ASCENT Project 10 Aircraft Technology Modeling & Assessment

Georgia Institute of Technology & Purdue University

- PI: Dimitri Mavris, GT
- PM: Sandy Liu

Laszlo Windhoffer

Cost Share Partner: Boom Supersonics, Georgia Institute of Technology

Research Approach:

SST Vehicle Modeling:

- RANS CFD based aero shaping
- Multi-fidelity and parametric drag polar generation
- RANS CFD for LTO drag estimation
- Propulsion cycle modeled with NPSS using parametric loss models and multi-design point sizing
- Propulsion power management utilizes variable nozzle throat and fuel flow to optimize fuel efficiency or noise
- Propulsion flowpath and weight modeled with WATE++
- Mission analysis using FLOPS sizes vehicle for 65pax, Mach 1.7, 4250 nmi
- LTO trajectory modeled using FLOPS detailed takeoff and noise modeled using ANOPP
- Vehicle design space is parametrically explored to determine impact on noise and fuel burn
- Developing modeling methods for supersonic full-flight capabilities in AEDT

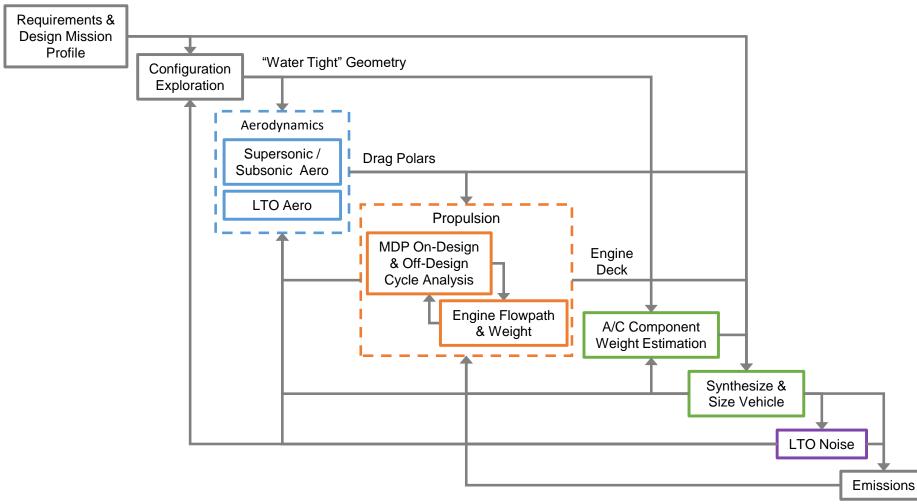
Objective: Model and assess potential evolution of commercial airline fleet due to the introduction of future supersonic aircraft and how technology development could affect the environmental impacts of aviation (e.g., fleet-level fuel burn, emissions and noise). The effort will examine *SST vehicle modeling; fleet route simulation; fleet simulation, and AEDT supersonic modeling.*

Project Benefits: Provide an understanding of how introduction of new supersonic transports that could enter into commercial airline service and private use will affect fleet-wide fuel burn, noise and emissions.

Major Accomplishments (to date):

