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Project Overview 

Context and Motivation 

The UAS market is expected to grow rapidly in coming years, with projections estimating the civil UAS market at $121 billion 
in the next decade [0]. Multiple operators are currently developing and testing various concepts of operations that fall within 
the umbrella of urban air mobility (UAM), with the two main use cases being drone delivery and e-taxi operations. Similar to 
traditional aircraft operations, these novel concepts are expected to influence the environment in which they operate, 
particularly regarding noise. In the same way that noise assessments of terminal operations are carried out today for 
commercial aviation, noise assessments of UAM operations are expected to be necessary in the future. 

Problem Definition 

UAM operations bring unique requirements. First, UAM operations are expected to be denser than current general or 
commercial aviation operations, possibly by orders of magnitude. Thus, noise assessment methods should be able to handle 
such large vehicle densities. Second, the vehicles are expected to be smaller and therefore quieter, e.g., small drones for 
deliveries or helicopter-sized vehicles for e-taxi applications, but these vehicles are also expected to benefit from novel 
electric propulsion systems. As a result, the noise footprint of such vehicles is expected to be more localized. Therefore, 
noise exposure levels should be estimated with sufficient resolution. Third, instead of primarily following fixed trajectories 
dictated by approach and departure routes around airports, UAM vehicles are expected to operate point-to-point within 
populated areas. Departure and arrival locations are expected to vary from day to day: delivery drones may depart from 
warehouses or mobile staging locations and deliver goods to different customers each day, and e-taxis may pick up and 
drop off customers throughout an urban area. Thus, noise assessment methods should be sufficiently flexible to 
accommodate changing flight paths, and the resulting noise assessments should account for corresponding variability. 

Research Objectives 

In view of these requirements, the methods used to perform noise assessments in terminal areas, such as the Aviation 
Environmental Design Tool (AEDT), are not fully suitable for UAM assessments: these methods are usually limited to studies 
of relatively low-density operations around airports, with vehicles following pre-defined ground tracks. Thus, there is a need 
for the development of new noise assessment capabilities tailored to UAM operations, which is the focus of this project. 

Research Approach 

Research efforts supporting the development of a UAS noise assessment tool have been broken down into four tasks.  
 
First, GIS capabilities are expected to play a major part in the development of this tool, as the scenarios under consideration, 
as well as the resulting noise metrics, are to be visualized and overlayed on the geographical area of study. Therefore, Task 
1 focuses on a literature review and evaluation of GIS software.  
 
Second, the complexity of assessing noise in the context of UAM use cases, as discussed in the previous section, calls for 
the investigation of emerging technologies in multiple computational domains. The size of these problems and the flexibility 
needed to analyze a wide variety of operational scenarios require the introduction of recent innovations to address the 
challenges discussed previously. This is the focus of Task 2.  
 
This research was conducted in collaboration with other entities, starting with Mississippi State University (MSU) and followed 
by subsequent collaborations, which are presented under the umbrella of Task 3.  
 
Finally, Task 4 focuses on the integration of all components investigated or provided by other tasks into the actual UAS noise 
assessment engine. Technical details pertaining to the implementation, as well as preliminary results on benchmark test 
cases, are presented in this section. 

  

 

 

 

 



 

Task 1 - Literature Review and Evaluation of GIS Software 
Georgia Institute of Technology 
 
Task 1 Contents 

1.1. Objectives 
1.2. Research Approach 
1.3. GIS Libraries  
1.4. GIS Applications 

1.1. Objective 

This task aims to identify the leading open-source GIS software using preset evaluation criteria.  

1.2. Research Approach 

This review focused on open-source options. For an adequate evaluation of the options, six criteria were set forth: 

1. Data import: Ability to read shape files with different formats of input geometrical data as well as rasterized 
(gridded) data 

2. Data storage: Capability to store geospatial data in either shape/vector formats or as rasterized data 
3. Geometric calculations: Ability to convert to and from a Cartesian coordinate system and other Earth model 

coordinates and ability to compute polygon areas and lengths as well as unions and subtractions  
4. Geospatial calculations: Ability to perform calculations on given vector or raster data and to draw contour plots 
5. Display: Ability to print raw or processed geospatial data as various map displays and to enable standard desktop 

and web applications 
6. Map data: Capability to display results with relation to landmasses, political boundaries such as states and counties, 

and roads and buildings 

In addition to evaluating software, we also investigated GIS applications to examine the option of creating a stand-alone, 
customized library or component.  

1.3. GIS Libraries 

1.3.1. QGIS 

QGIS is a user-friendly open-source GIS written in C++. The latest version is 3.24 (released in February 2022). QGIS runs on 
Linux, Unix, Mac OSX, Windows, and Android and supports numerous vector, raster, and database formats and 
functionalities. Apart from built-in functionalities, QGIS allows users to install and create their own plug-ins. New applications 
can also be created in QGIS through C++ and Python languages. Screenshots of QGIS are shown in Figure 1. 

 

	
	

Figure 1. Screenshots of QGIS. 

 

 

 

 



 

Evaluation Criteria 

1. Data import: Imports shape files such as GPX, GPS, DXF, DWG, and OpenStreetMap, as well as raster files 
2. Data storage: Stores geospatial data in vector and raster formats  
3. Geometric calculations: Supports Cartesian (x, y), polar (length, angle), and projected (x-north, y-east) calculations; 

calculates length or area of geometrical features; and provides overlay, union, and difference between areas 
4. Geospatial calculations: Creates a vector contour map from an elevation raster and carries out raster-to-vector 

conversion 
5. Display: Can provide web mapping with QGIS2Web; can publish data on the internet using a webserver with the 

University of Minnesota MapServer or GeoServer installed 
6. Map data: Displays geospatial data such as countries, states, and counties as well as roads 

1.3.2. OpenJUMP 

OpenJUMP is a Java-based open-source GIS (latest version: 2.0, released in March 2022). OpenJUMP works on Windows, Linux, 
and Mac platforms with Java 1.7 or later. OpenJUMP’s features include reading and writing vector formats, displaying 
geospatial data, and executing geometric calculations. Additional plug-ins for more capabilities are also available. OpenJUMP 
is distributed under the GNU General Public License version 2. Screenshots of OpenJUMP are shown in Figure 2. 

 

	
	

Figure 2. Screenshots of OpenJUMP. 

Evaluation Criteria 

1. Data import: Imports shape and raster files 
2. Data storage: Stores geospatial data in vector and raster formats  
3. Geometric calculations: Supports coordinate reference system (CRS) (Cartesian [x, y, z], geographic [longitude, 

latitude, height], and projected [x-north, y-east]) conversions; provides a CRS transformation tool (PROJ4); calculates 
length or area of geometrical features; provides overlay, union, and subtraction 

4. Geospatial calculations: Provides conversion between desired file formats (raster-to-vector conversion); does NOT 
provide contour plots 

5. Display: Does NOT provide a web application 
6. Map data: Displays geospatial data such as countries, states, and counties as well as roads 

1.3.3. SAGA (System for Automated Geoscientific Analyses) 

SAGA is an open-source cross-platform GIS software written in C++ (latest version: 2.0, released in June 2007). SAGA can be 
run on Windows, Linux, FreeBSD, and Mac (OS X). SAGA provides multiple libraries for GIS calculations: digital terrain analysis, 
image segmentation, fire spreading analysis and simulation, etc. In addition to these libraries, SAGA allows the scripting of 
custom models through the command line interface (CLI) and Python interface. Screenshots of SAGA are shown in Figure 3. 

  

 

 

 

 



 

Evaluation Criteria 

1. Data import: Imports shape and raster files 
2. Data storage: Stores geospatial data in vector and raster formats 
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude) and Universal Transverse 

Mercator (UTM) calculations; computes polygon areas or lengths 
4. Geospatial calculations: Performs raster-to-vector conversions and can create contour lines 
5. Display: Displays data as histograms and scatter plots 
6. Map data: Enables visualization of spatial data as cartographic maps; can also import maps from Web Map Service 

and OpenStreetMap.  

 

	

Figure 3. Screenshots of SAGA. 

