

### **Progress Summary for FAA ASCENT #56: Turbine Cooling Through Additive Manufacturing**

#### Liam Boyd, Stephen Lynch, Karen Thole, Reid Berdanier, Mike Barringer, Scott Fishbone

**Department of Mechanical Engineering** 



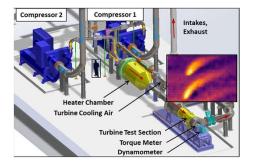


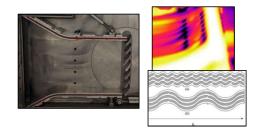


[Bidare et al. 2018]



## The overall goal is to study advanced double-wall cooling features and apply our learning to relate defects to blade durability





**Task 1:** Manufacture FAA CLEEN II TECH blade design using AM, and test in START Lab to obtain benchmark data for cast versus additive blades.

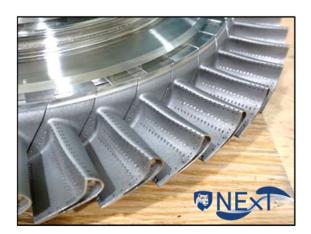
**Task 2:** Design and manufacture novel double wall cooling concepts in a section of the CLEEN II TECH blade to evaluate feasibility.

**Task 3:** Test novel double wall cooling concepts in PSU's high speed linear cascade to downselect best cooling geometries.

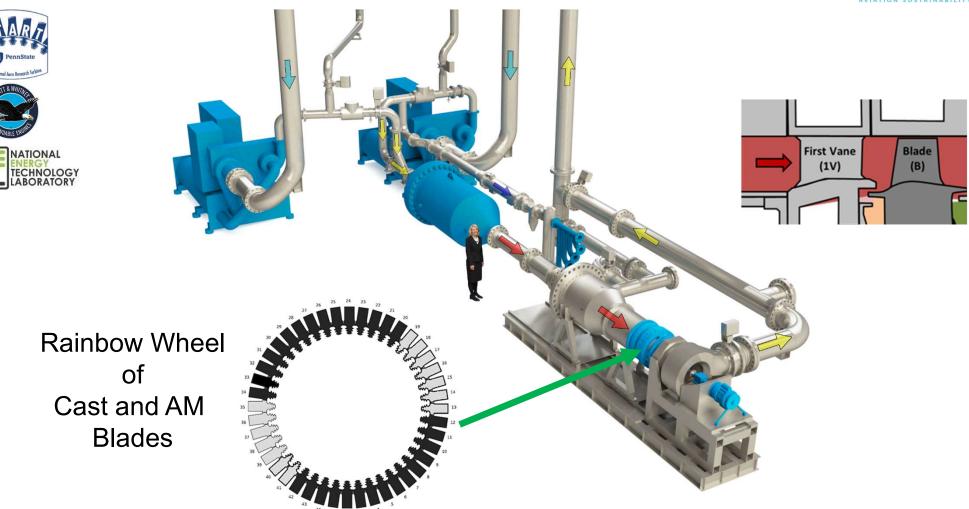
**Task 4:** Use wealth of data from the CLEEN II TECH testing and the AM blades to relate specific manufacturing defects to cooling debits (blade life).






#### **Important Outcomes:**

- 1. Comparison of cast vs AM blades at turbine-relevant conditions
- 2. Design of advanced double-wall cooling in collaboration with Pratt & Whitney

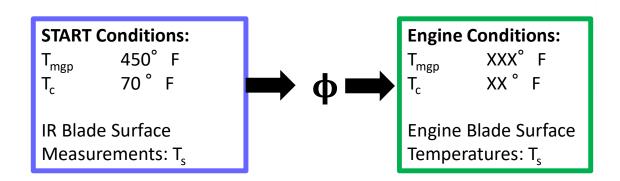

### Additively manufactured turbine components enables rapid prototyping and accelerated timelines relative to traditional casting



| Turbine Blade Manufacturing Process | Casting  | Additive |
|-------------------------------------|----------|----------|
| Tooling                             | 16 weeks | -        |
| Cores                               | 12 weeks | -        |
| Wax Patterns                        | 12 weeks | -        |
| Casting / Printing                  | 20 weeks | 16 weeks |
| Machining                           | 10 weeks | 10 weeks |
| Completed Component                 | 70 weeks | 26 weeks |