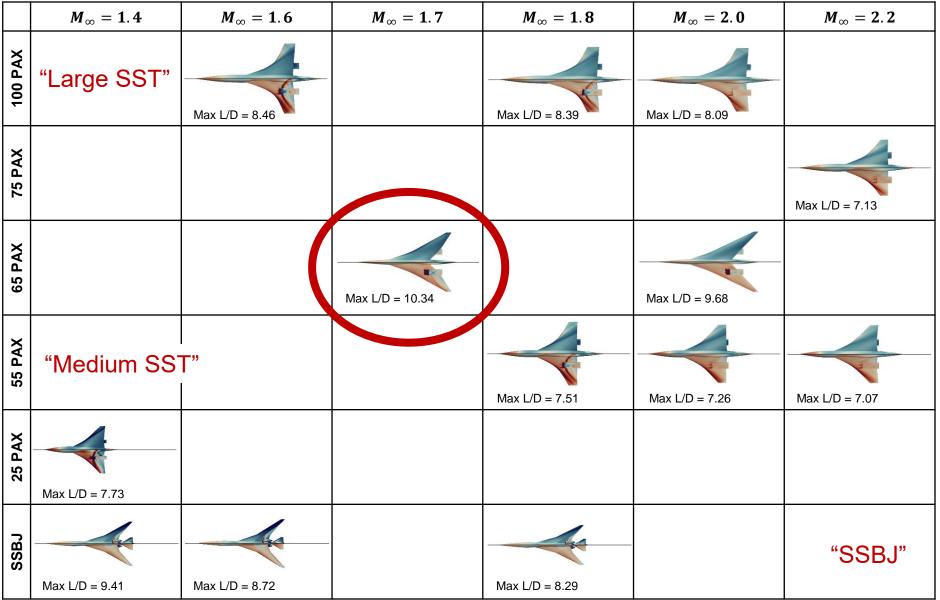
- **SST Vehicle Modeling:** Successfully implemented new RANS CFD based active subspace aero optimization; Implemented parametric drag polar into mission analysis; implemented VRNS optimization; used generic GT 65pax M1.7 SST for Greensboro Airport
- **Fleet Route Simulation:** Developed flexible route optimization tool; Completed future SST demand study where demand depends on vehicle capabilities; Supported CAEP E-Study; Developed inventory of estimated future global SST emissions
- **AEDT SST Full-Flight Modeling:** Developing implementation plan for SST models in AEDT; Decided on OD pairs for initial SST mission type implementations in AEDT

Future Work/Schedule remainder of PoP: Complete

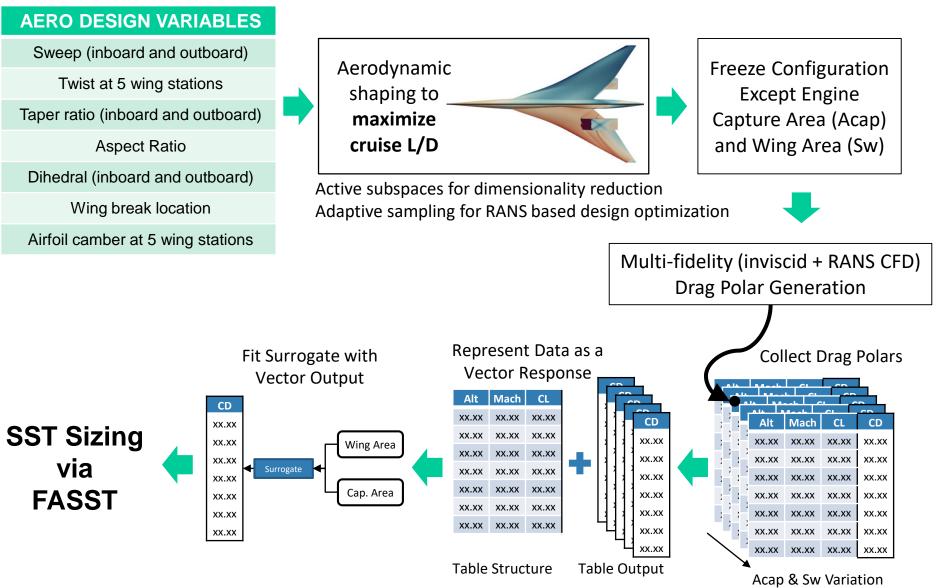

new 65-passenger M2.0 SST; Perform validation on off-design missions for all SSTs for AEDT; Develop and validate models using newly obtained OEM data for AEDT; Develop and support AEDT implementation activity for one SST concept

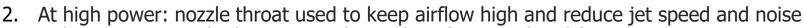
This research was funded by the U.S. Federal Aviation Administration Office of Environment and Energy through ASCENT, the FAA Center of Excellence for Alternative Jet Fuels and the Environment, project 10 through FAA Award Number 13-C-AJFE-GIT-1006 under the supervision of Rangasayi Halthore, Maryalice Locke, and Laszlo Windhoffer. Any opinions, findings, conclusions or recommendations expressed in this this material are those of the authors and do not necessarily reflect the views of the FAA.

