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Project Overview 
The AEDT relies on aircraft noise and performance (ANP) data provided by aircraft manufacturers to support the calculation 
of aircraft trajectories and noise at receptors by using aircraft performance information and noise–power–distance (NPD) 
relationships for specific aircraft/engine combinations. In the ANP/Base of Aircraft Data (BADA) workflow, ANP performance 
data are also used in the calculation of emissions inventories and air quality dispersion. However, not all aircraft in the fleet 
are represented in the ANP database. When ANP data are not available for a specific target engine/airframe combination, 
AEDT uses a substitute aircraft from the ANP database to model the target aircraft by closely matching the certification noise 
characteristics and other performance parameters. However, a problematic issue is that the best substitute according to 
noise criteria does not always match the best substitute for emissions criteria. In addition, substitute aircraft do not capture 
the environmental benefits of newer aircraft with noise and emissions reduction technologies, thus resulting in overly 
conservative noise and emissions estimates. 



 

The goal of this research is to improve the accuracy of AEDT noise and emissions modeling of aircraft not currently in the 
ANP database. Georgia Institute of Technology will identify and review aircraft not currently modeled in the AEDT and will 
collect information and necessary data to better understand the characteristics of these aircraft. Various statistical analysis 
methods will be used to classify the aircraft as different types in terms of size, age, technologies, and other engine/airframe 
parameters. Quantitative and qualitative analytical methods will be identified and evaluated for each aircraft type to develop 
ANP and noise data for the aircraft. Validation data from real-world flight and physics-based modeling will be gathered to 
validate the methods. After validation, the models will be applied to develop ANP and noise data for the aircraft. Finally, 
recommendations and guidelines will be developed for implementing the developed data in the AEDT, to expand the AEDT 
Fleet database to include noise and performance data for aircraft currently not in the ANP database. 
 

 
 

Figure 1. Overview of ASCENT Project 60 tasks and workflow. 

The flowchart in Figure 1 presents an overview of the project approach. The first step is to identify the necessary aircraft 
parameters that will be used to better estimate the substitution aircraft. These parameters are already included in the internal 
data (Fleet database) or will be collected from external resources.  

 
Task 1 - Identification and Review of Aircraft not in the AEDT 
Georgia Institute of Technology 
 
Objective 
The objective of Task 1 is to identify aircraft that are not currently modeled with ANP data in the AEDT for noise and emissions 
modeling. In the Fleet database, specific aircraft engine/airframe combinations are defined by a series of ANP and noise 
coefficients that are used with the BADA and SAE-AIR-1845 algorithms to conduct performance, emissions, and noise 
modeling. The Fleet database contains representative aircraft for the entire fleet; some aircraft are modeled according to 
ANP data, whereas others are represented by a substitution aircraft. This task involves the identification of aircraft that do 
not have ANP data and are represented by a substitution aircraft. 
 
 
 

 

 

 

 



 

Research Approach  
Creating the AEDT FLEET Extension Database 
 
Aircraft without ANP data in AEDT 
The aircraft not currently modeled with ANP data are identified by reviewing the AEDT Fleet database and conducting a 
literature survey. The identified aircraft of interest are further investigated to identify gaps between them and the substitution 
aircraft in terms of performance, noise, and emissions. This step involves reviewing the existing literature on these aircraft 
and acquiring the information and data necessary to better determine their engine/airframe characteristics. In addition, the 
ANP data in the Fleet database are studied to summarize key parameters for which the analytical methods will develop ANP 
data. The existing ANP aircraft substitution methods and the current substitution methods implemented in AEDT are also 
investigated to support the development of analytical methods.  
 
The Fleet database consists of 3,626 airframe and engine combinations; only 269 have available ANP data (native), whereas 
the remaining 3,357 do not (proxy). The proxy aircraft have a unique equipment ID (the primary key in the SQL database) 
and a default equipment ID, which is assigned as the equipment ID of the closest native aircraft, in terms of ANP similarity. 
Apparently, the native aircraft have a matching equipment ID and default equipment ID. This substitution enables proxy 
aircraft to borrow ANP data from native aircraft for the purposes of conducting environmental analyses and studies. Figure 
2 below illustrates the Fleet database breakdown in terms of ANP data availability as well as the current efforts in extending 
the available parameters. The additional parameters collected from external resources are summarized in Table 1. 

 

 
 

Figure 2. Fleet database breakdown with respect to ANP data availability. 
 
