beneficial for future FLEET works when FLEET is capable of allocating aircraft separately in each geographic region. 
Figure 31 from Boeing’s below shows the mapping of each region. 

 

 

 

 



 
Figure 31, Global fleet regions. 

Classification Method and Representative Models of Aircraft 
Because detailed global fleet data were not widely available, the 2011 BTS data of the US fleet composition are used to 
determine the classification method and the representative models of aircraft operating in the new 2011 worldwide network. 
It is assumed that the model and age of aircraft in the US fleet is representative of the fleet in the rest of the world. This 
assumption may not be perfect, but given the available data, it is deemed adequate for the purposes of this work. The 2011 
worldwide network is represented by 14 aircraft models, divided into six classes based on seat capacity, and then into 
representative-in-class (RIC), best-in-class (BIC), and new-in-class (NIC) based on the average age of the aircraft according to 
the BTS data. The previous classification and representative models in 2005 US-touching FLEET network are shown below in 
Table 17 as the starting point of the work. 
 

Table 17. 2011 Classification of aircraft classes for US-touching network. 

 
 
A few adjustments are made to the previous table. Previously, RIC were models with the greatest number of aircraft in the 
fleet; BIC were the models with the most recent service entry date; and NIC were models in development that will enter 
service in 2015. In the 2005 baseline year for the US-touching network version of FLEET, this classification made sense and 
could be a good indication of the average age and technology age of the models, where the RIC has older average age and 
technology age than the BIC (and NIC would be the newest in the fleet when entering service). In the BTS 2011 data, we 
found that for many aircraft seat classes, the models with the greatest number of aircraft in the fleet were no longer the 
“oldest” model. As a result, in the 2011 worldwide network, the RIC was the model with an average age >10 years; BIC were 
the models with an average age <10 years; and NIC were still the models that entered service in 2015. Note that for different 
classes, the dividing ages for RIC and BIC are different; more details will be shown in the later Age Distribution section. 
 
As in the 2005 US-touching fleet, the six seat-capacity classes can roughly represent the different sizes of aircraft: Class 1 
and 2 are generally regional jet/turboprop aircraft; Class 3 and 4 are generally single-aisle/narrow-body aircraft; and Class 
5 and 6 are generally double-aisle/widebody aircraft. The six seat-capacity classes in the 2011 worldwide fleet were the same 

 

 

 

 



as in 2005 US-touching fleet, except in Class 5 and Class 6. In the 2005 US-touching fleet, Class 5 has 200-299 seats, and 
Class 6 has more than 300 seats. In the 2011 worldwide fleet, Class 5 has 200-279 seats, and Class 6 has more than 280 
seats. This change is primarily made to divide some large twin-aisle airliners (such as the Boeing 777 and Airbus A350) into 
Class 6 instead of Class 5. Based on the manufacturers’ information, those large twin-aisle airliners can carry more than 300 
passengers in two-class or even three-class configurations. As a result, they should be able to be classified as Class 6 aircraft 
in the 2005 US-touching network. However, in the 2011 BTS data, the researcher found that most of the Boeing 777s in the 
US operators had a seating capacity of around 290. The US operators configured the aircraft into a three-class configuration 
and potentially gave larger space for each seat to provide a better experience for transcontinental flights. The resulting 
representative models of each class are shown below in Table 18. Each model was the one with the greatest number of 
aircraft in the BTS data that fell into the specific seat-capacity range and average age range. Note the Class 1 will be 
discontinued in new and future-in-class models. 
 

Table 18. Representative models and classification of 2011 worldwide fleet. 

 
Age Distribution 
Because detailed global fleet information is not available to the team, an assumption was made that the global fleet in 2011 
has the same class-wise age distribution as in the 2011 BTS data for the US fleet. This assumption may not be very accurate 
in some regions such as Asia and the Middle East. The fleets in those regions will likely be younger than the US fleets because 
airline fleets in those regions have grown rapidly in recent years and massive numbers of new aircraft were acquired. The 
resultant age distribution for each class is shown in Figure 32, with different presentation of the age distribution for each 
class. 
 
 

 

 

 

 



 

Figure 32. Age distribution (x-axis; years) in Bureau of Transportation Statistics (BTS) 2011 data for each class. 
 

 

Figure 33. Age distribution in Bureau of Transportation Statistics (BTS) 2011 data for each class in percentage. Notice that 
the x-axis of the two plots is the age of the aircraft in years. 

As the above figures show, the different classes have different age distributions. This indicates that the different classes of 
the fleet have very different age compositions and possibly very different technology age distributions. As a result, dividing 
the entire fleets to RIC and BIC based on only a single common factor seems unreasonable. Hence, we divided the average 
age for the RIC and BIC modes according to the BTS 2011 US fleet data, as shown below in Table 19. We can confirm that 
dividing ages were reasonable, as each average age for RIC and BIC lies around the peaks, as shown in Figure 33. 
 

