ASCENT Project 076 Improved Open Rotor Noise Prediction Capabilities

Georgia Institute of Technology

PI/Co-PI: Dr. Dimitri Mavris / Jimmy Tai PM: Chris Dorbian Cost Share Partner: GE Aviation

Research Approach:

This study is comprised of the following:

- Identification of Open Rotor noise-sensitive design
 parameters
- Parametric geometry model development
- Simulation campaign for acoustics validation
- Parametric sensitivity study (not yet funded)

Objective:

- There is a major challenge in meeting noise targets while simultaneously meeting other design constraints.
- The open rotor concept has promising fuel benefits, but there is a need to quantify the impact of design parameters on open rotor noise.
- A study of design parameter sensitivity to CROR system noise responses will be conducted in order to identify impactful design parameters.

Project Benefits:

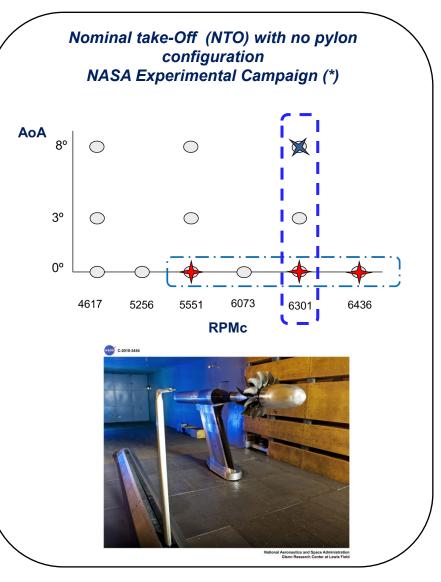
The study of CROR design parameter sensitivity will identify trends that can aid further research and provide insight to design tradeoffs

Major Accomplishments (to date):

- Identification of open rotor design variables from previous studies – classified in groups: rotor, pylon installation and airframe integration (Year 1)
- Development of a parametric CROR geometry (Year 1)

1

• Simulation validation campaign (Year 2)


Future Work / Schedule:

• Parametric study (if funded)

Validation Plan

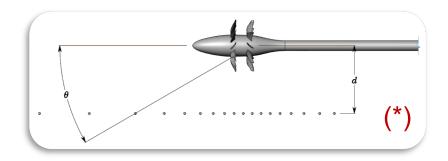
- Validation cases are taken from NASA/GE experiments on F31A31 CROR (*)
 - Focus on no pylon configuration with NTO pitch settings
- Validation data from two sources
 - GE Aerospace data on (proprietary) F31/A31
 - NASA data on F31/A31
- □ Focus on the upper-half of the RPM range
 - RPM : 5551 6436 (corrected speed)
- □ And variation with Angle of attack (AoA)
 - Defined at 2nd highest rotor speed, 6301 RPMc

^[*] Sree, D., "Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach Conditions", Technical Report I, NASA/CR – 2015-218716, 2015

Computational Analysis

Unsteady Aerodynamics

Lattice Boltzmann method (LBM) simulations

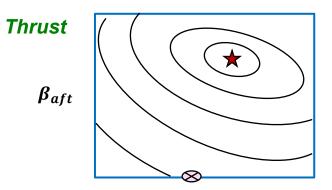

- Boundary values (V_∞, T_∞, p_∞) same to WT conditions in experiments
- Sponge region surrounding Open Fan to prevention reflections from outgoing pressure waves.
- Highest resolution = 0.125 mm & time step = 0.370×10^{-7} .
- Discretization size: 900 millions
- Transient flow data recorded at rotor surfaces (including hub rotating part) at rate of 190 kHz

Farfield Aeroacoustics

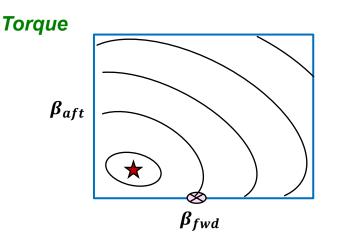
Ffwocs-Williams Hawking (FW-H) solver

- CAA predictions at sideline distance d = 5 feet
- FW-H impermeable surfaces: blades & hub rotating part
- Non-convective FW-H solver in cases with calibrated pitch
- Convective FW-H solver in cases with nominal pitch

