Project 79

Novel Noise Liner Development Enabled by Advanced Manufacturing

Pennsylvania State University, University Park, PA

PI: Timothy W. Simpson Co-PIs: Allison Beese

PM: Arthur Orton Eric Greenwood

Industry Partners: (1) Raytheon Technologies Research Corporation (Co-PI: Jeffrey Mendoza) (2) Altair Engineering (Co-PI: Shannon Chesley)

NASA Langley Research Center (Space Act Agrmnt)

POCs: Mike Jones and Doug Nark

Research Approach:

- 1. Establish a set of acoustic requirements for future aircraft engine designs
- 2. Design and analyze lattice-based acoustic liners using advanced software tools
- 3. Rapid, iterative prototyping and testing to identify promising designs and materials
- 4. Detailed assessment of manufacturability
- 5. Acoustic and structural evaluation of novel liners in collaboration with NASA Langley
- 6. Document results and archive data for FAA

Objective:

Develop and demonstrate a methodology for rapid design, analysis, fabrication, and testing of novel structures that can enhance noise attenuation in aircraft engines

Project Benefits:

Novel acoustic liner designs and materials will provide a new approach for aircraft engine manufacturers to realize simultaneous noise, emissions, and fuel burn reductions

Major Accomplishments (to date):

- Compiled team's analysis, AM and test capabilities
- Identified and compared baseline design geometry
- Performed multi-fidelity acoustic analysis of variety of novel liner geometries
- Down-selected final liner designs for testing at PSU and RTRC

Future Work / Year 2 Schedule:

Jan 2023: Optimize 2-3 lattice topologies

May 2023: Build/test optimized lattice samples

Aug 2023: Experimental acoustic evaluation

Oct 2023: Structural integrity testing

Dec 2023: Document/archive data for Year 2

Trends toward ultra-high bypass ratio aircraft engines dramatically changes acoustic liner requirements

Growth in turbofan engine bypass (above) leads to wide variation in noise requirements, frequencies, and amplitudes (below)

Changes to nacelle designs combined with drive to reduce weight necessitate new acoustic liner designs and placement

Traditional locations of acoustic liners

Additive manufacturing (AM) enables new acoustic liner designs that can enhance noise attenuation and save weight

Acoustic liner based on Schwarz P TPMS* design

Enhanced attenuation with less material

Design space has significantly expanded due to range of geometries, materials, and AM technologies now available

Design parameters for traditional SDOF liners

- d

Vs.

Infinite geometries with countless parametric variations

$\begin{array}{c} \text{Mathematical surfaces} \\ \text{(selected examples shown)} \\ \\ \hline \\ \phi_{P} & \phi_{D} & \phi_{G} & \phi_{N} \\ \\ \hline \\ \phi_{P} = \cos(x) + \cos(y) + \cos(z) = C \\ \\ \phi_{D} = \cos(x) \cos(y) \cos(z) - \sin(x) \sin(y) \sin(z) = C \\ \\ \phi_{G} = \sin(x) \cos(y) + \sin(y) \cos(z) + \sin(z) \cos(x) = C \\ \\ \phi_{N} = 3[\cos(x) + \cos(y) + \cos(z)] + 4\cos(x) \cos(y) \cos(z) = C \\ \end{array}$

Established design-build-test framework to optimize 2-3 lattice designs in Year 2 in collaboration with Raytheon & Altair

ASCENT

Developed workflow to rapidly generate parameterized acoustic liner geometries based on different lattice topologies

Leveraging multi-fidelity modeling and analysis capabilities from Raytheon for complex acoustic liner designs

Rapid design screening (mid-fidelity)

- Numerical impedance tube
- FEM-based, linear
- Geometry approximated
- Integrated submodels for losses
- Executes in seconds/minutes

Iterate designs

Normal-incidence impedance tube (high-fidelity)

- LBM-based, linear and non-linear
- No flow
- Actual geometry
- Executes in hours to days

System study (mid-fidelity)

- FEM-based, linear
- Represent liner effect by Impedance BC
- Executes in minutes

Grazing flow impedance tube (high-fidelity)

- LBM-based, linear and nonlinear
- Grazing and bias flow
- Actual geometry
- Heterogeneous liners
- Executes in hours to days

Grazing flow impedance tube (mid-fidelity)

- FEM-based, linear
- Grazing flow
- Represent liner effect by Impedance BC
- Executes in seconds/minutes

Validated use of high-fidelity simulations to assess acoustic performance of complex liner backings for physical insight

Mid-fidelity simulations, informed by high-fidelity analysis results, used for design

Virtual version of NASA grazing flow facility used for rapid assessment and concept down-selection during early phases of design development

Model validation against test data

(NASA data from Howerton, B. M., Jones, M.G.. "A Conventional Liner Acoustic/Drag Interaction Benchmark Database". AIAA 2017-4190.)