Aircraft Database Literature Study 
The main objective of this task is to collect data from various databases for a wide range of aircraft. This information is 
helpful in determining which performance, emissions, and noise parameters will be used for the substitution algorithm. In 
particular, we are interested in the following categories of data: 

• Airframe: general aircraft information and classifications; example: maximum range 
• Engine: important engine specifications; example: bypass ratio 
• Aircraft: information on an airframe/engine combination; example: maximum takeoff weight (MTOW) 
• Aircraft geometry: example: wing area 
• Emissions: main emission indices; example: unadjusted fuel flow during takeoff 
• Noise certification: example: flyover noise level 

 
Overview of Tables Available in the Fleet database (Internal Data) and Associated IDs: 
Some of the internal data collected from the Fleet database correspond to: 

• FLT_EQUIPMENT (provides the AIRFRAME_ID and ENGINE_ID for each equipment EQUIP_ID) 
• FLT_AIRFRAMES (contains airframe information that can be accessed by using the AIRFRAME_ID from the 

corresponding EQUIP_ID in the FLT_EQUIPMENT table) 
• FLT_ANP_AIRPLANES 
• FLT_FLEET 
• FLT_ENGINES (contains information on engines and emissions that can be retrieved by using the ENGINE_ID from 

the corresponding EQUIP_ID in the FLT_EQUIPMENT table) 
• FLT_ENGINES.MODEL 
• FLT_CAT_DESIGNATIONS 

 

 

 

 



 

• FLT_CAT_ICAO_TYPES 
• FLT_BADA_ACFT 
• FLT_ANP_AIRPLANE_NOISE_GROUPS 
• FLT_NOISE_CERTIFICATION 

 
The Fleet database contains 3,626 EQUIP_IDs, 848 unique AIRFRAME_IDs and 686 unique ENGINE_IDs. The 
FLT_NOISE_CERTIFICATION table has a total of 8,288 records (rows). Among the 3,626 equipment types, only 535 (15%) have 
noise certification records. All these records have a one-to-many match; i.e., for a certain equipment type, multiple matches 
exist in the FLT_NOISE_CERTIFICATION table. The number of matches ranges from 2 to more than 100. Efforts by the FAA to 
identify a unique path from EQUIPMENT_IDs to unique NOISEDB_IDs are ongoing; hence, our team will focus on collecting 
noise parameter values from up-to-date reliable external data sources. Regarding noise parameter values from the Fleet 
database, two potential routes for retrieving NOISEDB_IDs are proposed in Figure 3. 
 

 
 

Figure 3. Two alternative Fleet database routes for identifying the one-to-many choices from EQUIPMENT_ID to 
NOISEDB_ID. 

 
To create an initial database to use for the analytical methods in Task 2, we applied filtering to the original number of unique 
equipment IDs to establish a subset of engine/airframe combinations for which external data would be gathered. The first 
filter eliminated the military and cargo designation codes and small SIZE_CODE aircraft. The next filter eliminated military 
and general aviation, according to the AIRCRAFT_TYPE designation. This filtering reduced the unique equipment IDs to 2,443. 
For the remaining EQUIP_IDs, the AIRFRAME_MODEL names were grouped to determine the number of unique airframes. With 
an initial focus on U.S. applications of AEDT, airframe models not operated in the United States and the production status of 
the airframe models were eliminated. For future efforts of this research, a broader set of aircraft types can be included to 
extend beyond U.S. operations. These filters reduced the total airframes for which external data are required to a manageable 
number of 138. Notably, each airframe could have multiple engine types. 
 
Data Sources Used 
The external databases used to extend AEDT's available parameters are summarized in Table 1 below. To augment the 
existing ANP database for the unique engine/airframe combinations that do not have ANP data, we identified external data 
sources. The databases considered to populate the extended Fleet database table (Figure 2) are provided below. First, 
information from the internal Fleet database was used, and then, various other databases were retrieved to populate the 
external parameters: 

• AEDT ANP (Fleet + FLEET-FULL databases): The Fleet database, the most comprehensive performance database 
available, contains multiple performance parameters for a wide variety of airframe/engine combinations. Although 
it is not publicly available, the FLEET-FULL database contains information for all registered aircraft worldwide. 

 

 

 

 



 

Minimum and maximum values for the same airframe/engine combinations are available for certain aircraft 
parameters (e.g., MTOW), depending on the aircraft equipment used by an airline on board.  