Acoustic receiver arrangement


Receiver sets

- 18 receivers, $17.5^{\circ} < \theta < 140^{\circ}$ (for comparisons w/ NASA exps.)
- 59 receivers, $15.0^{\circ} < \theta < 160^{\circ}$ (for higher spatial resolution)
- ~1300 receivers in a spherical surface for non-zero AoA cases


Aerodynamic Calibration

Cost Functions Isocontours: L (Illustration)

 β_{fwd}

- □ Interested in noise driven by loading, which is thrust dependent
- Matching thrust seen as necessary condition to place confidence in acoustic predictions
 - Note such condition might not be sufficient for matching acoustics measurements
- CAA predictions are compared to experiments at matched aero performance conditions
 - Not attempting to bring directly CAA predictions close to experimental values (loading conditions might be different)

Calibration Procedure

 Minimize weighted l² - norm of thrust discrepancies (both front and aft rotors) with respect to pitch settings

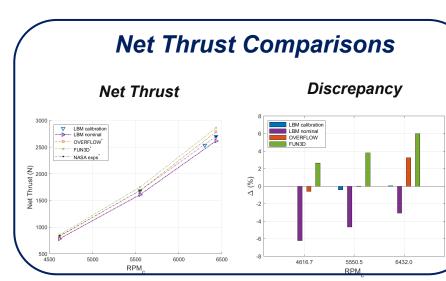
$$\beta_f^*, \, \beta_a^* = \arg\min L(\beta_f, \beta_a)$$

$$L = \|w^T \Delta\|_2$$

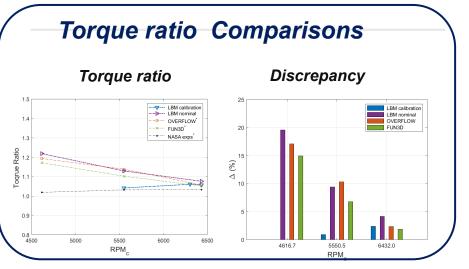
• Note simultaneous minimization of thrust and torque metrics is not possible – cost function leads to different pitch settings

Results: Calibrating Aerodynamics

□ Pitch angles increase when calibrating


• Thrust at nominal pitch is underpredicted

□ Net Thrust Discrepancy

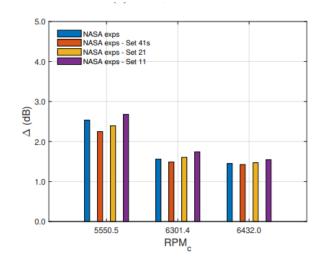

- Reduces bellow 1% for calibrated pitch
- Disagreement as other solvers for nominal pitch

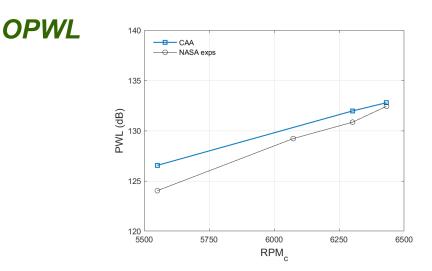
Torque ratio

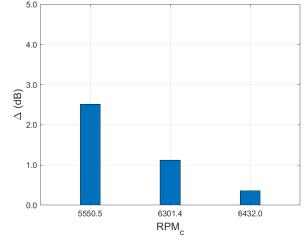
- Qualitatively off for all solver with nominal pitch
- Improvement in trend and values with calibrated pitch

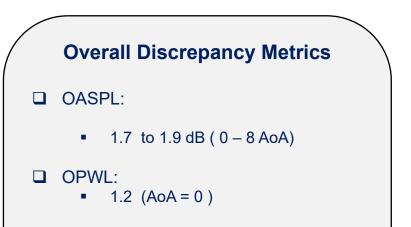
<i>RPMc</i>	$\delta oldsymbol{eta}_f^*$	$\delta \beta_a^*$	Remark
5550.5	+ 0.288 °	+ 0.709°	
6250.5	+ 0.460°	+ 0.428 °	same as highest rotor speed
6432.0	+ 0.460 °	+ 0.428 °	