 

 

 

 

 

 

 

 



Table 19. 2011 US initial fleet divided into representative-in-class (RIC) and best-in-class (BIC). 

Class Dividing Age RIC Mean Age BIC Mean Age 
Class 1 14 18.37 9.37 
Class 2 12 19.39 5.30 
Class 3 13 21.74 8.17 
Class 4 15 20.43 7.40 
Class 5 15 20.13 8.26 
Class 6 15 19.52 9.87 

 
FLEET Allocation Results for Worldwide Operations (Subsonic Only)  
The results shown here consider the previously developed “Current Trends Best Guess” (CTBG) scenario (presented in 
previous annual report [34]) as the baseline scenario, utilizing the subsonic-only CTBG results on both the US-touching 
network and the new worldwide network for comparing and analyzing. Note the CTBG scenario presented here does not 
include the impact of the COVID-19 pandemic on air travel demand and is referred to as “baseline (no COVID)” scenario in 
later parts of this section. The FLEET simulations using the worldwide network ran from year 2011 to 2050. Figure 34a 
compares the normalized fleet-level CO2 emissions considering a worldwide network (depicted by the solid red line) with the 
CO2 emissions considering a US-touching only network (depicted by the solid blue line). As expected, the CO2 emissions 
considering a worldwide network are always higher than those from the US-touching network due to the increased network 
size; in 2050, total CO2 emissions for the worldwide network simulation are about 2.7 times higher than for the US-touching 
network. This increase in emissions is proportional to the increase in the network size (the number of routes increased from 
1,974 to 5,317, an almost 2.7-fold increase), as the aircraft models used in the simulation are the same for the two route 
networks. 

 

Figure 34. Normalized CO2 emissions (a), normalized passenger demand (b), normalized trips flown (c), and normalized 
fleet size (d) for the worldwide network and US-touching network. 

 

 

 

 



Similarly, Figure 34b compares the passenger demand in FLEET considering a worldwide network (depicted by the solid red 
line) with the passenger demand considering a US-touching only network (depicted by the solid blue line). The passenger 
demand for the worldwide network grows considerably faster than that of the US-touching network, which is consistent with 
what the team observed from the passenger demand data. Figure 34c and Figure 34d, respectively, show the increase in the 
number of trips flown and the fleet size when FLEET models a worldwide route network.  
 
FLEET Allocation Results for Worldwide Operations (Simultaneous Subsonic and Supersonic)  
In order to analyze worldwide airline operations that include the entry in service of a supersonic aircraft, the research team 
modified and update FLEET to (1) ingest the worldwide demand and fleet characteristics, and (2) solve the resource allocation 
problem while considering the introduction of the supersonic aircraft. Assuming an entry-in-service date of 2024 for the SST 
concept and using the demand evolution assumptions described in previous reports leads to the projected travel demand 
and associated emissions shown in Figure 35. These are initial estimates of the impact of introducing a 55-passenger, Mach 
2.2 cruise number SST; at the time of this report, additional work is underway to assess the quality of these results. 
 

 

Figure 35. Initial estimates of travel demand and associated emissions, normalized to 2011 levels. 
 
Travel demand reflects historical data until 2019, a steep drop associated with early estimates of air travel demand decrease 
associated with the COVID-19 pandemic, and then makes assumptions about a potential recovery scenario following COVID-
19. As discussed earlier, we assume that up to 5% of travel demand can be served by the SST. As Figure 35 (right) shows, 
the emissions contributions of SSTs are considerable. In fact, a ~37% increase in 2050 emissions levels is due to the SST. 
The combination of high fuel burn and low passenger capacity of this aircraft concept results in this estimation. This 
contribution to emissions is even more clear when observing the emission levels that each aircraft class and technology 
group contribute. Figure 36 (left) presents the normalized emissions that each aircraft class contributes to total emission 
levels and Figure 36 (right) presents the contribution grouped by technology (RIC: representative-in-class aircraft; BIC: best-
in-class aircraft; NIC: new-in-class aircraft; FIC: future-in-class aircraft; SST: supersonic transport).  
 

 

 

 

 



  

Figure 36. Emissions contribution of aircraft fleets and technology groups. RIC, representative-in-class aircraft; BIC, best-
in-class aircraft; NIC, new-in-class aircraft; FIC, future-in-class aircraft; SST, supersonic transport. 