• Janes: This database contains aircraft information such as certification date, weight, range, production date, and 
status, as well as corresponding engine information (i.e., thrust, number of engines, power, and speed). This 
database also contains wing and fuselage dimensions, maximum payload, and number of passengers (Janes, n.d.)  

• EASA Emissions Databank v28 (EASA, 2023) This Microsoft Excel-based database covers turbojet and turbofan 
engines for which emissions are regulated (static thrust of 27 kN or higher). It contains engine emissions for CO, 
nitrogen oxides (NOx), and unburned hydrocarbons as well as several engine performance parameters, including 
bypass ratio and thrust-rated output  

• Jet Engines: This database contains engine information only, such as thrust type, SFC type, airflow, overall pressure 
ratio, fan pressure ratio, bypass ratio, speed, and engine dimensions (Meier, 2021). 

• Piano v2.2: This database contains aircraft and engine combination data, including wing and fuselage dimension 
information, weight, payload, and specific air range evaluations (Lissys Ltd., n.d.) 

• European Union Aviation Safety Agency (EASA) Type Certificate Data Sheet (TCDS): This database contains aircraft-
specific variants and designation of the engines certified on the aircraft, in addition to geometric and performance 
information. (EASA 2023).  

• Bluebook: This database contains aircraft/engine combination information, such as thrust, maximum speed, 
recommended speed, stall speed dirty, fuel, gross weight, empty weight, range, length, height, and wingspan   

• Elsevier: This database contains aircraft and engine information, including thrust, number of passengers, weight, 
payload, fuselage dimensions, and wing dimensions (Jenkinson, et al., 2001a; Jenkinson, et al., 2001b). 

• EASA certification noise databases (EASA, 2023) https://www.easa.europa.eu/en/domains/environment/easa-
certification-noise-levels. This very large Excel database consists of aircraft/engine types, effective perceived noise 
in decibels (EPNdB), and noise levels for lateral, flyover, and approach. EASA is a collection of four noise databases 
that address heavy propeller-driven airplanes, jet airplanes, light propeller-driven airplanes, and rotorcraft  

• DGACv2.30: This noise certification database offered by French authorities will be used along with EASA noise 
certification values to collect up-to-date noise certification levels (NoisedB, 2023). 

• Online photographic material: For the purposes of identifying wingtip presence, wing location, and engine location, 
pictures available online have been considered. 

 
According to engineering judgement and prior research on key drivers of noise, emissions, and fuel burn, a set of parameters 
to define a unique engine/airframe combination were established, which include internal AEDT data and external data. The 
purpose of the additional parameters is to enhance the information for a particular combination, so that a better substitute 
aircraft can be identified to represent the environmental impact of that combination (performance, noise, and emissions). In 
Table 1, the first column indicates the broader parameter group; the second column provides the parameter details, which 
could be an existing Fleet database parameter or a newly added one; and the third column shows internal or external 
resources from where the parameters were collected. This ANP extension database will serve as the basis for the analytical 
method approach in Task 2. 
 

Table 1. Summary of external data sources used to extend the AEDT FLEET database. 

Parameter group Collected parameters Resources 
Performance Typical cruise speed, typical range Jet Engines, Piano, Janes, Bluebook, 

public resources 
Weights Maximum payload Piano, Janes, Elsevier 
Geometry Wingspan, wing area, fuselage height/ 

width/length, typical number of 
passengers 

Piano, Janes, Bluebook, public 
resources 

Engine B/P ratio, pressure ratio, thrust, 
emissions 

Jet Engines, Piano, Janes, Elsevier, 
International Civil Aviation 
Organization Engine Emissions 
Databank, Purdue Engineering, 
Campbell Hill 

Noise Flyover, lateral, approach EASA noise database 
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To populate ANP database with noise data, we used two sources from EASA certification noise level database (EASA, 2023).For 
jet airframe/engine combinations, MAdB Jets (210408) and its updated version, MAdB Jets (20220331), were used; for 
propeller-driven aircraft, MAdB Heavy Prop (21325) was used. The data extracted from these sources consisted of the 
following information:  