Calibration Summary: RPM Trend


OASPL

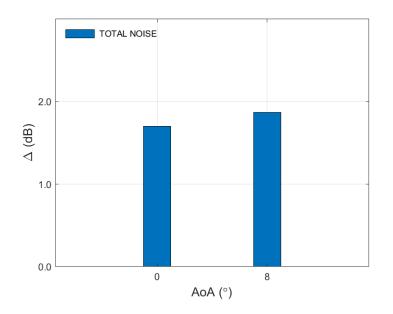



Constant AoA = 0° Cases



Calibration Summary: AoA Trend

Constant rotor speed: RPMc = 6301



REMARKS

• At non-zero AoA, OPWL requires more data than that of sideline measurement

OASPL

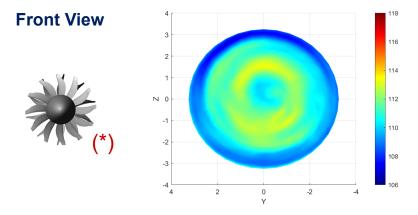
OASPL Discrepancy

Ingested Flow at non-zero AoA

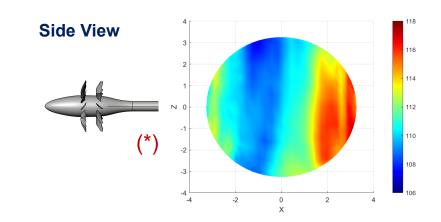
 $AoA = 0^{\circ}$ $AoA = 8^{\circ}$ Flow Angle: $\phi = atn(V_T/V_x)$ FWD AFT Unsteady thrust tracked at 160 • **Thrust** 160 single blade per rotor Ê 140 ŝ VS hrust-x 120 1. Markan Ma 90 120 **Azimuth** Periodic behavior for non-zero 100 ٠ AoA 80 270 360 450 540 630 270 360 540 630 720 180 450 ψ (°) Forward phi [deg] 13.00 Flow direction 9.75 V_{∞} 6.50 Unfavorable (*) ----- AoA flow 3.25 0.00 Favorable -3.25 flow -6.50 - -9.75 -13.00 Aft phi [deg] V_r 30.0 rω - 27.5 25.0 Favorable 22.5 V_t **Jnfavora** V_{flow} flow 17.5 15.0 V_x - 12.5 10.0 - 7.5 - 5.0 - 2.5

[*] A generic open fan geometry is used for the illustration since F31/A31 geometry is GE proprietary

[*] A generic open fan geometry is used for the illustration since F31/A31 geometry is GE proprietary


θ

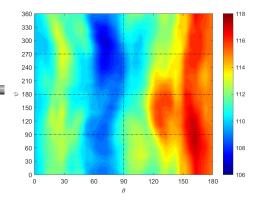
OASPL at non-zero AoA



 $AoA = 0^{\circ}$

 V_{∞}

z



 V_{∞}

 $AoA = 8^{\circ}$

*

Remarks

- □ Calibration in aerodynamics leads to slightly higher levels of noise
 - Thrust at nominal pitch is underpredicted by simulations
 - Adjusting pitch leads to increase thrust, thus noise levels
- □ Noise field is not axially symmetric due to presence of cross flow
 - Flow component transverse to axis of F31/A31 model
 - Predictions suggest that polar directivity is different at any azimuthal angle
 - Higher noise level are seen in the lower hemisphere (model is tilted away)
 - Lower levels are located in the upper hemisphere
- Unsteady loading exhibit a larger contribution to total noise
- □ Thickness loading and steady loading exhibit smaller contribution to total noise
 - However, both exhibit lack of axi-symmetry
- Computational cost of LBM simulations is large
 - Challenging if not enough computational resources
 - Number of simulations somehow restricted, depending on HPC budget