1.3.4. Deck.gl 

Deck.gl is a WebGL visualization framework for large datasets (latest version: 8.7.3, released in March 2022). Deck.gl allows 
the user to map data (JavaScript Object Notation [JSON] objects, CSV) into a stack of layers. These layers can be imported 
directly from a catalog or built by the user.  

Evaluation Criteria 

1. Data import: Reads shape files and CSV/GeoJSON files 
2. Data storage: Can store geospatial data as vector or shape files  
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude) using Web Mercator; does NOT 

calculate polygon areas or lengths 
4. Geospatial calculations: Does not convert raster data to vector data; can create contour lines for a given threshold 

and cell size  
5. Display: Offers an architecture for packaging advanced WebGL-based visualizations; enables users to rapid obtain 

impressive visual results with limited effort 
6. Map data: Easily displays geospatial data with relation to roads and buildings 

 

1.3.5. Kepler.gl 

Kepler.gl is an open-source geospatial analysis tool for large-scale datasets (version 2.5.5). The most recent update was 
made in September 2021. A user interface was created to facilitate the process of saving a map to back-end storage, and a 
graphics processing unit (GPU) data filter was added, with the ability to create polygon filters in the user interface. 
 
  

 

 

 

 



 

Evaluation Criteria 

1. Data import: Can read CSV/GeoJSON files and Kepler.gl’s sample datasets; must convert shape files to 
a GeoJSON file to be consumable by kepler.gl 

2. Data storage: Cannot store geospatial data as vector or shape files 
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude) using Web Mercator; does NOT 

calculate polygon areas or lengths 
4. Geospatial calculations: Does not convert raster data to vector data; can create contour lines 
5. Display: Offers an architecture for packaging advanced WebGL-based visualizations and can easily handle the 

sample data to visualize 
6. Map data: Easily displays geospatial data with relation to roads and buildings 

1.3.6. Geographic Resources Analysis Support System (GRASS) GIS 

GRASS is an open-source Java-based software for vector and raster geospatial data management, geoprocessing, spatial 
modeling, and visualization. GRASS has compatibilities with QGIS, meaning that QGIS can run some features of GRASS GIS as 
a plug-in. Already developed add-ons are available, along with the capability to develop additional add-ons. The latest version 
(8.0, released in March 2022) has an improved graphical user interface (GUI) and Python scripting. GRASS provides rapid 
linking of external raster files and spatiotemporal data analysis with an improved internal data structure. A vector attribute 
update was also found with Python syntax. A screenshot of GRASS GIS is shown in Figure 4. 

 

	
 

Figure 4. Screenshot of Grass GIS. 
 

Evaluation Criteria 

1. Data import: Imports vector and raster files 
2. Data storage: Stores geospatial data in vector and raster formats 
3. Geometric calculations: Supports CRS (Cartesian [x, y, z] and geographic [longitude, latitude, height]) conversions; 

provides a CRS transformation tool (PROJ4); calculates length or area of geometrical features; provides overlay, 
union, and subtraction 

4. Geospatial calculations: Provides conversion between desired file formats (raster-to-vector conversion); creates 
contour lines  

5. Display: Provides a Web Mapping Service and graphics display monitor that can be controlled from the command 
line; can display frames on the user’s graphic monitor 

6. Map data: Displays geospatial data such as countries and states by using Inkspace 
 
  

 

 

 

 



 

1.3.7. gvSIG 

gvSIG is an open-source GIS written in 2021 that runs on Windows, Linux, and Mac platforms. A screenshot of gvSIG is shown 
in Figure 5. 

 

	
 

Figure 5. Screenshot of gvSIG. 

Evaluation Criteria 

1. Data import: Can import shape and raster files 
2. Data storage: Can store geospatial data in vector and raster formats  
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude) using Web Mercator; does NOT 

calculate polygon areas or lengths; supports CRS (Cartesian [x, y, z] and geographic [longitude, latitude, height]) 
coordinates; provides a CRS transformation tool (PROJ4); calculates length or area of geometrical features; provides 
overlay, union, and subtraction 

4. Geospatial calculations: Can convert other file types to the desired file format; does NOT produce contour plots 
5. Display: Does NOT provide a web application 
6. Map data: Displays geospatial data such as countries and states by using Inkspace 

1.3.8. MapWindow GIS 

MapWindow GIS is an open-source GIS written in C++ programming language using optimal features from the .NET framework 
v4/4.5. MapWindow runs on Windows (latest version: 5.3.0, released in 2019), as shown in Figure 6. This version was 
compiled using VS2017. The new version supports tiles from a local file system and provides extendable snapping events. 
MapWindow was licensed under the Mozilla Public License. 

Evaluation Criteria 

1. Data import: Can import shape and raster files 
2. Data storage: Can store geospatial data in vector and raster formats  
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude) and UTM calculations; can 

calculate length or area of geometrical features 
4. Geospatial calculations: Can convert other file types to the desired file format; does NOT produce contour plots 
5. Display: Allows multi-threaded HTTP tile loading 
6. Map data: Displays geospatial data such as countries and states by using Inkspace 

 

 

 

 



 

 

	

Figure 6. Screenshot of MapWindow GIS. 

 

1.3.9. GeoPandas 

GeoPandas is an open-source project developed in Python to provide a useful library for working with geospatial data, as 
shown in Figure 7. GeoPandas can run on distributions of Linux and Windows. This software primarily uses the Python 
packages pandas (as a base for its data storage), shapely (to manipulate the shapes stored in the advanced database), Fiona 
(for file access), and Descartes and matplotlib (for data visualization). GeoPandas is most adept at displaying discrete sections 
of data in a geospatial visualization. It is limited in its ability to display graphics outside of the Python environment and does 
not support conversion to the desired raster/vector formats. The last update was made in 2021, which improved the software 
from v0.5.0 to v0.10.2 and corrected the regression in the overlay and plotting. 

Evaluation Criteria 

1. Data import: Reads almost any vector-based spatial data format 
2. Data storage: Stores geospatial data in vector and raster formats  
3. Geometric calculations: Supports CRS calculations; cannot calculate the length or area of geometrical features; has 

overlay functions, such as intersections between two or more areas, union (merges the areas of one layer to one 
single area), difference (A-B areas), and polygons 

 

 

 

 



 

4. Geospatial calculations: Does not convert to any desired file formats (no raster-to-vector formats); does not provide 
a contour plot function 

5. Map data: Uses various map projections using the Python library Cartopy 
6. Display: Does not provide a web application; provides a good representation in three-dimensional (3D) color space 

using matplotlib 
 

 
 

Figure 7. GeoPandas can overlay processed geospatial data over existing maps. 
 

1.3.10. WorldWind 

WorldWind is an open-source virtual 3D globe visualization application programming interface (API) developed by NASA in 
partnership with the European Space Agency. WorldWind is written in both Java (for desktop and Android devices) and 
JavaScript (for web applications). After its development was suspended in 2019, it was restarted in August 2020. WorldWind 
can import a variety of input files with geospatial data, stores the data in both raster and vector formats, provides sufficient 
geometric and geospatial calculations, and produces good visualizations with comprehensive map data. WorldWind finds its 
application in unmanned aerial vehicle imagery, where such vehicles can provide continuous monitoring of an active fire, 
with higher resolution and more frequent updates. WorldWind was licensed under NASA Open-Source Agreement Version 
1.3. Screenshots of WorldWind are shown in Figure 8. 

 

 

 

 



 

	  	 	
	

Figure 8. Screenshots of WorldWind. 

	
Evaluation Criteria 

1. Data import: Imports shape files, KML, VPF, GML, GeoJSON, GeoRSS, GPX, NMEA, etc. 
2. Data storage: Stores geospatial data in vector and raster formats 
3. Geometric calculations: Supports geographic coordinate system (latitude, longitude), UTM, and Military Grid 

Reference System calculations; can draw and measure distance and area across a terrain 
4. Geospatial calculations: Displays contour lines on surface terrain at a specified elevation 
5. Map data: Provides visual representations of scalar values, such as noise, over a grid of geographic positions; can 

visualize the results on web and Android platforms 
6. Display: Displays geospatial data divided into country, state, and city 

1.3.11. Overall Evaluation 

An overall evaluation of all of the investigated libraries is provided in Table 1. QGIS seems to surpass the other libraries with 
respect to our defined metrics.  