Design concept screening (16" liner samples)

Mid-frequency broadband designs

Combined team has a variety of normal impendence flow testing capabilities for experimental validation

NIT SPL Study - Honeycon

Large Sample Config.

Small Sample Config.

NIT SPL Study - Honeycomb AE01 Reference Liner Source Type = Broadband, Frequency Range = 377 Hz to 3.4 kHz SPL (dB) - 147 dB - 130 dB 120 dB - 110 dB 1750 2000 2250 2500 2750 Frequency (Hz) Capture Nonlinear Effects at Higher SPLs PSU

NASA Langley

FAA Ascent Project 79 Acoustic Testing Capabilities Summary		Location	Sample Dimensions	Source Type	Frequency Range	Maximum Acoustic Pressure	Centerline Mach Number	Testing Standard
Nr	Brüel & Kjær Impedance Tube Kit Type 4206 (Large Sample Config)	RTRC	Diameter = 100 mm Height ≤ 400 mm	Broadband	500 Hz to 6.4 kHz	- 140 dB	0.0	
	Brüel & Kjær Impedance Tube Kit Type 4206 (Small Sample Config)		Diameter = 29 mm Height ≤ 200 mm		50 Hz to 1.6 kHz			
	In-House Developed NASA Langley Specification Impedance Tube	PSU	Width = 2in	Stepped Sine Swept Sine Broadband	377 Hz to 3.4 kHz	146 dB (Broadband)	0.0	ISO 10534–2 ASTM E1050–12
	6 Driver High Intensity Impedance Tube	NASA Langley	-	Stepped Sine Swept Sine Broadband	400 Hz to 3.0 kHz	155 dB (Stepped Sine) 145 dB (Swept Sine) 140 dB (Broadband)	0.0	

Grazing flow and advanced curved flow testing capabilities will also be utilized

In-House Developed Grazing Flow Impedance Tube

NASA Langley Width = 2 in to 24 in

Height≤3in

Stepped Sine

Broadband

400 Hz to 3.0 kHz

155 dB (Stepped Sine)

145 dB (Swept Sine)

0.0 to 0.6

N/A

Utilizing and evaluating a variety of AM technologies to gain insight into acoustic performance and limitations

Vat Photopolymerization (Polymer)

- Formlabs Form 3L
- 3D Systems Figure 4

Laser Powder Bed Fusion (Metallic)

• EOS M 280

Honeycomb AE01 Reference Liner

Schwarz P NIT Liner Sample

Technical challenges and risks associated with high computational costs, test facility calibration, and AM resolution accuracy

Identified component inspection capabilities

- Computed tomography
- Coordinate-measuring machine
- 3D scanning
- Optical profilometry
- Various structural load frames
- Material hardness

Mitigating significant manufacturing challenges

- Excess material removal
- Facesheet curvature
- Facesheet hole sharpness, shape, and dimensions
- Stair-stepping and surface roughness

Used reference liner to assess modeling uncertainties and compare test facilities

Demonstrated ability to capture manufacturing effects by incorporating the as-printed geometry in the high-fidelity prediction tools, thereby closing predictive gaps

Plan to optimize 3-4 designs in Y2 and scale to large-scale testing in Y3 as we learn how to tailor local resonance and tune frequency

Scale samples to NASA Langley Grazing Flow Impedance Tube

Multidisciplinary team of experts from industry, academia, and government (NASA) will ensure project success

PennState

Tim Simpson, PI, ME & IE

co-PI, MatSE

Allison Beese.

Alden Packer PhD student, ME

Jeff Mendoza, PI, Technical Fellow

Federal Aviation Administration

Julian Winkler, co-PI, Senior Principal Engr

Arthur Orton **Project Manager**

Aaron Reimann, co-PI, Senior Mgr Acoustics

Eric Greenwood,

co-PI, Aerospace

Altair

Andy Swanson

MS student, AM

Shannon Chesley, Account Mgr

Eric Nelson, Chief Engr

Raytheon Technologies

NASA LaRC (unfunded)

Mike Jones. Senior Research Scientist

> Doug Nark Research Engineer