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Objective:
Compare performance impacts and emissions-
reduction potential of new fuel types, engines and 
combustion concepts

Develop and utilize in-depth engine cycle and 
chemistry models to evaluate impact of new 
combustion technologies on emissions.

Project Benefits:
Co-optimization of engine cycle and combustor can 
yield better efficiency and emissions, leading to 
greater long-term environmental sustainability as 
well as economic benefits for the aviation sector

Research Approach:
This project involves three steps:

• Engine cycle analysis – Study change in cycle 
performance with new technological concepts at 
the system level

• Combustor analysis – Use cycle parameters 
and determine impact of new technology on 
emissions

• Mission analysis – Analyze potential trade-offs 
during different flight segments to evaluate 
feasibility for different missions

Major Accomplishments (to date):
• Varied fuel distribution for a lean-burn radially-

staged combustor to minimize NOx emissions 
throughout all operating conditions

• Estimated the maximum EINOx reduction 
achievable at different phases of flight using a 
lean-burn radially-staged combustor with 
variable fuel distribution

Future Work / Schedule:
• Investigate the potential of duel-fuel lean-burn 

axially-staged combustors in reducing NOx
emissions  
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Introduction

Staged Combustor

Fuel distributed 
between two 

stages/flame zones

Emissions can be reduced by lowering combustor peak 
temperature and altering chemical kinetic pathways:

– Water injection reduces combustor inlet temperature through 
evaporation, resulting in lower burner peak temperature

– High-reactivity additives can allow leaner operation, reducing 
concentrations of soot precursors 

– Staged combustor achieves high-power lean-burn process, 
reducing the sizes of hot spots and stoichiometric zoneEm
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Flexible fuel distribution 
for different power 
levels / operating 

conditions

Control fuel distribution 
to minimize NOx
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Combustor Chemistry – Schematic

Fuel and air partitioned 
between two stages: 
• Pilot Stage

• Provide combustion 
stability

• Main Stage
• Provide low NOx

emissions
• Only fueled during 

high-power 
operations

CRZ: Corner Recirculation Zone; PRZ: Primary Recirculation Zone

*Sulabh K. Dhanuka et al., “Unsteady Aspects of Lean Premixed Prevaporized Gas Turbine 
Combustors: Flame-Flame Interactions,” Journal of Propulsion and Power, 2011

How should fuel be distributed between the pilot and main stages to 
minimize NOx emissions while maintaining combustor stability?
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Combustor Chemistry – Model

• Chemical reactor network represents the lean-burn radially-staged combustor 
• Each stage modeled by a Well Stirred Reactor (WSR) and a Plug Flow Reactor (PFR) 

in series

• Parallel WSRs model the incomplete fuel-air mixing in the pilot stage
• Modeled as a normal distribution of equivalence ratio (ɸ) across WSRs
• Fully premixed fuel and air assumed for the main stage

• Combined mixing flow exchanges mass between the two stages along the length 
of the combustor 

• Represent the gradual mixing between the exhausts of two streams

• Main stage fuel introduced only at high power (ɸmain > 0.4)
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Simulation Procedure – Model

Goal: Study effect of fuel distribution on emissions over all phases 
of flight

1. Transport Aircraft System OPTimization (TASOPT)
• Calibrate against payload-range plot of a certain airplane
• Taken a given flight mission with certain range and payload requirements
• Calculate engine operating conditions for different phases of flight

• Mach number; Temperature; Pressure; Thrust

2. Numerical Propulsion System Simulation (NPSS)
• Calibrate against publicly available parameters for a certain engine
• Taken engine operating conditions
• Compute combustor operating conditions for different thrust level

• Air flow rate; Fuel flow rate; Temperature; Pressure 

3. Chemical Reactor Network Model (Pycaso)
• Calibrate against ICAO Aircraft Engine Emissions Databank (EEDB)
• Taken combustor operating conditions
• Estimate emissions indices (Ex. EINOx) with different combustor design parameters
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Results: EINOx at static conditions
• Pilot + main operation with varying Main Fuel Fraction (MFF)

• Main Fuel Fraction ≡ Main Fuel
Pilot Fuel+Main Fuel

• At different sea level static thrust condition, find the MFF with minimum EINOx