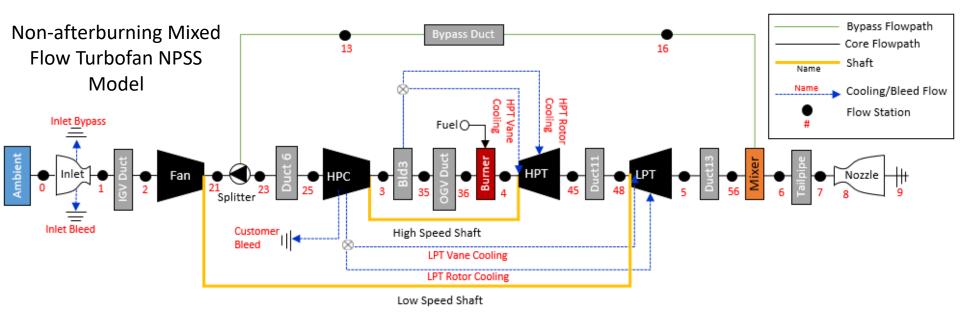
Framework for Advanced Supersonic Transport (FASST)



Purpose: Modeling and simulation (M&S) environment to design commercial supersonic transports with capability to examine fuel burn and LTO noise interdependencies and with direct linkage to fleet analysis


Matrix of SST Airframe Designs


Aerodynamics: Optimized Wing Geometry



Supersonic Engine Modeling

- On-Design
 - Simultaneous multi-design point sizing
- Off-Design
 - Engine has 2 controls:
 - 1. fuel flow
 - 2. nozzle throat
 - For mission analysis:
 - 1. fuel flow controls thrust
 - 2. nozzle throat targets peak fan efficiency
 - For LTO noise analysis:
 - 1. Fuel flow still controls thrust