 

Table 1. Comparison of different libraries. 

 Intuitive 
GUI 

Compatibility Statistical 
Analyses 

Data 
Import 

Data 
Storage 

Geometrical 
Calculations 

Geospatial 
Calculations 

Map 
Data 

Display Total 

QGIS 3 5 3 5 5 5 5 5 4 40 
OpenJUMP 3 4 1 5 5 5 3 5 2 33 
SAGA 3 3 4 5 5 4 5 5 4 38 
Deck.gl 4 3 1 5 5 3 3 5 5 34 
Kepler.gl 4 5 1 1 1 3 3 5 5 28 
GRASS 4 3 1 5 5 4 5 5 4 36 
gvSIG 3 4 1 5 5 4 3 5 2 32 
MapWindow 3 4 1 5 5 3 3 4 2 30 
GeoPandas 2 4 1 5 5 4 1 2 2 26 
WorldWind 5 5 1 5 5 4 4 5 5 39 

 

 

 

 

 



 

1.4. GIS Applications 

GIS applications can be broadly classified in two categories: desktop 
and web-based applications.  
 
WebGIS applications use web technologies to display and 
communicate geospatial information to an end user. There are five 
common elements in every WebGIS application: 

1. A web application: The interface used by the client, which has 
tools for visualizing, analyzing, and interacting with 
geographic information and can be run on a web browser or 
a GPS-enabled device 

2. Digital base maps: The geographical context for the 
application (e.g., transportation, topography, imagery, etc.) 

3. Operational layers: The layers used in order for the results of 
an operation to be displayed (e.g., observations, sensor 
feeds, query results, analytic results, etc.) 

4. Tasks and tools: Tools to perform operations beyond 
mapping 

5. Geodatabase(s): Container of geographical data, which can 
consist of geodatabases, shape files, tabular databases, 
computer-aided design files, etc.  
 
 
 
 

WebGIS applications come with multiple advantages as well as 
limitations. Table 2 presents a non-exhaustive list of these advantages 
and limitations. 

 

Table 2. Advantages and disadvantages of Web geographic information systems (WebGISs). 

Advantages of WebGIS Drawbacks of WebGIS 
• Provides a broader reach for customers compared 

with a traditional desktop application 
• Better cross-platform capability with the different 

web browsers that can be used 
• Easy to use for customers with different levels of 

GIS expertise 
• Extendable to cloud services, hence allowing 

manipulation and use of big GIS data 
• Lower cost to entry (most libraries and tools are 

open-source with good community support) 
• Allows real-time analysis 

• Harder to build (developers need to have a good 
knowledge of multiple scripting languages to build 
the app [Python, JavaScript, html, etc.]) 

• Data security may depend on a third party  
• Application may need to be hosted outside of the 

organization 
 

 

Our team has started a dialogue with the AEDT development team regarding which GIS functionalities will be required to be 
able to integrate the UAS noise engine with the AEDT in the future. 

  

 
Figure 9. Sketch of a Web geographic 

information system application. 

 

 

 

 



 

Task 2 - Investigation of Emerging Computational Technologies 
Georgia Institute of Technology 
 
Task 2 Contents 

2.1. Task 2 Overview 
2.2. GIS Visualization Technologies 
2.3. Parallel Computing Technologies 
2.4. Data Processing Technologies 
2.5. Support for GPU-Backed Computations and Scaling Study 
2.6. Cloud-Based Computations on Amazon Web Services (AWS) 

2.1. Task 2 Overview 

2.1.1. Context and Motivation 

As explained in the project’s overview, assessing noise exposure for UASs brings unique requirements that existing 
frameworks do not meet. Namely, three primary abilities are needed: (a) the ability to analyze scenarios involving large 
volumes of flights, (b) the ability to cover large areas with small resolution, and (c) the ability to account for sources of 
uncertainty related to the evolving UAS concepts of operation. Thus, there is a need for the development of a new analysis 
capability that can fulfill these requirements.  

2.1.2. Problem Definition 

Although the actual estimation of noise exposure levels plays a central role in noise assessment tools, many other peripheral 
functions are also needed: inputs must be read and pre-processed, computations must be implemented in such a way that 
they meet the requirements listed in the previous section, and a visualization of the operational scenario and noise 
assessment results must be provided in a manner that is intuitive to the user. Each of these functionalities requires a 
substantial development effort and can leverage specific computational technologies. 

2.1.3. Research Objectives 

In this task, we aim to investigate the emerging technologies that could be used to implement the variety of functions to be 
performed by the noise assessment tool. In particular, we are seeking technologies that are compatible with the stringent 
requirements related to UAS operations. 

2.1.4. Research Approach 

For this task, the following areas of emerging technologies were identified and investigated. Figure 10 presents a partial 
depiction of these areas and the associated technologies. 
 
First, GIS visualization techniques were investigated. Within the noise assessment tool, these techniques are used to visualize 
the defined operational scenarios, such as the flights included in the scenario, as well as the analysis results, in the form of 
noise levels mapped over a pre-defined geographical area. 
 
Second, parallel computation approaches were investigated to address the problem of performing noise computations with 
large problem sizes encountered due to 1) the large flight volumes in UAM scenarios, 2) the low resolution and large areas 
needed to effectively cover populated areas, and 3) the small time discretization needed to properly assess noise exposure. 
 
Third, data pre- and post-processing approaches were investigated, as working with geographical data usually requires many 
transformations, such as clipping to the analysis area or converting from one CRS to another.  
 
Fourth, motivated by the need to speed up noise computations in order to enable faster uncertainty quantification, we 
investigated running the noise engine on a GPU. 
 
Finally, we developed the capability to run the noise engine on cloud-based platforms, specifically AWS, since this approach 
allows us to scale noise computations for a large number of workers and large amounts of total memory, enabling the 
analysis of problems whose size would be prohibitively large to execute on a single machine. 

 

 

 

 



 

	
 

Figure 10. Visual summary of the emerging technologies under investigation. GIS: geographic information system; GPU: 
graphics processing unit; GT: Georgia Institute of Technology; MPI: message passing interface. 

 

2.2. GIS Visualization Technologies 

The team focused on technologies that provide interactive visualizations of large data on maps, which narrowed the choices 
to QGIS and interfaces based on Python or JavaScript. Working with large datasets on QGIS requires the use of an Structured 
Query Language (SQL) plug-in as a conduit for data communication. Furthermore, the GUI aspect of QGIS limits the interactive 
capabilities that can be achieved.  
 
Therefore, the focus was directed to JavaScript and Python libraries and interfaces, including the D3 library for JavaScript and 
Bokeh for Python. Bokeh emerged as the preferable choice, as it builds on JavaScript visualizations without the need to 
explicitly use JavaScript. Furthermore, with this library, it is possible to code both the front-end and back-end of a web 
application using Python.  

2.3. Parallel Computing Technologies 

Parallel computing technologies are critical for calculations that involve large grids. These grids can be expressed as matrices 
and hence take advantage of their regular structures for the partition of computation tasks.  
 
The team initiated their analysis by exploring the standards for parallel programming via the message passing interface (MPI) 
implemented on different libraries, such as OpenMPI, MPICH, and MVAPICH. As the noise computation engine is built from 
common mathematical and computational operations, OpenMPI was selected for its portability and its ability to support most 
existing platforms.  
 

 

 

 

 



 

Parallel algorithms for matrix computations have been well documented in the literature. Typically, the data are partitioned 
either along one axis of the matrix or both, as shown in Figure 11. These algorithms are usually designed with considerations 
of the communication overhead and the computation cost for individual processors.  

	
 

Figure 11. Common partition strategies for matrix computations. 
 
The noise engine can be viewed as a large, dense matrix problem in which the calculations for each element do not depend 
on its neighbors. Instead, these calculations depend on the path of the noise source, which can be modeled as a vector. 
Hence, the partition strategies shown are theoretically the same, where the main challenge is to manage the data 
communicated. In addition to communicating the path data to each partition, the engine needs to collect the results and 
send them to the visualization tool.  
 