EINOx
[g/kg]Minimum EINOx condition

Incomplete Combustion

o There exists an optimal MFF with 
minimum EINOx at each thrust 
condition
 A balance between NOx emissions 

formation in pilot and main stages

o The critical MFF varies in a semi-
discrete fashion with 3 modes
 Pilot-stage-dominated NOx

production mode
 MFF ≈ 52%
 70%  100% Thrust

 Main-stage-dominated NOx
production mode
 MFF ≈ 66%
 30%  70% Thrust

 Pilot only (MFF = 0) at low powerDiscrete Fuel Staging Control Scheme
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Results: EINOx at static conditions
• Equivalence Ratio

• 𝜙𝜙 ≡ Fuel Air Ratio
Stoichiometric Fuel Air Ratio

• Same EINOx plot but against the Main Stage Equivalence Ratio

EINOx
[g/kg]

Minimum EINOx condition

Incomplete Combustion

o There exists an upper limit for the 
main stage equivalence ratio above 
which EINOx quickly increases

o Due to the partially premixed fuel-air 
condition in main stage
o Flow temperature rises globally 

and quickly as ɸmain
approaches unity

o Flow temperature stays 
uniform and low when ɸmain is 
far from unity

o Main stage only produces low 
NOx emissions under medium 
power operation  
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Results: Main Fuel Fraction in Flight

• Example Flight Mission: 2500 nmi range

EINOx
[g/kg]

Minimum EINOx condition

Incomplete Combustion

o Similar ideal main fuel 
fractions (MFF) as ground 
test
 Takeoff and Climb-out

 MFF ≈ 52%

 Cruise
 MFF ≈ 66%

 Pilot only (MFF = 0) during 
descent

o Ideal MFF depends weakly 
on engine/combustor inlet 
conditions (T3, P3,..)



9

Results: Equivalence Ratio in Flight

• Example Flight Mission: 2500 nmi range

EINOx
[g/kg]

Minimum EINOx condition

Incomplete Combustion

o Same upper limit (≈ 0.46)
for the main stage 
equivalence ratio above 
which EINOx quickly 
increases

o Ideal MFF depends weakly 
on engine/combustor inlet 
conditions (T3, P3,..) but 
strongly on the main flame 
equivalence ratio
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Quantify EINOx Reduction – Calibration

• Use multiple versions of the chemical reactor network model to bracket the 
uncertainty in EINOx estimation

• Each model calibrated against ICAO Emissions Databank EINOx and EICO Data

o The existence of different 
versions stems from uncertainty 
in combustor model parameters

o For the same EINOx level, 
smaller main flame WSR: 
o Allows more main-fuel and higher 

main flame temperature

o Might suffer stability problem which 
is not represented in the reactor 
network model



11

Quantify EINOx Reduction – Results

• Use multiple calibrated versions of the chemical reactor network model to 
bracket the uncertainty in EINOx estimation

• EINOx with and without the main flame at each phase of flight
• Adjust MFF at each point to minimize EINOx

o The green arrow represents the 
EINOx reduction benefit obtainable 
by fueling the main stage

o Percentage EINOx reduction
o Takeoff

o 42% ± 22% reduction

o Climb-out
o 50% ± 20% reduction

o Cruise
o 75% ± 10% reduction
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Conclusions

o There exists an ideal main fuel fraction (MFF) with minimum 
EINOx at each thrust condition

o This ideal MFF varies in a discrete fashion as thrust increases & 
through the mission with 3 discrete modes

o The modes correspond to conditions that keep ɸmain
approximately constant

o Compared to operating the combustor in pilot-only mode, staging 
can reduce EINOx by ~75% at cruise and ~50% at climb-out
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Next Steps

• Assess the emissions impact of using 
different fuel types on the second 
stage of a lean-burn axially-staged 
combustor

• Evaluate impacts of using plasma 
assisted combustion to stabilize 
low power operations and provide 
combustor design flexibility

Exploring additional combustor 
design concepts

• Investigate effect of air partitioning 
on emissions 

– Air split between pilot and main 
does not greatly impact the NOx-
minimizing main fuel fractions

– However, it does change the 
thrust settings at which the ideal 
MFF changes

– Air reserved for cooling 
greatly impacts the overall NOx
emissions

• Evaluate control options provided by 
circumferential variation in fuel 
staging

Understanding current
combustor configuration



14

Questions?
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