3. At low power: nozzle throat is used to reduce fan speed and fan noise

Engine Design Parameters

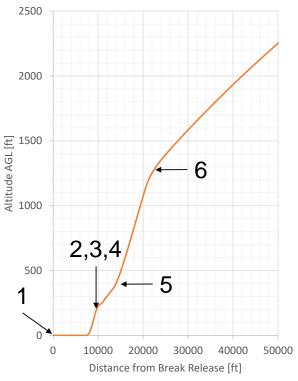
Fan Pressure Ratio

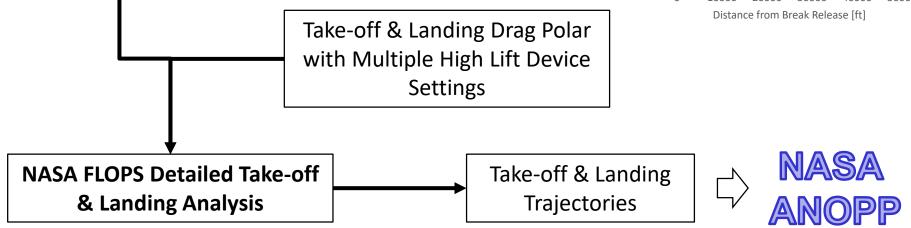
Overall Pressure Ratio

Design Turbine Rotor Inlet Temperature

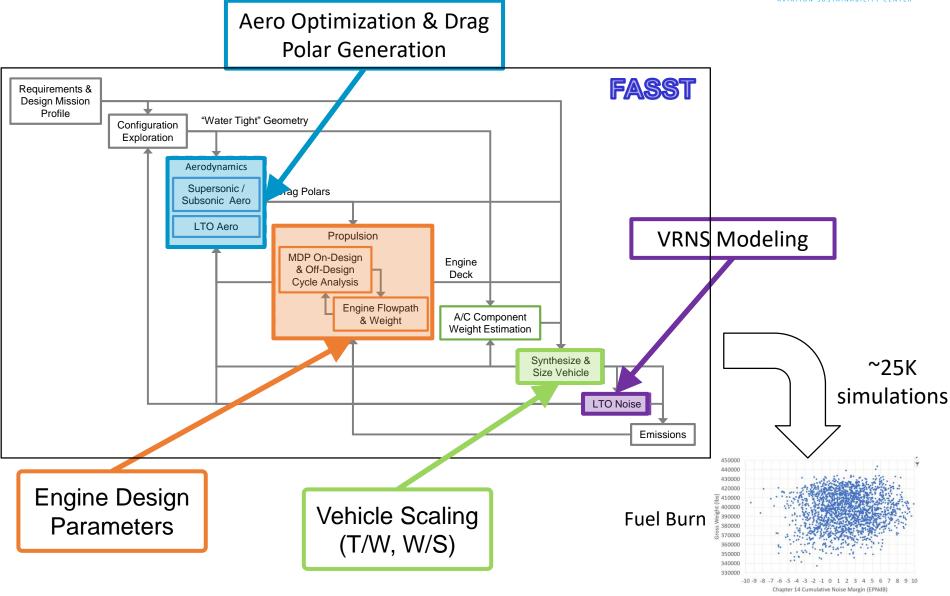
Bypass Ratio

Max Turbine Rotor Inlet Temperature

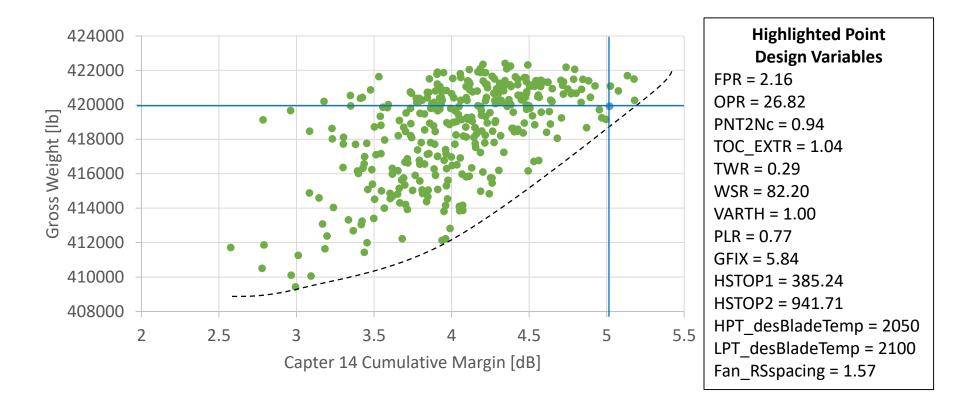

Variable Noise Reduction System (VRNS) Modeling



Trajectory Variables

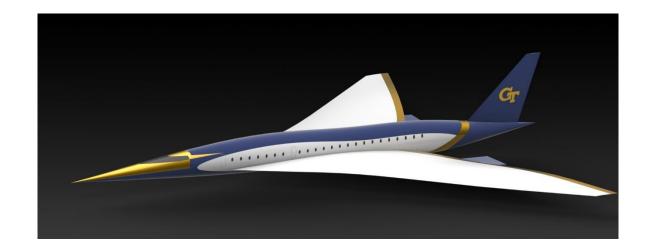

- 1. Takeoff De-rate initial reduction in thrust for takeoff
- 2. Programmed Lapse Rate automatic reduction in thrust engaged after the obstacle
- 3. Programmed High Lift Devices automatic schedule of high lift devices settings optimized for L/D
- 4. Target Flight Path Angle reduced flight path to gain speed
- 5. Transition to Constant Thrust and Speed maintain speed and gain altitude
- 6. Pilot Initiated Cutback

