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Research Approach:

This study is comprised of the following:

• Identification of Open Rotor noise-sensitive design 
parameters

• Parametric geometry model development
• Simulation campaign for acoustics validation
• Parametric sensitivity study (not yet funded)

Major Accomplishments (to date):

• Identification of open rotor design variables – from
previous studies – classified in groups: rotor, pylon
installation and airframe integration (Year 1)

• Development of a parametric CROR geometry (Year 1)
• Simulation validation campaign (Year 2)

Future Work / Schedule:

• Parametric study (if funded)
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Objective:

• There is a major challenge in meeting noise targets
while simultaneously meeting other design constraints.

• The open rotor concept has promising fuel benefits, but
there is a need to quantify the impact of design
parameters on open rotor noise.

• A study of design parameter sensitivity to CROR system
noise responses will be conducted in order to identify
impactful design parameters.

Project Benefits:

The study of CROR design parameter sensitivity will 
identify trends that can aid further research and provide 
insight to design tradeoffs
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Validation Plan

 Validation cases are taken from NASA/GE 
experiments on F31A31 CROR (*)

 Focus on no pylon configuration with NTO 
pitch settings

 Validation data from two sources

 GE Aerospace data on (proprietary) 
F31/A31 

 NASA data on F31/A31

 Focus on the upper-half of the RPM range

 RPM : 5551 – 6436 (corrected speed)

 And variation with Angle of attack (AoA)

 Defined at 2nd highest rotor speed, 6301 
RPMc

[*]  Sree, D., “Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach 
Conditions”, Technical Report I, NASA/CR – 2015-218716, 2015

Nominal take-Off  (NTO) with no pylon 
configuration

NASA Experimental Campaign (*)
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Computational Analysis

Unsteady Aerodynamics

Lattice Boltzmann method (LBM) simulations

 Boundary values (𝑉𝑉∞,𝑇𝑇∞, 𝑝𝑝∞) same to WT conditions in 
experiments

 Sponge region surrounding Open Fan to prevention 
reflections from outgoing pressure waves.

 Highest resolution = 0.125 mm & time step = 0.370 × 10−7.
 Discretization size:  900 millions
 Transient  flow data recorded at rotor surfaces (including 

hub rotating part) at rate of 190 kHz

Farfield Aeroacoustics

Ffwocs-Williams Hawking  (FW-H) solver

 CAA predictions at sideline distance d = 5 feet
 FW-H impermeable surfaces: blades & hub rotating part
 Non-convective FW-H solver in cases with calibrated pitch
 Convective FW-H solver in cases with nominal pitch

Acoustic receiver arrangement

Receiver sets

• 18 receivers, 17.5° < θ < 140° (for comparisons w/ NASA 
exps.)

• 59 receivers, 15.0° < θ < 160° (for higher spatial 
resolution)

• ~1300 receivers in a spherical surface for non-zero AoA
cases

[*] A generic open fan geometry is used for the illustration since F31/A31 geometry is GE proprietary

(*)
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Aerodynamic Calibration

Calibration Procedure

• Minimize weighted 𝑙𝑙2 - norm of thrust discrepancies (both front 
and aft rotors) with respect to pitch settings

𝛽𝛽𝑓𝑓∗, 𝛽𝛽𝑎𝑎∗ = arg min 𝐿𝐿 𝛽𝛽𝑓𝑓,𝛽𝛽𝑎𝑎

𝐿𝐿 = 𝑤𝑤𝑇𝑇∆ 2

• Note simultaneous minimization of thrust and torque metrics is not 
possible – cost function leads to different pitch settings

 Interested in noise driven by loading, which is thrust dependent 
 Matching thrust seen as necessary condition to place confidence 

in acoustic predictions
 Note such condition might not be sufficient for matching 

acoustics measurements
 CAA predictions are compared to experiments at matched aero 

performance conditions
 Not attempting to bring directly CAA predictions close to 

experimental values (loading conditions might be different)