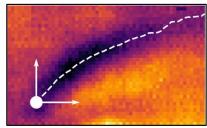


### The existing test turbine in START is a single stage



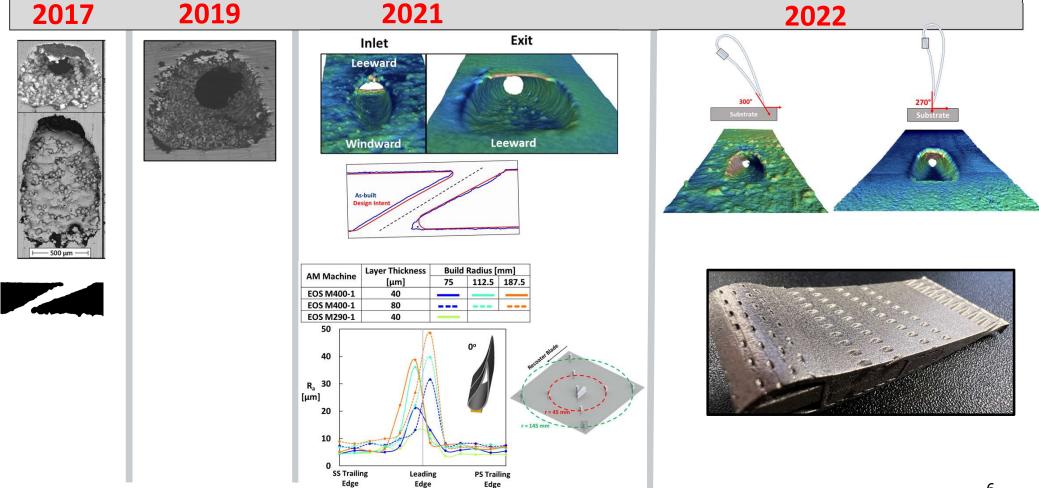

### **Spatial measurements in START are presented non-dimensionally so they can be directly related to engine blade temperatures**




Requirements: Matched Re, Ma, and Biot

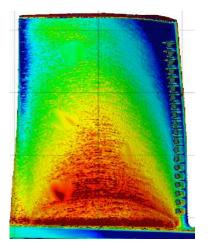
$$\Phi = \frac{T_{MGP} - T_s}{T_{MGP} - T_c}$$



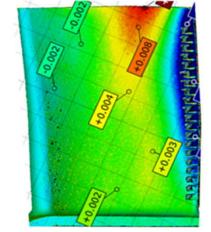



#### Feature to Entire Blade

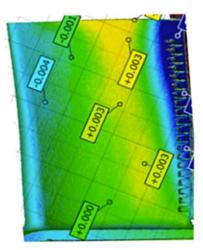



# Film-cooling holes and small features continue to be challenging to print at small scales, but AM technology has been advancing






### In practice, trial prints are still a requirement to assess build direction, processing parameters, feature choices, etc


Trial #1




Trial #2



Trial #3



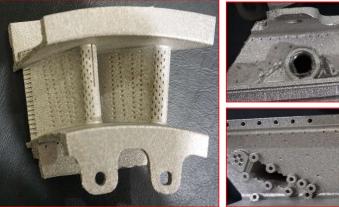







# The NExT vane was printed at four locations to learn how vendor, partner, and machine influence part quality






Vertex Manufacturing – Velo Sapphire - 2022



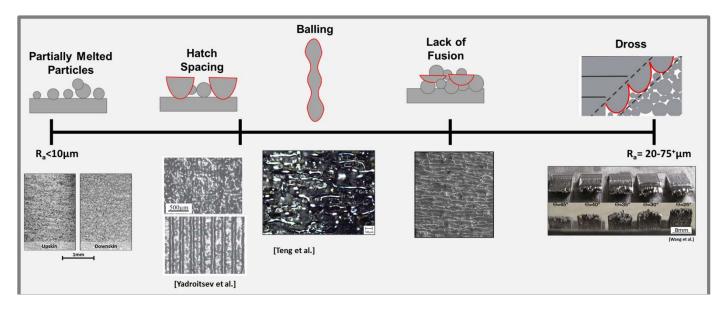


Siemens Energy – EOS - 2022





#### FAA ASCENT 56 allowed Penn State and Pratt and Whitney to learn about what differences AM creates versus casting on a turbine blade