Even as demand continues to grow (passenger trip demand is roughly 3.2 times larger in 2050 than in 2011), the introduction 
of more fuel-efficient subsonic aircraft manages to maintain 2025 emission levels. However, the introduction and use of the 
SST results in an overall increase in emission levels with respect to the 2011 baseline in these initial results. Future work will 
investigate the impact that alternate demand evolution scenarios, SST fuel-burn assumptions, and even alternate SST 
concepts have on the expected emissions and environmental impact of aviation.  
 
Subtask 3: Analysis of Alternate SST Concepts 
 
Simple SST Sizing Approach (Placeholder 2.0) 
In previous work, the authors utilized a 55-seat “placeholder” commercial supersonic aircraft model to identify potential 
supersonic routes in a US-touching route network; the placeholder model was based on Boom’s Overture concept with an 
over-water supersonic cruise speed of Mach 2.2 and an over-land subsonic cruise speed of Mach 0.95. The authors use the 
“placeholder” notation because these aircraft models were used only for identifying potential supersonic routes and have 
been replaced in FLEET simulations by higher-fidelity supersonic aircraft models. These higher-fidelity models were 
developed by colleagues at Georgia Tech. The maximum range of the placeholder aircraft was designated to be 4,500 nmi. 
The L/D ratio and the specific fuel consumption (SFC) value for sizing the placeholder supersonic aircraft were based on 
some improvements over Concorde’s values. For performance calculations, the over-land segment was assumed to be equally 
split at each end of the over-water segment. In reality, the over-land segment is airport pair- and route-dependent (e.g., for 
one airport pair, the origin might be close to the ocean and the destination further inland; the return flight on this pair would 
have the opposite), so a higher-resolution representation of the routes for aircraft performance calculations will lead to 
different fuel burn characteristics for each direction on each route. 
 
For this work, the authors develop an updated version of the placeholder commercial supersonic aircraft model, dubbed the 
“placeholder v2.0” aircraft model. The L/D ratio and SFC value for the placeholder v2.0 model are based on the higher-fidelity 
supersonic aircraft models developed by our colleagues at Georgia Tech. Additionally, the placeholder v2.0 model takes into 
account the higher-resolution representation of the routes for aircraft performance calculations, allowing it to reflect the 
difference in fuel burn (and the aircraft range capability) for each direction on each route. 
 
This work includes different size and speed supersonic aircraft in the FLEET simulations. The set includes 55-seat, 75-seat, 
and 100-seat supersonic aircraft operating at multiple supersonic cruise speeds.  
 
  

 

 

 

 



Table 20. Alternate supersonic transport concepts (developed by Georgia Tech). 

Vehicle Seating Capacity Supersonic Cruise Mach Number 

55 passengers 1.8 2.0 2.2 

75 passengers 2.2 2.2 2.2 

100 passengers 1.6 1.8 2.0 

 
Each combination of seat capacity and cruise speed leads to a different aircraft configuration, with the higher-fidelity models 
provided by our colleagues at Georgia Tech. This leads to a total of seven aircraft available for implementation in FLEET. The 
authors adapt the placeholder v2.0 aircraft model to depict all seven aircraft and identify potential supersonic routes for 
each aircraft type. 
 
Supersonic Flight Path Calculations 
Previous work relied on a simplistic method of flight path calculation, whereas the distance flown is calculated from the great 
circle path distance. The over-land and over-water distances were calculated by dividing the total distance by given fixed 
over-water percentages. The work presented in this paper uses a polygon approach to calculate accurate over-water 
distances, whereas the intersection between the flight path and the coastline separates over-land and over-water segments. 
The block time is then simply calculated by dividing segment distance by over-land or over-water airspeed. This approach 
also takes into account the differences in fuel burn when flying in different directions on the same route, i.e., when flying 
from A to B and B to A.  
 
The block time for each origin destination pair is calculated as follows: 

1. Calculate the great circle path between the origin airport and the destination airport of a route. 
2. Deviate the midpoint by ±7° with 1° intervals along the direction perpendicular to the heading at midpoint. 
3. Separated each route by land-water intersections into k segments.  
4. Calculate the distances of each segment and record the sum of over-water distances. 
5. Calculate block time of each route option. 
6. Find the minimum block time path for both forward and return directions. 

 
The block time calculation follows the equation below, where k is the total number of segments within the route, dk is the 
distance of segment k, and Vk is the airspeed at that segment. Because all supersonic operations are restricted to over-water, 
aircraft fly at Vsupersonic on over-water segments and at Vsubsonic on over-land segments. 
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All available nonstop routes are found by filtering all routes by range. To extend flight range, a search algorithm finds all 
available fuel stops along the path for each OD pair. The routes with fuel stops are again filtered based on the design range 
of “placeholder v2.0” aircraft. 
 