• Lateral noise level  
• Flyover noise level  
• Approach noise level  

 
In each case, along with the noise level, the limit, the margin as well as cumulative noise values in EPNdB units were extracted. 
The methods used for matching comprised the following steps. In the ANP database, a total of 996 airframe/engine candidate 
combinations for noise data population was selected. The population procedure was started by selecting a specific airframe 
of interest (for example, the Airbus A321-200 Series). For that airframe, a specific engine among the different options 
available was selected (for example, the CFM56-5B3/2P). After the specific airframe/engine combination was defined, the 
exact same combination was searched and selected in EASA certification noise level database. For matching to be performed, 
the selected airframe/engine combination in EASA was required to be unique. To ensure this unique matching, we used a 
set of successive selection criteria involving the following sequence of steps:  

• Use the EASA TCDS to verify that the variants existing in the EASA certification noise level database (e.g., MAdB Jets) 
for the airframe selected are certified. 

• Use the EASA TCDS to verify that the engine emissions and thrust parameters in the ANP database are correct. 
• When differences are found, they are identified and registered by matching the ANP Equipment ID and EASA Record 

number. 
• For the certified airframe/engine combination in the EASA certification noise level database, select the MTOW.  
• If no unique combination is obtained, proceed to select the maximum landing mass.  
• If the combination still has more than one option, the maximum cumulative noise level can be selected.  
• In cases in which more than one airframe/engine combination have the same noise values, the first entry is selected. 
• Finally, if more than one combination remains after the application of the preceding criteria, the most recent 

modification date for the data of the remaining combinations is selected. This modification date corresponds to the 
most recent date when the existing values for the selected combination were entered in the database.  

  
The rationale underlying these selection criteria is to choose the most representative noise value of the combination selected. 
After a unique combination is found, the corresponding noise values are transferred from the EASA database to ANP. To 
increase the number of combinations available for which noise values were obtained, engines with similar designation codes 
were selected for some airframes. In this case, the criterion for selection was a direct comparison of the main parameters 
(bypass ratio, overall pressure ratio, and rated thrust) of the similar engines. If the parameters were within 5% of each other, 
the combination was considered valid and was added to the ANP database. The application of these criteria enabled the 
generation of the noise values for the airframe/engine combinations used in Task 2. 
 
Challenges in Data Integration 
Multiple challenges exist in collecting data from external resources and integrating them into the extended AEDT table: 

• The data quality from websites other than those of the FAA, manufacturers, or certification organizations may be 
questionable. 

• The external data are sparse, thus generating challenges for machine learning (ML) model training. 
• The integration of multiple databases can be labor-intensive, unless automation is introduced to bypass it. 

After incorporation of noise parameter values for flyover, lateral and approach noise from the EASA certification noise level 
database, the number of available airframe and engine combinations was only 438. 
 
Milestone(s) 
Developed a framework for new external data to be used in Task 2 
 
Major Accomplishments 
Populated new extension database and created additional certification database 
 
Publications 
None 
 

 

 

 

 



 

Outreach Efforts 
Biweekly calls 
Bi-annual ASCENT meetings 
 
Awards 
None 
 
Student Involvement 
Styliani I. Kampezidou (graduate student) 
Cristian Puebla-Menne (graduate student 
 
Plans for Next Period 
Continue gathering certification data 
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Task 2 - Analytical Method Development 
Georgia Institute of Technology 
 
Objective 
The objective of Task 2 is to develop analytical methods and solutions that can improve the modeling of aircraft types 
(airframe/engine combinations) that are not included in the ANP database. In this process, ML and data mining (DM) 
approaches are used to analyze aircraft features (both internally and externally collected), ANP data, and environmental 
output data, as well as to gain insights and evidence of better model substitution and approximation. The following research 
questions can be answered while developing these more advanced analytical methods: 

• How can substitutions be better assigned for aircraft types not included in the ANP database? 
• How can representative aircraft models be better chosen to develop more ANP data, with the aim of more sufficiently 

covering the entire population? 
• Which aircraft features should be used in the identification of aircraft substitution? 
• How can the current ANP data be better utilized to approximate the remaining aircraft with more flexibility? 

 
Research Approach 
The data-driven analytical methods used in this task are based primarily on ML and DM techniques. The solution for each 
research question consists of multiple ML/DM algorithms. In general, the analytical techniques that are useful in this project 
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can be classified into five categories: clustering, dimensionality reduction, regression, feature selection, and data 
visualization. Table 2 presents examples and objectives for all five categories. 
 