| Airfoil Feature                           | Variations<br>Experienced                                                        | Explanation of Variance                                                                              | Best Practice Moving Forward                                                                                                         |
|-------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Aerodynamic shape<br>and<br>witness lines | Up to 0.020"                                                                     | Support structures will pull or<br>push due to heat sinks. Interior<br>features cause witness lines. | Vendors who understand how to<br>design supports are key to a<br>good shape.                                                         |
| Interior passage<br>walls                 | Communication                                                                    | Walls are often thinner than AM can print                                                            | Trial cut ups, flow testing, or CT<br>scans needed to ensure all walls<br>are printed                                                |
| Interior roughness                        | High roughness<br>>200 Ra<br>(deviation from<br>a mean height<br>in microinches) | Incorrect orientation; build<br>parameters (layer thickness);<br>machine issues                      | Trials and experienced vendors<br>with in-house parameters are<br>good. Some vendors have<br>consistently lower roughness<br>levels. |

### The program taught the team and partners about AM issues



| AM Issue  | Variations<br>Experienced            | Explanation of Variance                                        | Best Practice Moving Forward                                 |
|-----------|--------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| Globules  | Balls of metal                       | Down skin small features do not melt before gravity takes over | Try to limit down skin interior features by print direction, |
| Rib shape | Not symmetric / not<br>matching cast | Each side of the rib can be different and ribs can be wavy     | Trials needed and design for additive                        |
| Pin shape | Not symmetric / not<br>matching cast | Not circular per design                                        | Trial with CT scan evaluations to update design              |

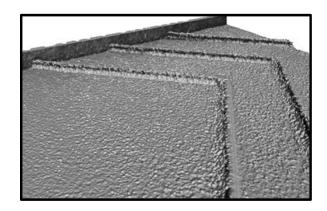






10




### Some features must be machined due to today's AM limitations

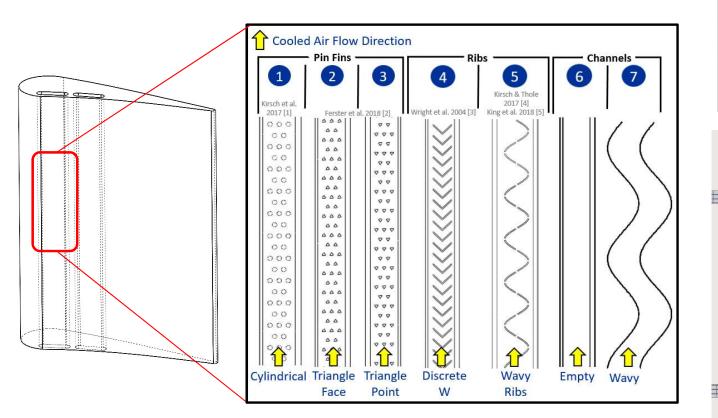
| Airfoil Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Variations<br>Experienced      | Explanation of Variance                                                                       | Best Practice Moving Forward                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dove Tails / Fir Trees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unable to<br>meet<br>tolerance | These features have<br>tolerances less than<br>0.001" which additive<br>cannot yet match      | Need the AM vendor to<br>overstock the part so a<br>machining vendor can finish it.                                                                                            |
| Cooling holes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hole<br>collapsing             | Holes are either too small<br>or collapse due to print<br>orientation.                        | Use EDM on the majority of holes. TE slots and larger tip holes have printed well.                                                                                             |
| Exterior Roughness<br>$\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{\frac{1}{$ | High<br>roughness<br>(>200 RA) | Incorrect build orientation,<br>printing parameters (layer<br>thickness) or machine<br>issues | Trials and experienced vendors<br>with in-house parameters help.<br>Some vendors have consistently<br>less roughness than others and<br>some have better smoothing<br>methods. |