Identification of SST-Eligible Routes – Nonstop Routes 
Nonstop supersonic routes—like the example route, LAX–TPE, shown in Figure 37—are shorter than 4,500 nmi and do not 
require a fuel stop (shown in the figure, midpoints are deviated by ±7° with 1° increments). The green lines represent the 
deviated routes and the red triangles represent midpoints of each route. As shown in the figure, the top route path has more 
overlap with land, which would increase block time. In this case, the bottom route path has the least block time, and it is the 
best route for the example in consideration. 
 

 

 

 

 



 

Figure 37. Example supersonic route (LAX–TPE) that does not require a fuel stop. 

Identification of SST-Eligible Routes – Routes With Fuel Stops 
Earlier, the fuel stop options for routes longer than 4,500 nmi only included Honolulu, Hawaii (HNL) and Anchorage, Alaska 
(ANC) for cross-Pacific routes, and Shannon, Ireland (SNN); Keflavik, Iceland (KEF); Oslo, Norway (OSL); and San Juan, Puerto 
Rico (SJU) for cross-Atlantic routes. This approach was valid only for the US-touching route network and required manual 
inputs to select the appropriate fuel stop. To capture fuel stops for all global routes, an automated area-search method is 
developed and implemented. For each OD pair, a search area is placed on the great circle path between them. All airports 
within the area would be captured as potential fuel stops. To avoid the case where the supersonic aircraft lands for a fuel 
stop immediately after takeoff, a circular search area is placed at the route’s midpoint to ensure airports in the vicinity of 
the origin or the destination are not captured. The diameter of the search area is set to 35° spherical arc to include maximum 
possible fuel stop options; the arc size was based on trial and error. 
 
With each fuel stop, a deviation process similar to nonstop supersonic routes is implemented for both segments and both 
directions to find the minimum block time path of each path. In the case shown in Figure 38, HNL and ANC are selected as 
fuel stop options for the LAX–TPE route. The gray routes shown in the figure depict the deviated routes with fuel stops, 
whereas the red triangles depict the midpoints for each deviated route; the red route path represents the path with minimum 
block time. 
 
The fuel required to fly any such route is calculated by modeling both segments of the route, accounting for the departure 
and arrival of each segment, and the block time accounts for the extra time required to land and take off at the fuel stop 
airport. 
 
Higher-Resolution Supersonic Aircraft Modeling and Routing 
The computational models of the 55-seat, 75-seat, and 100-seat supersonic aircraft for this study are developed by 
colleagues at Georgia Tech. These models provide mission performance characteristics, including fuel consumption and 
block time, for the supersonic aircraft to operate on routes in the FLEET network. Because the supersonic aircraft can only 
operate at supersonic speed over water, the ground path of the flight to optimize a combination of fuel consumption and 
block time can deviate significantly from typical subsonic aircraft routes. For consistency in the ASCENT project, the studies 
presented here also use flight path ground tracks generated by teammates at Georgia Tech. 
 

 

 

 

 



The Purdue team considers two generations of supersonic aircraft with entry-into-service (EIS) dates of 2025 (generation 1) 
and 2038 (generation 2). The generation 2 supersonic aircraft show a 10% improvement in fuel burn with no change in 
aircraft noise or sonic boom characteristics. 
 

 

Figure 38. Example supersonic route that requires a fuel stop. 

The detailed supersonic routing developed by Georgia Tech works to identify the optimum supersonic route path by solving 
an optimization problem to minimize a weighted sum “cost to the goal” objective function. The goal here is to minimize a 
combination of block time and block fuel values for flying supersonic aircraft on a supersonic route. This approach essentially 
finds a supersonic route path that is a tradeoff between the time optimal-only route and fuel optimal-only supersonic route 
path. A simplistic representation of this approach is: 
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Current work uses 𝛼𝛼 = 0.4 as the recommended value for the weighted sum supersonic routing (based on various supersonic 
routing tests conducted by our partners at Georgia Tech). The authors use FLOPSv9 to “fly” the detailed supersonic aircraft 
models on the weighted sum routes, conducting separate FLOPS runs for each direction of a supersonic route; the team 
observed different block fuel values (and in some cases, block time) when flying the detailed notional supersonic aircraft in 
different directions on a supersonic route. 
 