These considerations prompted us to examine the input/output (IO) operations in parallel, as shown in Figure 12. There are 
three main approaches for parallel IO operations, as briefly defined below: 
 

• Non-parallel: A central unit is uniquely responsible for the IO operations. 
• Independent Parallel: Each process writes to a separate file.  
• Cooperative Parallel: All processors collaboratively write in one file. 

 
The main advantages and drawbacks for each approach are summarized in Table 3. Although the cooperative parallel 
approach has the potential to achieve the best performance, it is limited in the file types that can be used and may result in 
a performance that is worse than that of the sequential algorithm. Therefore, we did not select a cooperative parallel IO 
approach; instead, the choice will depend on other characteristics of the overall noise module.  
 

Table 3. Parallel input/output (IO) operations. 

Parallel IO Approach Advantages Drawbacks 
Non-Parallel • Easy to code 

 
• Poor performance (worse than 

sequential)  
Independent Parallel • Easy to parallelize 

• No inter-process communication 
• Generates many small files to 

manage 
Cooperative Parallel • Performance can be great 

• Only one file is needed 
• More complex to code 
• Depends on implementations of 

concurrent updates in file types, 
which are rare 

 

 

 

 

 



 

	
 

Figure 12. Input/output operations in a message passing interface.  

Source: William Gropp, Introduction to MPI I/O 

 
The analysis of parallel IO approaches led to the need to examine the file formats used in parallel as well. Three major 
categories of file formats are listed in Table 4, along with their major benefits and drawbacks. 

 
• ASCII 
• Binary  
• Standard scientific libraries (HDF5, NetCDF, etc.)  

 
Table 4. Benefits and drawbacks of file formats. 

File Format Advantages Drawbacks 
ASCII •  Human-readable 

•  Portable 
•  Requires a larger amount of storage 
•  Costlier for read/write operations 

Binary •  Efficient storage 
•  Less costly for read/write operations 

•  Needs formatting to read 

Standard scientific libraries • Allows data portability across 
platforms 

• Data stored in binary form 
• Includes data description 

•  Has a risk of corruption 

 

 

 

 



 

This analysis was conducted with a gridded data format in mind. Instances of these files that are encoded in binary format 
are relatively straightforward to create and manage in parallel because the MPI writes to binary format by default. Instances 
that use ASCII characters are more difficult to use, however, because a binary–ASCII conversion is needed for formatting. 
 
To showcase the runtime difference between ASCII files and binary files, a test case was run with a fixed problem size and a 
variable number of processors (p). The test used the independent parallel approach to eliminate the need for a central unit 
that collects the results. Figure 13 illustrates the runtimes of text file problems and binary problems for 2–16 processors. 
The “runtime no IO” scenario was included in Figure 13 as a baseline to showcase the cost of communication due to the IO 
operations. As expected, for a fixed problem, the runtime decreased as the number of processors increased; however, the 
difference between runtimes with respect to the file formats is quite apparent. 
 

	
 

Figure 13. Runtime vs. number of processors for different input/output (IO) formats. 

Furthermore, for any format used, storage space will be needed to contain the data, as shown in Figure 14, which reveals an 
exponential growth in size as the grid becomes finer. This test case reveals that the available memory of the hardware used 
will play an important role in the calculation of large grids. 
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Figure 14. Log(file size in kB) vs. resolution (ft). 

The choice of programming language is another important aspect to consider in this investigation. Programming languages 
such as C and C++ combined with MPI libraries are the primary choice of many high-performance computing (HPC) 
practitioners, as they have some access to low-level machine language, which results in good performance for parallel 
computations. However, the main challenge in using these languages is the integration with interactive GIS visualization 
tools. Higher-level languages such as MATLAB and Python provide these libraries with much less scripting and easier 
integration, but this comes at the expense of speed in running parallel code. In particular, MATLAB requires the setup of a 
virtual network computing session prior to launching any calculations. Python, despite being slower than C/C++, emerged 
as an adequate choice for the noise module, as it is better equipped to facilitate large interactive GIS visualizations without 
greatly sacrificing speed for this particular application while still being able to act as a wrapper for rapid C/C++ 
implementations of the computational code. 

2.4. Data Processing Technologies  

The team investigated libraries for processing GIS data. As the investigation of visualization techniques favored the use of 
Python to code the application, libraries such as GeoPandas and GeoTIFF were explored to assess their compatibility with 
the goals of this project.  
 
The GeoPandas library brings the powerful functionalities of pandas to geospatial operations. The GeoTIFF format allows the 
embedding of geospatial data into images. GeoPandas is more suited to work with vector data whereas GeoTIFF supports 
both raster and vector formats. Each of these libraries has its own merits and utilizations and can be used in the noise 
calculation engine. The final choice will depend on the data pipeline from the computation to the visualization and the data 
conversions needed in this process.  
 
2.5. Support for GPU-Backed Computations and Scaling Study 

2.5.1. Context and Motivation 

The ability to account for variability in operations, as well as other sources of uncertainty emanating from currently unknown 
parameters, is one of the main requirements for the UAS noise assessment tool. Indeed, the need for this ability is one of 
the reasons why existing tools are not adapted for UAS use cases and why the development of a new capability is needed. 
 
Once sources of uncertainty have been characterized and quantified, Monte-Carlo simulations are a priori the preferred 
option for propagating the impact of those uncertainty sources to system-level responses of interest. Monte-Carlo 
simulations are preferred because, among the multiple options available to propagate uncertainty, running full Monte-Carlo 
simulations (a) usually does not require any additional assumptions regarding the nature of the uncertainty sources or the 
system model and (b) gives access to full probability distributions for system-level responses, which can be used to estimate 
any statistical quantity related to these responses. In contrast, approximate uncertainty propagation methods (a) may require 

 

 

 

 



 

uncertainty sources and the system model to behave a certain way to produce valid results and (b) may only approximate a 
few statistics, such as the mean of the responses. 
In the case of UAM operations, the nature of uncertainty sources (e.g., vehicles may depart and arrive in different locations, 
the number of flights may vary), as well as the nature of the system model, does not immediately appear to be prone to an 
approximation method; therefore, a full Monte-Carlo simulation will be conducted. Applying approximate uncertainty 
quantification on this problem will be the topic of future research. 

2.5.2. Problem Definition 

An initial Monte-Carlo study was carried out using the initial Dask implementation of the noise assessment tool running on 
a central processing unit (CPU). The setup and results of this study are discussed under Task 4. One of the main observations 
was the long runtime required to carry out the study: it took several weeks to complete the study, despite the use of Georgia 
Tech’s HPC environment. This motivated the exploration of methods to speed up the execution of the noise engine. 
 
Multiple options are available for speeding up the execution of the computer code: applying surrogate modeling and running 
the code on GPUs were considered as options. In the context of uncertainty propagation, a surrogate would need to take the 
uncertain parameters as inputs and output the system-level quantities of interest. Because of the nature of the problem and 
the sources of uncertainty, building such a surrogate is not immediately possible: it requires multiple steps, which were 
beyond the scope of this project. Instead, this will be the topic of future research.  
 
In contrast, attempting to run the code on a GPU falls within the scope of this project, under the exploration of emerging 
computational technologies, and does not require a fundamental change in the computational setup. Moreover, the ability 
to execute the noise computations on a GPU is fully compatible with other ways of speeding up execution, such as surrogate 
models, as this would allow training data to be produced more rapidly. 

2.5.3. Research Objective 

The research objective of this subtask was to measure the benefits of running noise computations on a GPU instead of a 
CPU. This subtask first required that the noise computations be implemented in such a way that they can run on a GPU. 
Then, two studies were carried out. First, the CPU and GPU runtimes were compared to confirm the benefits brought by the 
GPU in terms of runtime: because the runtime on a CPU is high, this first study was conducted on relatively small problems. 
Second, to estimate the ability of GPU-backed computations to handle larger problems, a scaling study was performed, in 
which the evolution of GPU runtime was estimated as a function of the problem size. Along with runtime, memory 
requirements also become a challenge for large problems; thus, the memory requirements were estimated.  