Thrust

Cost Functions Isocontours: �𝑳𝑳
(Illustration)

𝜷𝜷𝒇𝒇𝒇𝒇𝒇𝒇

𝜷𝜷𝒂𝒂𝒂𝒂𝒂𝒂

Torque

𝜷𝜷𝒇𝒇𝒇𝒇𝒇𝒇

𝜷𝜷𝒂𝒂𝒂𝒂𝒂𝒂
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Results: Calibrating Aerodynamics

Pitch angles increase when calibrating

 Thrust at nominal pitch is underpredicted

Net Thrust Discrepancy

 Reduces bellow 1% for calibrated pitch
 Disagreement as other solvers for nominal pitch

Torque ratio

 Qualitatively off for all solver with nominal pitch
 Improvement in trend and values with calibrated pitch

RPMc 𝜹𝜹 𝜷𝜷𝒇𝒇∗ 𝜹𝜹 𝜷𝜷𝒂𝒂∗ Remark

5550.5 + 0.288 O + 0.709 O

6250.5 + 0.460 O + 0.428 O same as highest 
rotor speed

6432.0 + 0.460 O + 0.428 O

Net Thrust Comparisons

Net Thrust Discrepancy

Torque ratio  Comparisons

Torque ratio Discrepancy
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Calibration Summary: RPM Trend

OPWL

Constant AoA = 0◦ Cases Discrepancy

OASPLOverall Discrepancy Metrics

 OASPL: 

 2.5 to 1.6 dB (5550.5 – 6432 RPMC)

 OPWL:
 2.5 to 0.4 dB (5550.5 – 6432 RPMC)
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Calibration Summary: AoA Trend

OASPL Discrepancy

OASPL
Overall Discrepancy Metrics

 OASPL: 

 1.7 to 1.9 dB ( 0 – 8 AoA)

 OPWL:
 1.2  (AoA = 0 )

REMARKS

• At non-zero AoA, OPWL requires more data 
than that of sideline measurement

Constant rotor speed: RPMc = 6301
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Ingested Flow at non-zero AoA

Thrust
vs

Azimuth

Flow Angle:  𝝓𝝓 = 𝒂𝒂𝒂𝒂𝒂𝒂 ⁄𝑽𝑽𝑻𝑻 𝑽𝑽𝒙𝒙

• Unsteady thrust tracked at 
single blade per rotor

• Periodic behavior for non-zero 
AoA

AoA = 8◦AoA = 0◦

Forward

Aft

Favorable
flow

Unfavorable
flow

Favorable
flow Unfavorable

flow

[*] A generic open fan geometry is used for the illustration 
since F31/A31 geometry is GE proprietary

(*)
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OASPL at non-zero AoA

OASPL directivity

Front View Side View

𝑨𝑨𝑨𝑨𝑨𝑨 = 𝟎𝟎°
𝑨𝑨𝑨𝑨𝑨𝑨 = 𝟖𝟖°

𝑽𝑽∞

OASPL directivity in polar- azimuthal angles

𝑽𝑽∞

[*] A generic open fan geometry is used for the illustration  since F31/A31 geometry is GE proprietary

(*) (*)

(*) (*)
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Remarks

 Calibration in aerodynamics leads to slightly higher levels of noise

 Thrust at nominal pitch is underpredicted by simulations
 Adjusting pitch leads to increase thrust, thus noise levels 

 Noise field is not axially symmetric due to presence of cross flow

 Flow component transverse to axis of F31/A31 model
 Predictions suggest that polar directivity is different at any azimuthal angle
 Higher noise level are seen in the lower hemisphere (model is tilted away)
 Lower levels are located in the upper hemisphere

 Unsteady loading exhibit a larger contribution to total noise 

 Thickness loading and steady loading exhibit smaller contribution to total noise

 However, both exhibit lack of axi-symmetry

 Computational cost of LBM simulations is large

 Challenging if not enough computational resources 
 Number of simulations somehow restricted, depending on HPC budget
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