Subtask 4: FLEET for Business Jet Operations 
  
To increase the value and utility of FLEET in assessing the environmental impact of aviation beyond airline operations, the 
Purdue Team began work to expand FLEET to model and analyze business jet operations. The goal of this effort is to create 
a baseline modeling capability that can be expanded and improved in its fidelity in possible follow-on work. Developing 
FLEET-B entails four efforts: 

• Modeling of business jet travel demand 
• Representation and modeling of business jet fleet of aircraft 
• Modeling of business jet resource allocation 
• Evolution of business jet operations (fleet of aircraft and demand) 

 

 

 

 

 



Business Jet Travel Demand 
Data provided by the Common Operations Database (COD) for 2018 [35] represents worldwide travel on business jets for 
2018. The data contain the operations of 11,214 companies; however, only a small fraction of these companies provide the 
most and somewhat regular service. For the purpose of this work, we define regular service by a company if four or more 
daily trips are flown. With this assumption, only 2% of the companies (217) flew more than four daily trips and provided 50% 
of business jet travel in 2018.  
 

 

Figure 39. Companies providing business jet services in 2018. 

Furthermore, less than half of these 217 companies had a high level of operation, reaching more than 10 daily trips (Figure 
39, right). Fractional operators NetJets, Privaira, and Bombardier Jet Solutions were the companies providing most of the 
activity in 2018. The other companies were a mix of fractional, charter, air taxi, and corporate operators. The activity of 
these operators consisted of ~1.3 million trips between ~160,000 city-pairs among 4,417 airports.  
  

 

 

 

 



 

 

 

 
Figure 40. Trip distribution of business jet travel; top: number of trips and route distance; bottom: daily trip distribution. 

Directly applying the current resource allocation model in FLEET to represent and analyze the level of operations presented 
here is infeasible. Because the combined number of airports, city-pairs, and trips is too large for the model to generate a 
solution in any reasonable time, we group the daily trips into 50-mile bins. This generates a total of 146 route-bins for the 

 

 

 

 



city-pair distances between 0 and 7,300 miles. This assumption greatly reduces and simplifies the allocation model, but it 
retains the ability to estimate the number of aircraft required to meet all trip demand and their emissions. However, this 
approach eliminates the ability to capture the number of operations at any given airport, because any given route-distance 
bin contains many different city-pairs and airports.  
 
Aircraft Fleet Size and Mix 
The data provided by COD also contains information about the type of aircraft used to provide the service for each company. 
The aircraft are also grouped into categories based on their size and range. Table 21 presents these groups of aircraft, 
exemplars for each, and the fraction of aircraft in the fleet.  
 

Table 21. Aircraft flown by business jet operators. 

Aircraft 
type ID 

Aircraft Category Exemplars 

 

B1 BJ 1.5 Very Light Jet Embraer 500, Citation M2, etc. 

B2 BJ 2.0 Light Jet Beechjet 400, Citation V, Premier I, etc. 

B3 BJ 3.0 Light Jet Citation XLS, Lear 60, Lear 45 

B4 BJ 3.5 Light Jet Citation Sovereign, Falcon 50, Hawker 800 

B5 BJ 4.0 Medium Challenger 300, Hawker 1000, Citation X 

B6 BJ 5.0 Medium Falcon 2000, Challenger 604 

B7 BJ 6.0 Large G450, G5000, Falcon 900EX 

B8 BJ 7.0 Large Falcon 7X, Global 6000, Falcon 8X 
 

BJ 7.5 Large G650 
 

BJ 8.0 Corporate B737-700, A319-100 
 

BJ 8.5 Corporate Very 
Large 

B777-200, B787-8 

 
Because the number and operations of category 7.5, 8.0, and 8.5 were very small, they are included in aircraft type ID B8 in 
this study. Most of the service is provided by group B1, followed by group B3, and then B2. Figure 41 shows the daily trip 
distribution for each of these groups of aircraft. This will be the basis for the trip demand on which the aircraft allocation 
problem will be solved.  

 

 

 

 



 

Figure 41. Daily trip distribution by aircraft group. 

To allocate aircraft properly to satisfy demand, the FLEET tool requires information about each aircraft’s performance and 
cost. For the analysis of airline operations, the team has developed FLOPS models that provide performance and cost 
estimations. Similar models are needed to fully develop FLEET into FLEET-B. However, for the purposes of this current effort 
(to demonstrate the utility of a business jet version of FLEET), we estimate the cost to operate each group of aircraft by using 
historical data. Figure 42 presents the available cost information as a function of aircraft range and the DOC of each group 
of aircraft based on the exemplar aircraft in each group. The three sets of data fits shown here are based on different aircraft 
speeds, and the fit selected to estimate the aircraft cost is the one that most closely approximates the performance of the 
exemplar aircraft.  
 

 

Figure 42. Direct operating cost (DOC) of aircraft considered in study. NBAA IFR, National Business Aviation Association 
instrument flight rules. 

 

 

 

 

 



With this information at hand, the input parameters for the resource allocation model are complete. We note that the goal 
of this effort is to demonstrate the utility of the analysis and create a foundation upon which to refine the model with more 
accurate aircraft performance parameters, demand information, and fleet and demand evolution in the future.  
 