Pareto Front Generation



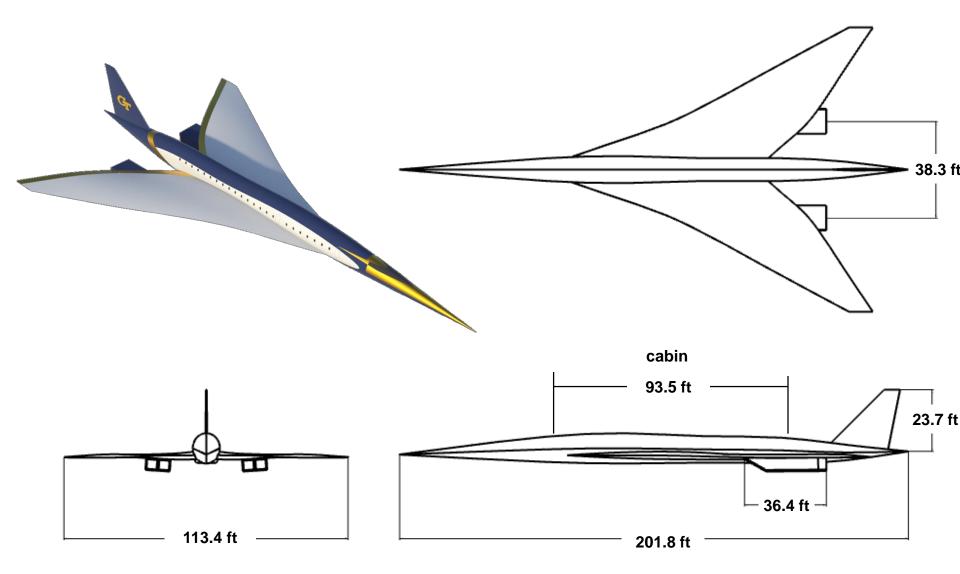
LTO Noise

65pax Mach 1.7 Pareto Front



Highlighted design point predicts just over 5db of margin The gross weight penalty needed to gain 1db of margin increases with margin

Requirements and Configuration Assumptions



- The vehicle described in this presentation was designed to several requirements
 - Passengers: 65
 - Range: 4,250 nmi
 - Cruise Mach: 1.7
 - Max Takeoff and landing field length: 11,000 ft
 - Approach speed: 165 kts
 - Chapter 14 Noise Margin: 5 EPNdB
- Additional configuration assumptions
 - No horizontal tail
 - Double-delta wing
 - Number of engines: 4 mixed-flow turbofans, under-wing

65pax Mach 1.7 SST Optimized Geometry

65pax SST Results

Description	Value			
Design Range	4,250 nmi			
Design Payload	13,650 lbs			
Design Cruise Mach No.	1.7			
Block Fuel	156,611 lbs			
Total fuel	183,725 lbs			
Fuel fraction	0.438			
Take-off Field Length	10,832 ft			
Landing Field Length	10,442 ft			
Approach Speed	164.9 kts			
Max L/D (cruise)	10.34			
TSFC (cruise)	1.023			
CL @ 12deg Take-off	0.704			
CL @ 8deg Landing	0.658			

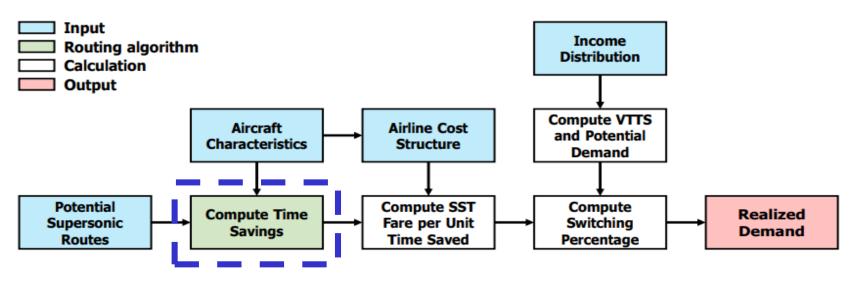
Description	Value			
Ramp Weight	419,923			
Span	113.5 ft			
Wing Area	5,109 ft ²			
Aspect Ratio	2.52			
Taper Ratio	0.109			
1/4 Chord Sweep	61.6 deg			
VT Area	373.4 ft ²			
VT Span	23.7 ft			
VT Aspect Ratio	1.5			
VT 1/4 Chord Sweep	38.7 deg			
Fuselage Length	201.83 ft			
Fuselage Height	12 ft			
Fuselage Width	10.75 ft			