In this project, the data collection and integration (Task 1) and analytical method development (Task 2) have been conducted 
in parallel. The proposed analytical approaches have been applied to selected problems. However, notably, because the 
master data set has not yet been finalized, as described in previous sections, the concepts of the analytical methods are 
demonstrated primarily through notional or incomplete data sets. The present report highlights the progress made over the 
past year and is not cumulative. 
 
The method is outlined in Figure 1. It begins with a data fusion step, wherein different data sources are queried and merged 
with the AEDT Fleet database to create the ANP Extension database, as explained in Task 1. The resulting database contains 
3,626 airframe engine combinations with 112 columns. The total number of airplanes with NOx emission data is 2,361 which 
decreases to 520 when noise data are also included. Of these, 269 aircraft have data from the ANP database. 
 
Three broad areas will be explored to synthesize ANP data for aircraft lacking these data. The first step is to explore 
unsupervised clustering to group similar aircraft by using the enriched data set from Task 1. Native aircraft (with ANP data) 
within each cluster can be considered potential substitutes for other aircraft without ANP data within each cluster. Clustering 
also aids in identifying outliers in the data and correcting the data entries for any potential errors.  
 
A second approach potentially customizes ANP data by using statistical techniques and regressions to enable more flexible 
synthesis for ANP data rather than the currently used one-to-one substitution for aircraft without ANP data. The third 
approach in Figure 1 will explore hybrid models, wherein a composite model of multiple closest ANP aircraft is used to 
synthesize ANP data for non-native aircraft in AEDT. This approach is currently being developed and will be included in future 
work. 
 
Using Clustering to Identify Representative Aircraft Model Portfolios 
Groups of similar aircraft are placed in the same cluster, and dissimilar aircraft are placed in other clusters. Clustering is a 
typical task in unsupervised ML, and extensive methods have been reported in the literature. The choice of a specific 
clustering algorithm depends on the objectives of the problem. In this project, clustering can be used to achieve at least two 
aims. The first aim is to group similar aircraft and compare the results with the current ANP aircraft substitutions to improve 
the current substitution mapping and to identify gaps. Many algorithms in the literature, such as k-means (KM), hierarchical 
clustering, and DBSCAN, can all achieve this objective. The second aim is to select representative aircraft types from the 
population through clustering. In a basic process, all n aircraft are first partitioned into k clusters; one aircraft from each 
cluster is then selected to represent all aircraft in that cluster. Methods are also available for conducting clustering and 
representative aircraft selection simultaneously. 
 
To categorize the airframe/engine combinations on the basis of the different parameters within the enriched data set, we 
use two clustering techniques: KM and agglomerative hierarchical clustering (AHC). In the present work, aircraft with similar 
performance, geometry, engine characteristics, noise, and emissions are grouped. The dimensionality of this task is equal 
to the number of parameters selected by using subject matter experts (SME) inputs, which are shown in Table 2. These 
parameters have been selected after multiple rounds of clustering experiments involving SME feedback. The effects of the 
parameters on the physics of noise propagation and their correlation with other parameters in Table 1 were considered. 
 

  

 

 

 

 



 

Table 2. Selected SME parameters for clustering. 

Group Parameter Units 
Geometry Wing area ft2 

Wing aspect ratio  
Fuselage volume ft3 

Performance Gross weight lbs 
Cruise Mach  
Typical range nm 
Number of passengers  
Cruise altitude ft 

Engine Pressure ratio  
Total thrust kN 
Bypass ratio  

Emissions NOx gm/kg 
Noise Flyover noise EPNdB 

Approach noise EPNdB 
Lateral noise EPNdB 

 
The number of clusters is determined with the elbow method for KM clustering, wherein a suitable trade-off between error 
and the number of clusters is determined. Figure 4 shows the inertia (elbow) plot for selecting the number of clusters for 
the KM algorithm. The same number of clusters is used for AHC. 
 

 
 

Figure 4. Inertia (elbow) plot for KM clustering. 
 
The clusters can be visualized by using scatterplot matrices and also using t-distributed stochastic neighbor embedding (t-
SNE) (Melit Devassy, 2020). t-SNE is very useful for visualizing data with more than three dimensions, by creating a low-
dimensional embedding of the original data in two-dimensional or three-dimensional space (Maaten, 2008). The embedding 
is generated by minimizing the Kullback–Leibler divergence over all high-dimensional data points with a gradient descent 
method. t-SNE is an updated version of the originally proposed SNE that mitigates the crowding problem and optimization 
problems, by using a symmetric SNE objective function and simpler gradients as well as Student’s t distribution instead of a 
Gaussian distribution to evaluate the similarity of the data points in the low-dimensional space (Hinton, 2002). 
 