Resource Allocation Model 
Business jet operations, and the companies that provide this type of service, are different from airline operations. While both 
provide a transportation service, business jet operations are governed less by a need to fulfill passenger-based travel and 
more by trip-based travel. In other words, the primary goal of business jet operations is to satisfy trip demand and not 
necessarily passenger demand. For corporate operators, for example, the decision to acquire an aircraft with a given 
passenger capacity dictates the number of passengers that can be carried on a given trip, and the only decision during 
operations is whether to use the aircraft or not. Similarly, fractional share owners decide the type of aircraft in which they 
want to own a share based on its performance characteristics, then only decide when and where to fly within those 
constraints. The daily decisions of a fractional operator center on how to allocate aircraft to meet the trip demand of specific 
owners in the least costly manner, not how to fill seats on the aircraft.  
 
If a supersonic business jet (SSBJ) is considered as an addition to the fleet of aircraft, the decision on how to use that aircraft 
would be similar. Because the primary benefit of an SSBJ is the reduction in travel time, the allocation model would need to 
accommodate and account for this. Based on this type of operation and decision-making, we define the following decision 
variables and parameters: 
 
Sets:   
c = company type (fractional, charter, air taxi, corporate) 
k = aircraft type 
j = route  
Variables:   
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑘𝑘,𝑗𝑗 = number of trips flown by company c on aircraft 𝑘𝑘 and route 𝑗𝑗  
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑠𝑠,𝑗𝑗 = number of trips flown by company c on SST aircraft 𝑠𝑠 and route 𝑗𝑗  
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐,𝑘𝑘  = number of aircraft-hours flown by company c on aircraft 𝑘𝑘  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑐𝑐,𝑘𝑘       = number of aircraft used by company c of type 𝑘𝑘  
Parameters:   
𝐶𝐶𝑐𝑐,𝑘𝑘,𝑗𝑗   = cost for company c to fly aircraft type 𝑘𝑘 on route 𝑗𝑗  
𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐,𝑘𝑘,𝑗𝑗 = number of trips of company c aircraft type 𝑘𝑘 on route j  
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑘𝑘  = fleet size (number of aircraft) for company c of type k  

𝐴𝐴𝐴𝐴𝑐𝑐,𝑘𝑘 = aircraft availability for company c of type 𝑘𝑘  
𝑂𝑂𝑂𝑂𝑐𝑐,𝑘𝑘 = operational hours for company c of type 𝑘𝑘  

BHc,k,j = block time of company c for aircraft type 𝑘𝑘 on route 𝑗𝑗  
MHc,k,j = maintenance of company c hour for aircraft type 𝑘𝑘 on route 𝑗𝑗  
DHc,k,j = deadhead hours of company c hour for aircraft type 𝑘𝑘 on route 𝑗𝑗  
𝑡𝑡𝑐𝑐   = aircraft turnaround time for company c  

(𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐,𝑗𝑗 = average travel time of subsonic aircraft operated by company c on route j  
�𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐,𝑗𝑗

 = travel time of supersonic aircraft operated by company c on route j  
(𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑐𝑐  = value of travel time for customers of company c   

 
 

We formulate the resource allocation of business jet operations as follows:  
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 (1) 

where  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐,𝑗𝑗 = �(𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠)𝑐𝑐,𝑗𝑗 − �𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠�𝑐𝑐,𝑗𝑗
� × (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)𝑐𝑐 (2) 

Subject to  

 

 

 

 



𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑘𝑘′,𝑗𝑗  +  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑠𝑠,𝑗𝑗 ≥ 𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐,𝑘𝑘,𝑗𝑗     ∀ (k′ + s) ∈ k (3) 

�𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑐𝑐,𝑘𝑘,𝑗𝑗�𝐵𝐵𝐵𝐵𝑐𝑐,𝑘𝑘,𝑗𝑗 + 𝐷𝐷𝐷𝐷𝑐𝑐,𝑘𝑘,𝑗𝑗 +  𝑀𝑀𝑀𝑀𝑐𝑐,𝑘𝑘,𝑗𝑗 + 𝑡𝑡𝑐𝑐�
𝐽𝐽

𝑗𝑗=1

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐,𝑘𝑘 (4) 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑐𝑐,𝑘𝑘 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑐𝑐,𝑘𝑘 ∙ 𝐴𝐴𝐴𝐴𝑐𝑐,𝑘𝑘 ∙ 𝑂𝑂𝑂𝑂𝑐𝑐,𝑘𝑘 (5) 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓_𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑐𝑐,𝑘𝑘 ≤ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐,𝑘𝑘 (6) 