Weight Breakdown

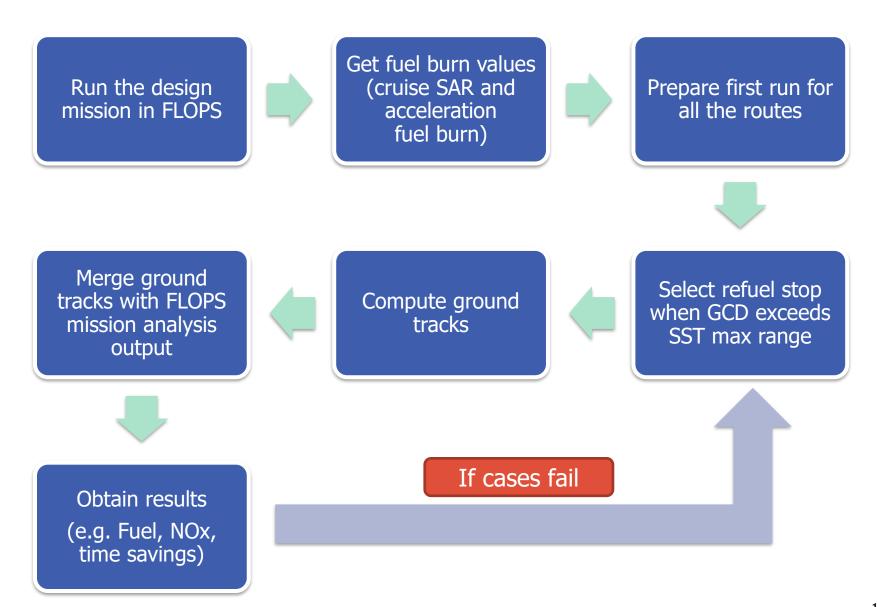
Empty Weight Item	Weight [lb]		
WING	78,114		
VERTICAL TAIL	2,061		
FUSELAGE	31,115		
LANDING GEAR	18,386		
STRUCTURE TOTAL	129,676		
INSTALLED ENGINES*	43,664		
FUEL SYSTEMS/ PLUMBING	3,024		
PROPULSION TOTAL	51,705		
SURFACE CONTROLS	6,466		
AUXILIARY POWER	888		
ELECTRICAL & INSTRUMENTS	4,895		
HYDRAULICS	3,104		
AVIONICS	1,852		
FURNISHINGS & MISC SYSTEMS	15,023		
AIR CONDITIONING & ANTI-ICING	3,807		
FIXED EQUIPMENT TOTAL	36,035		

Mass and Balance: Summary	Weight [lbs]		
WEIGHT EMPTY	217,416		
OPERATOR ITEMS	5,134		
OPERATING WEIGHT EMPTY (OWE)	222,549		
PAYLOAD 65 Passengers + baggage (210 lbs each)	13,650		
ZERO FUEL WEIGHT	236,199		
TOTAL FUEL	183,724		
TRIP FUEL (TOTAL w/o RESERVES AND TAXI)	156,611		
RAMP GROSS WEIGHT	419,923		
Taxi Out Fuel Weight	1,215		
MAXIMUM TAKE-OFF WEIGHT	418,708		
OEW/MTOW	0.532		

*includes bare engine, accessories, mounts, inlet, nozzle, nacelle


Fleet Analysis Overview

- **Updated** demand forecast from the **latest** Boeing Commercial Market Outlook (2022)
 - COVID recovery is still on-going
 - Boeing calls for a full recovery of global aviation by 2024, along with a return to growth rates comparable to those observed pre-pandemic


Decline in world total passengers			
2022 vs. 2019	📕 -28% to -29%		
2021 vs. 2019	↓ -49%		
2020 vs. 2019	-60% Source: ICAO		