2.5.4. Technical Approach 

Dask is a framework for executing parallel processing across many machines, while presenting the user with simple and 
familiar storage and computational approaches. Internally, Dask includes optimization routines that optimize the flow of 
code and data across machines. Because Dask’s GPU capabilities presented limitations, Google’s JAX, another computational 
framework, was selected to run the noise engine on a GPU. JAX is a cutting-edge computational framework developed at 
Google that combines XLA, the computational back-end behind TensorFlow, with other tools such as autodiff for automatic 
differentiation, all while keeping the same simple API as numpy, Python’s de facto standard library for numerical 
computations. JAX allows one to re-use the exact same code to run on a GPU instead of a CPU when available. 
 
As discussed previously, runtime and memory use are the two metrics on which we focus to 1) compare CPU and GPU 
implementation and 2) study GPU scaling. In our case, runtime is simply measured using wall-clock time: the time instants 
before and after the computations are recorded, and their difference yields the elapsed wall-clock time. Care was taken to 
ensure that computations were actually carried out within the measured time interval: Dask, among others, implements the 
concept of “lazy evaluation,” in which expressions may not be actually evaluated until the result is accessed. 
 
Measuring memory use is more challenging, as it depends on the back-end (CPU or GPU). For the CPU, we could not find a 
way to directly measure the amount of memory used by specific processes. This step is more difficult with Dask because 
multiple processes may be spawned to handle computations. As a work-around, the total memory use is recorded before 
computations are started and then continuously updated at regular intervals while the computations are running, and only 
the maximum system memory use is retained. Memory use is estimated by the difference between maximum memory use 
during computations and the pre-computation system memory use. This estimation assumes that the difference in memory 
usage can be solely attributed to the noise assessment computations and that other mechanisms, such as memory swapping 

 

 

 

 



 

to disk, do not occur. To avoid swapping, the problem dimensions considered when performing the computations on the 
CPU were kept relatively small. 
 

Measuring GPU usage was not possible via JAX’s built-in functions, as a mismatch was observed between actual GPU memory 
usage and the value returned by JAX’s helper functions. As a consequence, we applied the same approach used for the CPU, 
except that CUDA-specific commands were issued when polling the GPU memory usage.  

 

As explained previously, the first step of this study was to compare CPU and GPU runtimes. For completeness, the original 
Dask back-end was also considered in the comparison, both with and without atmospheric absorption improvements (as 
briefly discussed under Task 4). We varied the problem size by varying the resolution of the square analysis grid. CPU runs 
were executed locally on a PC equipped with an Intel Core (i7-9700 CPU and 16 GB of RAM). GPU runs were executed on 
nodes of Georgia Tech’s PACE (Partnership for an Advanced Computing Environment) cluster equipped with a Tesla V100 
(32 GB) GPU. 
 
In the second step, we focused on GPU runs only. Multiple dimensions of the problem were varied to obtain a wide range of 
problem size. We varied the resolution, as in the first part of the study, and the number and maximum length of the 
trajectories. In the current implementation, trajectories are handled sequentially, while for a given trajectory, the complete 
grid as well as all of the trajectory’s time steps are simultaneously computed. Thus, we expect all of those dimensions to 
influence the runtime, while memory use should not be affected by the number of trajectories, since they are treated 
sequentially. 
 
To increase the maximum allowable GPU memory use, and therefore the maximum size of the problems under consideration, 
a dual-GPU implementation was developed. This dual-GPU implementation took advantage of the fact that Georgia Tech’s 
PACE cluster offers some nodes with two GPUs, totaling 64 GB of GPU memory. In the current implementation, the analysis 
grid on which noise exposure levels are computed is split into two regions: the first half is processed on one GPU while the 
second half is processed on the second GPU. Because all analysis points are independent, this approach does not introduce 
communication overhead. 

2.5.5. Results 

Error! Reference source not found.Figure 15 depicts the evolution of t
he runtime duration in seconds as a function of the analysis grid 
resolution for four cases: the original Dask implementation with and 
without atmospheric absorption, JAX (CPU), and JAX running on a GPU. 
Here, a log scale is used for the duration on the y-axis. We observe that 
JAX on a GPU is faster than CPU-based computations by approximately 
two orders of magnitude: running the same code on a GPU instead of a 
CPU allows a 100-fold speed-up. This gain is significant, especially when 
considering the many cases that need to be run as part of an uncertain 
propagation study using Monte-Carlo simulations. 
 
The differences between the different CPU implementations can be 
justified as follows. First, neglecting atmospheric absorption consistently 
reduces runtime across the considered grid resolutions, compared with 
the Dask version of the noise engine that accounts for atmospheric 
absorption. We found that the CPU JAX version of the code initially runs 
faster than its Dask counterpart for small resolutions, but appears to 
match the Dask implementation for higher resolutions. We hypothesize 
that this result is due to the overhead introduced by Dask when setting 
up its scheduler and workers: while this overhead is significant for low-
resolution grids that can be rapidly analyzed, it becomes negligible 
compared with the actual cost of computations once the resolution 
increases sufficiently. 

 
Figure 15. Runtime comparison between 

different implementations of the noise model. 
GPU: graphics processing unit. 

 

 

 

 



 

	
Figure 16. Scaling of the runtime of the graphics 

processing unit (GPU) implementation. 

	
Figure 17. Scaling of the memory use of the graphics 

processing unit (GPU) implementation. 

 
Figures 16 and 17 depict (a) the evolution of the runtime duration as a function of the total problem size and (b) GPU memory 
as a function of the single-event problem size, respectively. As discussed previously, while the total problem size 
encompasses all dimensions of the problem, including the number of trajectories (referred to as single events here), the 
single-event problem size corresponds to the problem size for a given trajectory. As expected, the duration depends on the 
total problem size, whereas the total GPU memory depends on the single-event problem size because trajectories are 
processed sequentially by the current implementation. In both cases, linear regression confirms a linear dependence. 
 
These graphs can be used to estimate the runtime and GPU memory use when running a new case: the total and single-event 
problem sizes can be computed from the individual problem dimensions, and the linear formulae provided here can be used 
to obtain a runtime and memory use estimate. In practical applications, this information can be used to estimate the total 
duration of, for example, a Monte-Carlo simulation or to ensure that the memory use will not exceed the available GPU 
memory. 

2.5.6. Conclusions 

The two studies carried out in this section confirm the benefits brought by GPU computation. Thanks to the JAX framework, 
the same code can be used on a CPU for local development and testing and then on a GPU when additional speed is needed. 
These benefits are substantial: a 100-fold speed-up was observed when the same code ran on a GPU instead of a CPU. In the 
Task 4 Section, we will see that this enables us to run a Monte-Carlo simulation in a couple hours, when it would have taken 
weeks if ran on a CPU. 

2.6. Cloud-Based Computations on AWS 

2.6.1. Context and Motivation 

Among emerging technologies suitable for use in the development of the UAS noise assessment tool, cloud-based options 
were retained because they enable a flexible selection of the amount of computational resources allocated to solving a 
problem. For example, when using Dask paired with AWS Elastic Compute Cloud (EC2), the user can choose the number and 
characteristics of workers across which computations are distributed: each worker will be executed within a dynamically 
spawn AWS instance with its own resources, and individual instance resources can be selected based on AWS’ offerings. This 
flexibility allows us to tackle a wide spectrum of problem sizes: from the small problems encountered, for example, when 
developing and debugging the noise engine to the larger problems encountered when running a full-fledged noise 
assessment on a large urban area. 

2.6.2. Problem Definition and Research Objective 

While executing the noise engine on AWS EC2 is made easier by using Dask as a computational framework, the level of 
maturity of these frameworks still does not allow for a plug-and-play experience. Multiple hurdles had to be overcome in 

 

 

 

 



 

order to successfully run noise computations in the cloud. In this section, we document the required steps, in order to ease 
the process for future users and developers of the tool.  