 
The objective function (Eq 1) aims to minimize the cost of satisfying the trip demand while also minimizing the number of 
aircraft used, captured here by the big-M quantity. The cost to fly the demanded trips accounts for the value of travel time 
and the expected travel time savings when the value of travel time is taken into consideration (represented by Eq 2). The 
constraints represented by Equation 3 ensure that the number of trips flown on subsonic and supersonic aircraft satisfy all 
demanded trips on each aircraft type, for each company, and on each route. Equation 4 calculates the number of aircraft-
hours required to fly all trips for each aircraft type and company when taking into consideration block hours flown and 
deadhead time (repositioning flights that do not carry passengers, maintenance time, and turnaround time). Constraints in 
Eq 5 ensure that we capture the aircraft availability (AAc,k) and the number of operational hours that the company has available 
to satisfy daily demand (OHc,k). This last parameter is designed to capture the different types of operations and scheduling 
requirements of different companies and business models. For example, the daily travel demand of a corporate operator is 
very different from that of a fractional operator. A corporate operator may only have two trips in a given day, but those trips 
happen at the same time, which means that they may require two aircraft to satisfy demand. A fractional operator, on the 
other hand, may have 10 trips in a day, but if they occur in two-hour intervals and are less than 1-hour trips, then the 
company may only need 2 to 5 aircraft to satisfy that demand. For the purposes of this demonstration model, we make 
assumptions about these parameters and will research possible data sources to obtain more realistic values and values that 
accurately estimate and capture the operational tempo of different operators. Finally, the constraints in Equation 6 ensure 
that the number of aircraft required to satisfy all demand (when accounting for the operational realities of the company) 
does not exceed the available fleet size. 
 
Results 
Solving the above allocation problem for daily demand and the aircraft models described earlier is relatively fast. Because 
the number of routes is only 146, GAMS and its algorithms are able to generate a solution in a few seconds. We solve the 
allocation model for each day of operations and are able to generate statistics of the results. Figure 43 presents these results 
when only subsonic aircraft are considered and when we assume that there is only one company satisfying all travel demand. 

 

 

 

 



 

Figure 43. Aircraft allocation results assuming single-operator and subsonic-only aircraft to demonstrate potential 
capability of the FLEET-B simulation. 

Recall that demand is specified for each route and for each aircraft type; therefore, the decision made by the resource 
allocation model is to identify the number of aircraft required to satisfy demand. The ability to analyze each day of operation 
makes possible the identification of the distribution of the number of aircraft that are needed to satisfy demand. Figure 43 
(right) clearly displays these results by providing the number of days that a given number of aircraft is required. For example, 
on 35 days of the year, between 2,000 and 2,100 aircraft are used to satisfy all demand. An interesting implication of this 
type of result is that it is clear how the fleet size for a given operator may be driven not by the average number of operations 
but by the busiest day. The simplicity of the allocation model (only 146 binned routes) facilitates this analysis and 
observation. 
 
When introducing the supersonic aircraft to the available fleet of aircraft, it is necessary to include its speed and cost in the 
allocation model. Figure 44 (left) provides an overview of the difference in travel time that an SSBJ can offer compared to 
subsonic aircraft, and Figure 44 (right) provides a similar comparison for the cost. We assume here that for trip distances 
less than 600 mi, a supersonic aircraft would not be able to get up to supersonic speeds, hence the similar block time for 
those distances. 
 

 

Figure 44. Block time and trip cost of subsonic and supersonic business jets (SSBJ). 

 

 

 

 

 



Because the advantage of SSBJ is in the travel time savings, and as shown in the description of the resource allocation model, 
we include this travel benefit in the model by defining an effective trip cost that reduces the cost to operate the aircraft by 
the value of travel time savings (Eq 2). Figure 45 presents the effect of this adjustment on the trip cost when different values 
of travel time are considered.  

 

Figure 45. Trip cost when accounting for value of travel time savings. SSBJ, supersonic business jet. 

For example, for those travelers who value time at $500/hr or more, trips longer than 3,300 mi would be considered cost 
effective, and the effective trip cost would be less than the trip cost if flown on a subsonic aircraft. By using these data and 
by making the supersonic aircraft an option for any trip and a substitute for any aircraft type, the allocation model is able to 
determine on which routes the use of an SSBJ would be cost effective when all components of travel time (block time, 
turnaround time) and operational requirements (maintenance time, repositioning time) are considered. We highlight that no 
assumptions are made a priori about the routes on which an SSBJ would be available. It is the allocation model that determines 
the routes on which an SSBJ is cost effective.  
 