Preliminary Clustering Results: 
The approximately 520 aircraft for which the ADET Fleet extension database has complete parameter data are included in 
the preliminary results herein. An elbow plot denoting the inertia (within cluster sum of squares) versus the number of 
clusters is shown in Figure 5. Approximately five to seven clusters appear to be ideal to divide the data. Although this is 
helpful for KM clustering, it is also used for AHC in the present work. 
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Figure 5. Preliminary hierarchical clustering results. 

Results with AHC with seven clusters are shown in Figure 5. The efficacy of clustering is determined on the basis of SME 
feedback. Overall, the clusters show good agreement with real-world distinctions: larger wide-body aircraft form cluster 0, 
so-called “jumbo” jets form cluster 1, regional jets form clusters 2 and 6, smaller wide-body aircraft are in cluster 3, newer-
generation small single-aisle aircraft are in cluster 4, and traditional small single-aisle aircraft are in cluster 5. 
 
Visualizing the results of clustering poses a challenge, because the algorithm operates in 15 dimensions, but the results can 
be presented in only two. Figure 6 shows an example scatterplot matrix of NOx and noise emissions for aircraft within cluster 
1. As expected, the largest aircraft and highest thrust engines that pair with them have the highest emissions and noise 
signatures, and thus are at the top right of almost every plot. Clear distinctions between clusters are not expected in this 
figure, which shows only 4 of the 15 dimensions used for clustering. 
 

 
 

Figure 6. Scatterplot matrix of emissions and noise, with cluster 1 highlighted. 

 

 

 

 

 



 

Parameter importance is difficult to gauge for unsupervised learning clustering algorithms. Therefore, to determine the 
importance of the parameters with the greatest effects on the clusters, we fit a supervised random forest algorithm with 100 
trees to the cluster numbers while using the same 15 parameters used to cluster the aircraft. A parameter importance 
function of this random forest was evaluated to indicate the parameter importance of the AHC clusters (Figure 7). 
 

 
 

Figure 7. Parameter importance for overall clustering. 

The idea underlying segregating the aircraft within the AEDT Fleet extension database into clusters is to observe whether 
aircraft with ANP data (native) are present in certain clusters with non-native aircraft. This process can help identify more 
suitable substitute ANP aircraft for airframe/engine combinations that do not have ANP data. 
 
The present work makes two primary contributions. The first is the generation of the Fleet extension database, which 
enriches the AEDT Fleet database with performance, weight, emissions, and noise parameter values from openly available 
external data sources. The second is the exploration of various ML techniques to identify commonalities and patterns in the 
airframe/engine combinations. The changes to the Fleet database will be contrasted against the default AEDT mapping of 
different airframe/engine combinations to ANP native aircraft, thereby enabling the exploration of areas for improvement in 
fleet modeling of noise and emissions within AEDT, to improve its accuracy. 
 
Major Accomplishments  
The major accomplishments for this period performance include the following: 

• A literature study was conducted on databases to collect performance, emission, and noise data for target aircraft. 
• A new template was created for the Fleet extension database, and external data were gathered. 
• External databases were gathered to augment the extension database with completion of 520 aircraft engine 

combinations. 
• A literature survey was conducted on analytical methods in clustering, dimensionality reduction, feature selection, 

and data visualization. 
• Unsupervised clustering was explored on the available Fleet extension database to better group similar aircraft and 

provide insights on the parameters driving the grouping. 
• The results were postprocessed by using bar charts, scatterplot matrices, t-SNE, and parameter importance 

calculations to help better understand the trends. 
 
Publications 
None. 
 
Outreach Efforts 
Biweekly calls 
Bi-annual ASCENT meetings 

 

 

 

 



 

Awards 
None. 
 
Student Involvement 
Styliani I. Kampezidou (graduate student) 
Cristian Puebla-Menne (graduate student 
 
Plans for Next Period 

• Finalize the ANP extension database to include noise certification data, to serve as the basis for Task 2 
• Continue to refine analytical methods on the new database, identify gaps in the approach, and implement them on 

the remaining engine/airframe combinations within the FLEET database 
• Validate the methods in Task 2 
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