- Value of Travel Time Savings (VTTS) calculated to estimate passengers willing to pay extra for time savings
- Use income distribution and ticket price estimates to infer switching percentage

Refresher: Off-design Mission Analysis Flowchart

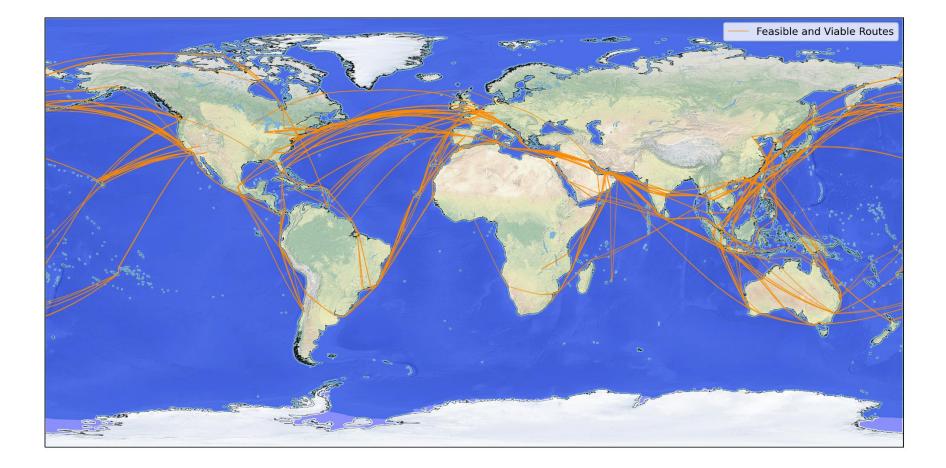
Fleet Analysis Results

Passenger load factor assumption: 80%

Total potential routes in **2050** using the updated forecast: **1222**

- dropped from 2000+ forecasted pre-pandemic, but basically a subset of the previous routes
- routes with high passenger demand for SST service, not necessarily viable

Viability Filters


- >20% relative time savings compared to the reference subsonic aircraft
- >2 hrs. absolute time savings compared to the reference subsonic aircraft
- **>1** flight per day in 2050
- < **\$1,000** ΔFare per hour saved

Aircraft Model	Feasible and Viable Routes	% Feasible Routes Also Viable	% Routes with Refuel	Total Daily Flights in 2050	Total Annual Flights (Thousands)	Total Annual Passengers (Millions)	Total Annual Flight Distance (Billion km)
65pax M1.7	391	32.0%	24.3%	1432	523	27.2	3.19
Total Annual Flight Hours (Millions)	Total Annual ASK (Billions)	Total Annual RPK (Billions)	Total Annual Fuel Burn (Megatonne)	Total Annual CO2 (Megatonne)	Total Annual NOx (Kilotonne)	Fuel Intensity (kg/ASK)	Fuel Efficiency (RPK/L)
2.54	207.2	165.8	29.8	94.0	450.3	0.144	4.45

Fleet of ~1700 aircraft is required

Trajectories of the Forecasted SST Flight Network

Summary Remarks

- Showcased following capabilities ...
 - Aero shaped optimization process
 - Utilizing active subspace technique
 - Supersonic propulsion system modeling
 - Multi-fidelity and parametric drag polar generation process
 - VRNS modeling process
- Interdependencies between fuel burn and LTO noise (Ch.14 margin)
 - Varies along the Pareto Front
- Full flight modeling of SSTs in AEDT
 - Arrived at consensus on AEDT implementation requirements to address specific differences between SSTs and subsonic aircraft
 - Developed a plan for generating data packages for enabling full-flight SST modeling in AEDT
 - Generating data for NASA 55t STCA on a set of 4 high demand OD pairs for enabling first cut implementation of SSTs in AEDT
 - Developing requirements and scoping documents to lay out specifics of implementation plan for SMEs
- Updated fleet analysis
 - Using latest forecast including Covid
 - Latest M 1.7 vehicle