Because ASDL does not have specific resources allocated to AWS EC2, this development effort was carried out using Amazon’s 
free-tier instances, which have limited computational power and system memory (a single virtual CPU and 1 GB of RAM). 
Therefore, it was not possible to demonstrate the ability to run large problems in the cloud; instead, the objective was to 
develop a proof-of-concept end-to-end workflow using a simplistic scenario (small grid and very few flights). Scaling to larger 
problems should not raise additional technical hurdles, but should simply require the allocation of additional resources, 
which can be easily done by the user via simple configuration parameters. 

2.6.3. Technical Details 

The content of this section is very detailed: at the time of implementation, such details are needed in order to benefit from 
the advantages of cloud-based computations. 

Initial Setup Steps 

The following steps can be followed to setup AWS. Depending on the organizational setup, some steps may be skipped or 
require different actions. For example, instead of creating a root account and using it to create a lower-privilege account, a 
lower-privilege account may need to be directly requested from the administrators of the organizational AWS EC2 account. 

1. If not already available, create an AWS root account. 
2. Create a lower-privilege account. For the security policy, allow programmatic access to EC2 only, 

"AmazonEC2FullAccess.” More details on how to create a user can be found in AWS’ documentation. 
3. Install and configure AWS CLI on the client machine. Use “pip install awscli” to install the CLI tool, followed by “aws 

configure” to proceed with the initial configuration. This step requires the user's AWS access key ID as well as their secret 
access key. 

4. Install the dask_cloudprovider library for AWS using “pip install dask_cloudprovider[aws].” 
5. The cryptography package is also needed and can be installed via “pip install cryptography.” 

More details are available in Dask’s documentation. 

Disable TLS Certificates 

Dask automatically provisions AWS EC2 instances by sending a script via the AWS API. The size of this script is limited to 16 
kB. However, Dask’s configuration often exceeds 16 kB, mainly due to the transmission of self-signed TLS certificates used 
to secure cluster communications. This is a known Dask limitation discussed in the project’s issue tracker: 

• https://github.com/dask/dask-cloudprovider/issues/249 
• https://github.com/dask/distributed/pull/4465  

The proposed solution is to not use TLS certificates. This is achieved by instantiating the Dask cluster by setting the security 
keyword argument to False:  

cluster = EC2Cluster(env_vars=credentials, security=False) 

As a result, for example, the Dask dashboard is not available through https, only http. Additional steps can be taken to 
properly secure the dashboard if served from a publicly accessible server.  

More details on the user-provided setup scripts for creating AWS EC2 instances can be found in AWS EC2’s documentation: 

• https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html  
• https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-add-user-data.html 

Python and Package Versions 

Other errors may arise when using Python 3.9/3.10, and the solution is to use Python version 3.8 or earlier. The relevant 
tracked issue is located at https://github.com/dask/dask-cloudprovider/issues/359. 

We must ensure that package versions match between client and EC2 instances that are automatically set up by Dask. Dask 
issues a warning when versions mismatch. This is important, as class instances created on EC2 using one version are 
serialized and sent back to the client, which may not be able to deserialize them. 

  

 

 

 

 



 

Debugging the AWS EC2 Workers 

Debugging is difficult due to the fact that the workers are ephemeral EC2 instances. Workers are automatically terminated 
by Dask when an error is encountered. The only output that can be easily accessed after EC2 instances are terminated is the 
system log. Dask can be configured to log to the system log. The steps to achieve this are documented in the Dask and 
Python logging library documentations: 

• https://docs.dask.org/en/stable/how-to/debug.html?highlight=logging#logs 
• https://docs.Python.org/3/library/logging.handlers.html  

Manually Copying Scripts to Workers and Manually Configuring Workers’ Python Environments  

All of the additional scripts called from the main script used to launch the Dask instance (such as library files not installed 
through pip) need to be manually copied to the workers (EC2 instances) using client.upload_file(). Likewise, Python 
environments local to the workers also need to be manually set up, using Dask’s PipInstall “worker plug-in.” 

2.6.5. Conclusions 

A proof of concept was developed to illustrate how the noise assessment tool can run in the cloud. Because of the limited 
resources available to the team, a problem of very limited size was considered. This effort allowed us to gauge the ease of 
using Dask’s cloud functionalities: although the capability to run a computation with minimal changes to the initial Dask 
implementation exists, the experience is not yet seamless. Hopefully, the documentation provided here will help streamline 
the use of Dask in the cloud.  

 
Task 3 - Collaboration with the UAS Computation Module Development 
Team 
Georgia Institute of Technology 
 
Task 3 Contents 

3.1. MSU Collaboration 
3.2. Volpe Collaboration 
3.3. PACE Collaboration 
3.4. Improvements to MSU’s Trajectory Generation Code 

3.1. MSU Collaboration 

3.1.1. Objective 

In this task, we collaborated with the UAS computation module development team at MSU to explore ways in which both 
teams can effectively exchange data and ideas. 

3.1.2. Research Approach 

The ASCENT9 team met with the team working on the eCommerce project at MSU on a bi-weekly basis. Led by Dr. Adrian 
Sescu, this team provided demand data and a data generator to create random UAS paths. The teams discussed the 
simulation of noise footprints from a notional UAS delivery network in the Memphis area. The ASCENT9 team shared an early 
version of the noise engine calculation with the MSU team.  
 
The eCommerce project revolved around emerging UAS networks and their implications in national airspace system 
integration. The project’s case study is an analysis of an Amazon UAS delivery network using ground support. The MSU team 
collected data for warehouses in the greater Memphis area along with the residential addresses served by these warehouses. 
Trucks were placed in the area to reduce the flight time of the UASs and to help with last-mile delivery. These warehouses 
are shown in Figure 18. Multiple scenarios were considered in this study:  

• 8 drones per warehouse and 4 drones per truck (1,132 drones) 
• 12 drones per warehouse and 6 drones per truck (1,698 drones) 
• 16 drones per warehouse and 8 drones per truck (2,264 drones) 
• 24 drones per warehouse and 12 drones per truck (3,396 drones) 

 

 

 

 



 

• 32 drones per warehouse and 16 drones per truck (4,528 drones) 
• 55 drones per warehouse and 50 drones per truck (12,305 drones)  

The ASCENT9 team shared an early version of the noise engine developed under Task 4 with the MSU team, who verified that 
they were able to run the noise engine on their systems. 
 
The ASCENT9 team used the first scenario to test the noise engine with variable grid precision. These trajectories are shown 
in Figures 18 and 19. The trajectories span an area of approximately 40 miles, with each trajectory’s length varying between 
3,000 and 8,000 ft. 
 

  
 

Figure 18. Warehouses in the Memphis, TN area. 
 

Figure 19. Random trajectories provided by Mississippi State 
University. 

	

3.2. Volpe Collaboration 

In addition to collaborating with MSU, the ASCENT9 team collaborated with the Volpe Research Center to acquire national 
transportation noise data. These data consist of combined gridded road, aviation, and railroad noise for the entire United 
States provided in A-weighted 24-hr exposure levels. These data are used as background noise that is added to the noise 
calculated by the engine module. A cropped overview of these data for the greater Memphis area is shown in Figure 20. 

 

 

 

 



 

 

	
 

Figure 20. National transportation noise data for the greater Memphis area. 

3.3. PACE Collaboration 

In addition to these external collaborations, this research was also supported in part through research cyber-infrastructure 
resources and services provided by PACE at the Georgia Institute of Technology. This computing environment consists of a 
large computing cluster that was used to develop and test the noise engine under Task 4. This cluster was also used to 
conduct experiments and help tune various parameters and aspects of how the noise engine is executed in parallel. For 
example, parameters range from the number of computing nodes to the amount of memory per node and the number of 
parallel processes per node. 

3.4. Improvements to MSU’s Trajectory Generation Code 

After the MSU collaboration ended, the initial trajectory generation code was reworked. In addition to introducing a more 
efficient implementation and increased flexibility, the code was broken down into multiple logical steps that relate to 
different phases of the workflow, as presented in the Task 4 Section. 
 