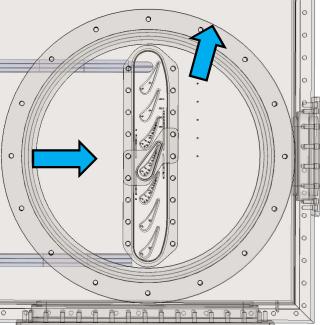
# Penn State, Pratt and Whitney, and Vertex were able to produce a blade that met key inspection data

| Airfoil Feature    | Inspection Method                           | Comments                                                                      |
|--------------------|---------------------------------------------|-------------------------------------------------------------------------------|
| Aerodynamic Shape  | Blue Light Scan/ CMM                        | Aerodynamic shape was<br>well within tolerance and<br>better than cast blades |
| Interior Features  | Destructive Testing with<br>Blue Light Scan | Interior ribs (trip strips)<br>printed well even at scale                     |
| Overall Flow       | Bench Top Test                              | Overall blade was within 15% of the cast blade                                |
| Exterior Roughness | Vertex data                                 | Less than 120 RA on the aerodynamic surface                                   |




### The learning from this program has allowed Penn State and Pratt and Whitney to go after new programs using AM



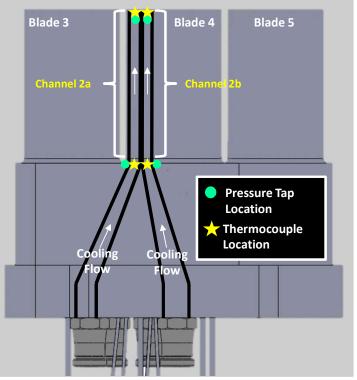

| Program                                                                                                     | How Ascent 56 Impacts                                                                                                                                                                                         | Program Benefit                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NASA HyTEC (PW is Prime)                                                                                    | Pratt and Whitney is manufacturing<br>turbine blades at the same vendor<br>as Ascent 56 because of their<br>performance. They will be using<br>inspection, printing parameter, and<br>design lessons learned. | The NASA HyTEC program will allow<br>Pratt and Whitney to advance their new<br>blade geometry to a higher TRL that<br>would not have been possible without<br>AM and the Ascent 56 program. |
| NExT<br>NEINER<br>NATIONAL<br>NERGY<br>TECHNOLOGY<br>TECHNOLOGY<br>Solar Turbines<br>Aerospace<br>Aerospace | Lessons learned about inspection<br>and printing parameters allowed<br>START to make informed decisions<br>to successfully print AM vanes and<br>blades.                                                      | AM allowed the program to go much<br>faster than casting. START has been<br>waiting for cast blades for over three<br>years while AM took one year.                                         |
| NASA ULI                                                                                                    | Penn State will use its experience in<br>AM to print a new set of blades using<br>Ascent 56 lessons learned.                                                                                                  | Cast blades for this project would have<br>been too expensive and not within the<br>program timeline.                                                                                       |

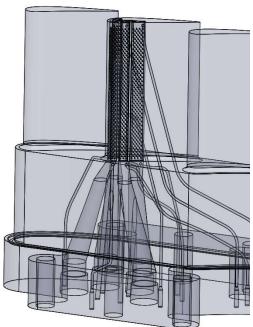
# Novel cooling features were packaged into microchannels in a section of the FAA TECH blade, for testing in a high speed cascade



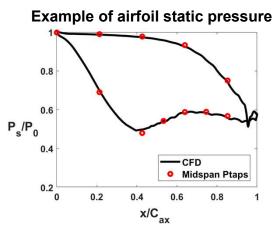




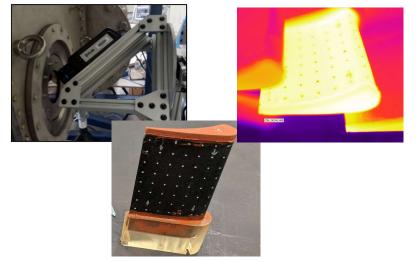




14

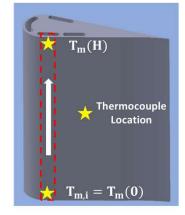
## The AM-fabricated test blades contain cooling feeds and internal instrumentation that would otherwise be impossible to create