Therefore, when accounting for the value of travel time savings and including the SSBJ aircraft in the allocation model, it is 
possible to identify which routes could see supersonic service. Figure 46 (left) presents the number of trips that are flown 
on each route-bin by an SSBJ that is able to cruise at M1.6 for values of time of $500/hr, $400/hr, and $300/hr; Figure 46 
(right) shows the total number of trips that would be flown for SSBJ of M1.6, M1.8, and M2.2 as a function of the value of 
travel time. 
 

 

Figure 46. Level of service provided for varying values of travel time. SSBJ, supersonic business jet. 

 

 

 

 



As expected, when the value of time is large, SSBJ travel time savings are sufficient to offset the trip cost. As the value of 
travel time increases, the number of trips flown also increases. Furthermore, the faster the SSBJ, the greater the travel time 
savings, and therefore the larger the number of trips flown on the SSBJ. Although several simplifying assumptions are 
made here to demonstrate the viability of this type of analysis, the model shows that it is possible to capture the possible 
decision-making of business jet operators and to account for the benefits of supersonic travel.  
 
Future Work 
Further work on this task will entail improving the fidelity of the subsonic and supersonic aircraft models to generate better 
approximation of ownership and operating costs. Refinement of the operational model of the various types of business jet 
operators is another area of improvement that will increase the fidelity of the analysis. Identifying meaningful assumptions 
about the daily operating hours of each operator will enable the model to more accurately estimate the number of aircraft 
required to satisfy demand. While the estimation of fuel burn, environmental emissions, and number of operations at a given 
airport would not be affected by this, the ability to estimate the degree of penetration of supersonic aircraft in the fleet mix 
and the evolution of new aircraft and associated aircraft technologies will require more accurate information. 
 
 

Outreach Efforts 
During this period of performance, the Georgia Tech team published the following: 
 
Baltman, E., Tai, J. C., Ahuja, J., Stewart, B., Perron, C., De Azevedo, J., Vlady, T. R., & Mavris, D. N. (2022). A Methodology 
for Determining the Interdependence of Fuel Burn and LTO Noise of a Commercial Supersonic Transport. AIAA AVIATION 
2022 Forum, 1–16. https://doi.org/10.2514/6.2022-4110 
 
During this period of research, the Purdue team published the following: 
 
Yang, B., Mane, M., and Crossley, W. (2022). An Approach to Evaluate Fleet Level CO2 Impact of Introducing Liquid-Hydrogen 
Aircraft to a World-Wide Network, AIAA Aviation Forum 2022, https://doi.org/10.2514/6.2022-3313 
 
Jain, S., H. Chao, M. Mane, W. A. Crossley and D. A. DeLaurentis. (2021). Estimating the Reduction in Future Fleet-Level CO2 
Emissions From Sustainable Aviation Fuel, Frontiers in Energy Research, Nov 2021, doi: 10.3389/fenrg.2021.771705 
 

Awards 
None. 
 

Student Involvement 
The Purdue team included four graduate students during this year’s effort, all of whom have been conducting tasks in 
support of the project. Samarth Jain finished his PhD studies, Suzanne Swaine continued her MS work, Fung Tien-Yueh 
continued his PhD work, Boning Yang finished his MS work and graduated. 
 
The GT team also included the following graduate students during this year’s effort: Nikhil Iyengar, Barbara Sampaio, Edan 
Baltman, Joao De Azevedo, Jiajie (Terry) Wen, Ted Vlady, Zayne Roohi and Srikanth Tindivanam Varadharajan 

 
The GT team also trained one undergraduate student, Madeleine Graham, in matters related to CFD and optimization using 
the 65 pax Mach 1.7 baseline configuration as a starting point 
 

Plans for Next Period 
Georgia Tech  
The plan for the next period of performance is to apply the improved design methodology presented in the current report 
to a wider set of supersonic vehicles. Specifically, the same process previously used for a 65-passenger SST vehicle with a 
cruise speed of Mach 1.7, will be applied to a similarly sized vehicle, but with a cruise speed of Mach 2.0. The Georgia Tech 
team will also examine an SST vehicle designed for a lower cruise speed of Mach 1.4, still with a 65-passenger capacity. 
Finally, a supersonic business jet with an 8-passenger capacity and a cruise speed of Mach 1.4 will be investigated. This last 
vehicle will notably be designed with only two engines due to its smaller scale, unlike the 4 engines configuration used for 
the other SST aircraft. The fuel burn and the LTO noise for each of the proposed configurations will be captured and 

 

 

 

 

https://arc.aiaa.org/doi/10.2514/6.2022-3313
https://arc.aiaa.org/doi/10.2514/6.2022-3313


compared, allowing us to investigate the interdependence of both metrics with more granularity. The analysis of these SST 
vehicles will also be performed with an updated demand forecast. 
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