Prior to the proper noise computations, the first step consists of creating tuples of staging locations, delivery locations, and 
vehicles. In general, these locations are the start and end points of a flight. For example, if different use cases are considered, 
such as for an e-taxi, these locations would map to pick-up and drop-off locations. The generation of these so-called 
“pairings” is dictated by the concept of operations, and these pairings are then used as input for the actual noise assessment. 
Currently, the implementation of this step is simple because only straight trajectories are considered, with either hover, 
cruise climb, or cruise flight segments. This logic could be made more complex in the future in order to accommodate new 
concepts of operations. Here, this logic is separated because it is independent from the noise computations and can therefore 
be developed in parallel, as long as the data interface between these two steps of the workflow is properly maintained. 
 
In the second step, the definitions of the flights, or flight segments, are discretized in time. We have included this step as 
part of the preliminary analysis because the need for time discretization is purely an artifact of the current analysis method. 
If another analysis method was to directly take in flight segments as inputs instead of vehicle locations, then the flight 
segments would not need to be discretized. 
 
This split also has the advantage of allowing for a more compact representation of a scenario, i.e., a set of daily flights.  

 

 

 

 



 

Among other improvements, the vehicle attributes are now provided externally and stored in a CSV file instead of being 
hard-coded. 

 
Task 4 - Noise Computation Engine Integration 
Georgia Institute of Technology 
 
Task 4 Contents 

4.1. Task Overview 
4.2. Initial Noise Computation Engine Implementation 
4.3. Initial Benchmark Demonstration 
4.4. Initial Monte-Carlo Study 
4.5. Implementation of the SAE5534 Atmospheric Absorption Model 
4.6. Workflow Definition and Code Refactor 
4.7. Study of Interactions Between Trajectories 
4.8. Uncertainty Propagation Leveraging GPU 

4.1. Task Overview 

The motivation for developing a noise assessment tool specific to UASs was presented in the previous sections, and the 
previous tasks aimed at investigating the building blocks for this tool. Once promising technologies have been identified for 
the application components, they must be integrated within a coherent and easy-to-use tool: this is the purpose of Task 4. 
 
The following sections are organized chronologically: an initial implementation was developed and used to carry out an 
initial benchmark study and an initial Monte-Carlo study. Then, a consequent refactor of the code was undertaken to improve 
both the internal code structure	and the user interface. The refactor was intended to make it easier to work with and extend 
the codebase. This latest iteration was used to study the effect of interactions between trajectories. Finally, a new uncertainty 
propagation study is discussed, in which we took advantage of the speed-up brought by the GPU implementation discussed 
and studied in the Task 2 Section.  

4.2. Initial Noise Computation Engine Implementation 

The investigation conducted in Task 2 led to the identification of adequate tools to build a high-performance, interactive, 
GIS-based noise module for UASs. A Python web application was set to be built with the ability to run either locally or in a 
distributed setting provided by the HPC infrastructure of Georgia Tech PACE. As Python was already determined to be the 
programming language for this module, different libraries enabling parallel matrix computation and large interactive 
visualization were explored. The selection process resulted in four libraries, as shown in Figure 21. 

 

 

 

 



 

	
 

Figure 21. Enabling capabilities for the unmanned aircraft system (UAS) noise engine prototype. 
	

Before showcasing the architecture of the web application, we discuss the structure of the Python object for the grid. Noise 
metrics are built on the distances between the grid and the path of the noise source. In other words, for each point in the 
path, its distance to every point in the grid must be calculated. This information can be stored as a 3D matrix, where the 
third dimension matches the number of points in the path. A notional sketch of this structure is shown in Figure 22. This 
choice benefits from the highly optimized methods of numpy, a Python library for multi-dimensional arrays. 

 

	
 

Figure 22. Notional structure of the noise module object. 

The UAS prototype must demonstrate the calculation and visualization of two types of noise metrics: peak metrics and 
exposure metrics. The individual steps to calculate each metric are presented in Figure 23. 

 

 

 

 

 



 

	
 

Figure 23. Steps for calculating peak and exposure noise metrics. 
 

The parallel execution of the noise engine is carried out using the Dask library, with the following implementation steps:  

1. Define computational steps as operations on generic datasets. 
2. Prepare datasets. 
3. Define computational resources. 
4. Launch the dynamic scheduler and map/apply operations on the datasets. 
5. Collect results. 

The computational resources are defined by the hardware available for parallel computation, which is characterized by the 
number of cores or workers and the available memory per core. In addition to allowing parallel computations on single 
machines, Dask supports cluster schedulers such as PBS and Slurm and is supported by AWS.  
 
The dynamic scheduler is one of the most powerful features of Dask, as it handles data partitioning and calculations without 
much user interference. This scheduler creates an optimized directed acyclic task graph to transfer data and apply 
computations using the given resources. An example of such a task graph is shown in Figure 24. This graph corresponds to 
a peak metric event calculation using 10 workers.  
 

	
 

Figure 24. Task graph generated by Dask’s dynamic scheduler. 
	
The generic implementation steps on Dask are illustrated in Figure 25, where the client refers to the web browser used to 
visualize the noise contours.  

 

 

 

 



 

 

	
 

Figure 25. Implementation steps in Dask. 
 
To visualize these contours on the browser, the Dask data objects need to undergo packaging operations using xarray and 
datashader. There is a limitation on the number of points a browser can support; therefore, datashader is used to allow the 
data to be sampled and visualized in a meaningful way. Datashader objects are integrated in Bokeh, but they do not support 
Dask arrays. Xarray was used to wrap the Dask objects for use within datashader. This data pipeline is illustrated in Figure 
26. 

 

	
 

Figure 26. The data pipeline from Dask to Bokeh. 
 

The overall architecture of the UAS noise calculation prototype is displayed in Figure 27. The noise contours are calculated 
and stored on the PACE distributed cluster. For visualization, Bokeh requests a portion of the data that is aggregated and 
projected using datashader. This step requires continuous communication between the Dask scheduler and the workers 
writing the data that have been bypassed to files. Alternatively, a central file could be created to collect the results; however, 
this comes with a high communication cost that must be considered. The data are accessible from the Bokeh server through 
secure ssh tunneling to the PACE interface. This is a major advantage of web applications over desktop applications, as it 
provides broader cross-platform access for clients.  

 

 

 

 



 

	
 

Figure 27. Overview of the noise module. PACE: Partnership for an Advanced Computing Environment. 
 

4.3. Initial Benchmark Demonstration 

This benchmark study aimed to simulate the noise footprint from a notional UAS delivery network in the greater Memphis 
area. In this study, 40 warehouses serving approximately 30,000 residential addresses were considered. Trucks that serve 
as UAS staging platforms are positioned near some neighborhoods, which reduces UAS range requirements and reduces 
delivery times. For this study, 8 UASs per warehouse were considered, with 4 UASs per truck and a total of 1,132 total flights. 
The paths for these flights are shown in Figure 28. 

 

 

 

 



 

	
 

Figure 28. Flight paths in the benchmark study. 
 

The national transportation noise map was used as background to supplement the engine’s computations. The contours of 
this background noise are shown in Figure 29. The cumulative LAeq noise contours generated uniquely from UAS activities are 
displayed in Figures 30 and 31. The effect of UAS activity on the existing noise in the greater Memphis area is shown in 
Figure 32. 

 

  
 

Figure 29. National transportation noise map of the 
greater Memphis area. 

 
Figure 30. Computed unmanned aircraft system (UAS) 

noise (LAeq,24hr).	

 

 

 

 



 

  
 

Figure 31. Combined noise (LAeq,24hr).	
 

Figure 32. Change in LAeq,24hr.	
 
The LA,max value for UAS noise with the interactive demo is illustrated in Figures 33 and 34. This figure indicates the potential 
difference in noise impacts across areas with high noise exposure levels compared with areas that currently have limited 
noise exposure levels. A large difference is found between exposure and peak metrics. The interaction can be better 
understood by including the background noise.  

 

 
Figure 33. Combined noise LAeq,24h (left) and change in LAeq,24h (right). 

 

 

 

 



 

	
 

Figure 34. Interactive demo. 
	