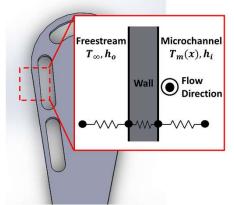



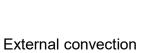




# High speed cascade benchmarking has been completed and novel data reduction techniques have been developed



Example IR thermography of surface including spatial calibration





Method to obtain convection coefficients in-situ

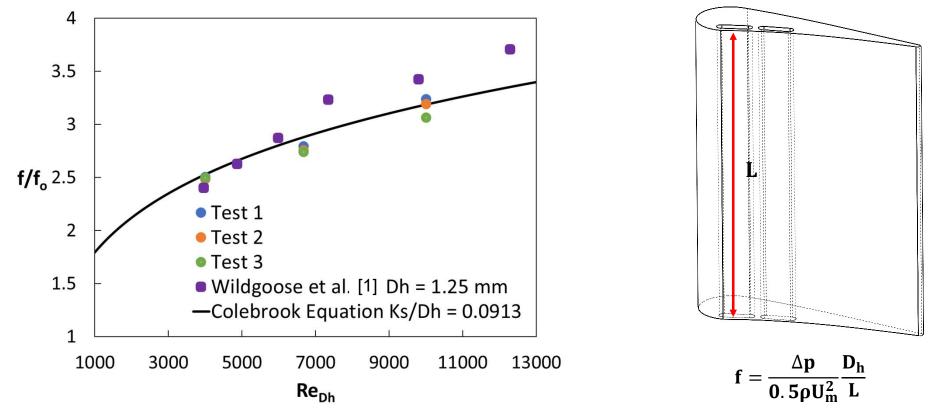


Overall convection coefficient:

 $\overline{\mathbf{U}} = -\frac{\dot{\mathbf{m}}\mathbf{c}_{\mathbf{p}}}{\mathbf{A}_{\mathbf{s}}} \ln \left[ \frac{(\mathbf{T}_{\infty} - \mathbf{T}_{\mathbf{m}}(\mathbf{H}))}{(\mathbf{T}_{\infty} - \mathbf{T}_{\mathbf{m}})} \right]$ 

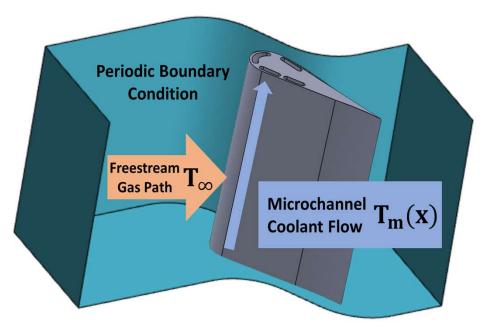


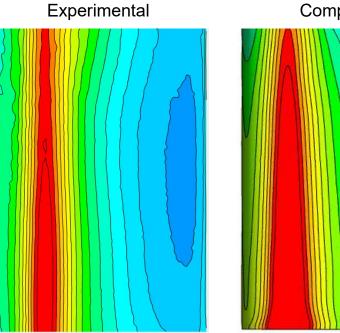



 $h_o = \overline{U} \frac{[T_{\infty} - T_m(x)]}{[T_{\infty} - T_s(x)]}$ 

Internal convection (inside microchannel):

(hot gas path):

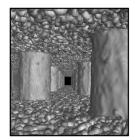

 $h_{i} = \frac{1}{\left(\frac{1}{\overline{II}} - \frac{1}{h_{c}}\right)}$ 


## The friction factor for the baseline microchannel shows excellent repeatability and compares well to prior data on AM microchannels

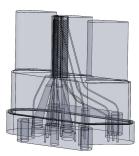


<sup>[1]</sup> Wildgoose, Thole, Sanders, and Wang, J. Turbomach 2021

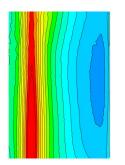
# Computational predictions of the external metal temperature with the baseline microchannel compare reasonably to experiments







Computational

### This program has already had significant impact in development of advanced manufacturing for improved turbine efficiency






We have acquired a lot of learning through this program about applying AM to turbine airfoils to advance the state of the art



Novel high performance cooling designs have been fabricated through AM and will be analyzed using CT scanning



Analysis of novel cooling designs will provide information about cooling performance enhancement potential