4.4. Initial Monte-Carlo Study 

Because UAS operations are stochastic in nature, individual flight trajectories for each day depend on daily orders and 
demand, as shown in Figure 35. In some cases, staging locations can also vary. The operator strategy applied to the trajectory 
planning can also include noise dispersion and altitude constraints to minimize the noise. The annual average day metrics 
are not capable of capturing daily changes.  

 

 

	
 

 
Figure 35. Notional workflow for a probabilistic approach to noise assessment. 
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A question arises: what is the likelihood of exceeding some threshold on any given day and how many locations will exceed 
this threshold? We first attempted to answer this question using a Monte-Carlo simulation; however, this process is 
computationally expensive. The goal of this probabilistic assessment is to obtain the likelihood of exceedance contour. The 
first attempt included 100 daily deliveries for 3,800 days on a coarse grid (250k points). The CPU time included 10,000 
simulated days and resulted in collecting multiple noise metrics at the same time. To a first-order approximation, the delivery 
noise distribution was based on the address/population distribution.  

 

	
 

Figure 36. Likelihood of exceedance for LAeq,24hr = 20 dB. 

	
The choice of metric and threshold has a significant impact on the observed results, as demonstrated in Figure 37, which 
shows the likelihood of exceedance when LAmax is increased from 20 dB to 50 dB. 
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Figure 37. Likelihood of exceedance for LAmax = 50 dB. 
 

4.5. Implementation of the SAE5534 Atmospheric Absorption Model 

The team implemented the atmospheric absorption losses defined in SAE ARP5543. This implementation provides a more 
realistic method of atmospheric sound absorption than the very simplified method used at the beginning of this project. 
This approach also builds on earlier standards, such as ARP866A, and allows the modeling of noise absorption to be sensitive 
to humidity and temperature, as expected. The current implementation works as a function that replaces the simplistic 
distance scaling. This function is also included in the Dask implementation as a function that utilizes parallel execution. The 
JAX implementation serves as the basis of a GPU shader function. While there is some penalty in the execution speed in both 
cases, the current implementation appears to work reasonably well. The team also worked to ensure accuracy in the 
implementation by comparing the implementation’s output to the reference data supplied in ARP5543. In addition, the team 
compared the current implementation with AEDT’s implementation. Both comparisons yielded only minor differences 
attributable to floating point precision and rounding differences. 
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4.6. Workflow Definition and Code Refactor 

4.6.1. Workflow Definition 

The analysis workflow was formalized in order to drive the development of the 
new GUI. The resulting workflow is depicted in Figure 38. In the first step, all of 
the inputs to the analysis are specified and/or loaded; this step includes defining 
the analysis area, generating or retrieving trajectories, and loading the 
background transportation noise. In the second step, analysis settings are 
provided by the user, and the proper noise assessment is executed. Finally, the 
results are visualized. 

4.6.2. Code Refactor 

A code refactor was undertaken to make the codebase more modular. By 
modular, we mean, for example, logically splitting the code between the GUI-
related parts and the analysis-related parts. Within the part of the code devoted 
to the GUI, modularity means defining clear interfaces between components. For 
example, the map displayed in the main noise assessment tool can now easily 
be reused within Jupyter notebooks in the context of a stand-alone study. 
 
Many new features were developed, including the ability to display more 
operational scenario details (staging and delivery locations, flights, etc.), the 
inclusion of multiple input panels allowing the user to specify analysis inputs 
(instead of hard-coded values), and an integrated display of all output metrics on 
a single map. 
 
As mentioned in the Task 2 Section, the trajectory generation was also enhanced, with more flexibility in defining new 
vehicles and their noise characteristics. 

4.6.3. Upgraded GUI 

The upgraded GUI is shown in Figure 39. Similar to most GIS software, the map occupies most of the screen. On the left-
hand side, a tab-divided panel contains all of the controls necessary to follow the workflow defined in the previous section. 

Figure 38. New structured workflow. 

 

 

 

 



 

	
Figure 39a. Annotated screenshot of the new graphic user interface. The left-hand side (shown in a green box for 

emphasis) displays the control panel, featuring tab-based navigation. The visualization map occupies the remaining space 
on the right-hand side (shown in a red box for emphasis). 

	
Figure 39b. Screenshot of the control panel of the new graphic user interface. 

 

 

 

 



 

4.7. Study of Interactions Between Trajectories 

4.7.1. Motivation and Objective 

In the current implementation of the noise engine, trajectories are processed separately. Therefore, the combined impact of 
two flights at the same geographical location (i.e., the same virtual microphone) is not considered. To assess the validity of 
this simplification in the context of the operational scenarios under consideration, we conducted a study to quantify the 
discrepancy introduced by this approach. 
 
Instead of using a full operational scenario to characterize the discrepancy, we focused on a smaller test case, and we 
proceeded in two steps. First, using two vehicles, we illustrated the error that results when the two vehicles are considered 
independently. We then generalized this error to a larger number of vehicles: because of the simple noise model being used, 
the error could be computed analytically as a function of the vehicle number. This first part of the study allowed us to identify 
the types of situations in which the error was significant, namely, when multiple vehicles were simultaneously close to a 
microphone location. Then, in a second step, we sought to determine the frequency at which such situations occurred in the 
considered operational scenarios. 
 
More specifically, we aimed to assess the impact of computing the 𝐿!,#$% metric by considering all vehicles independently, 
rather than summing the individual sound intensities of nearby vehicles at every microphone location. We focused on the 
𝐿!,#$% metric because this is the only metric of interest that is affected by an independent treatment of trajectories. The other 
metrics result from a time integration, making the concurrency of events irrelevant to their final computed value. 
 
The following simplifications were made compared with the usual noise assessment setup: 

• The analysis grid consists of a single microphone. 
• All vehicles had the same noise level at 100 ft (65 dBA). 
• All vehicles flew at the same altitude/z-coordinate (100 ft). 
• Each vehicle was located at a set distance from the microphone in the horizontal x-y plane. 

4.7.2. Two Vehicles with Varying Distance from the Microphone 

We considered two vehicles and varied their respective distances, 𝑑& and 𝑑', to the microphone in the x-y plane (same 
altitude, same source noise level). As shown in Figure 40, the difference in the two metrics approaches zero when the vehicles 
are far from each other (one has a significantly higher contribution than the other; therefore, taking the maximum of the 
two noise levels becomes a good approximation). When the two vehicles are located at the same distance from the 
microphone, the intensity is underestimated by 1/2 when the maximum is used instead of the sum of intensities, and 
accordingly, the difference between the two noise level metrics is 10 log(2) = 3.01. 

 

 

 

 



 

	
Figure 40. Evolution of LA,max  (upper left), LA,total (upper right), and the difference between these two quantities (lower left). 

 

4.7.3. Varying the Number of Vehicles 

We varied the number of vehicles from 2 to 100. All vehicles were 
assumed to be at an altitude of 100 ft and a distance of 1,000 ft 
from the microphone. These assumptions correspond to the 
diagonal of the previously shown plots, i.e., the situation in 
which the difference between the two metrics is the largest. 
 
In the previous section, the noise level was underestimated by 
10 log(2) because we were considering two vehicles. Here, we 
expect the difference to be 10 log(𝑁()*+,-).), which is confirmed in 
Figure 41. 

 

4.7.4. Assessing Situations in which Multiple Vehicles 
are Simultaneously Close to a Geographical Location 

In the previous sections, we assessed situations in which 
multiple vehicles are simultaneously located within a relatively 
close distance to a given geographic location. We sought to 
verify whether such a situation would arise in a drone delivery 
scenario. In the following, we applied a fixed time window for 
the simulation (e.g., 1 hr).  
 
Within this time window, a fixed number of vehicles depart and proceed to deliver packages. The departure times were 
chosen such as to be uniformly distributed within the time window. Delivery trips that would exceed the time window were 
truncated. 

Figure 41. Evolution of the approximation error. 

 

 

 

 



 

We plotted the duration during which more than a certain threshold number of vehicles are within a certain threshold distance 
(measured in feet) of the grid point. Here, we set the threshold number of vehicles to 2 or 5 and the threshold distance to 
100, 500, or 1,000 ft. The total number of vehicles in the simulation was set to 100, 500, or 1,000 vehicles. 
 
These results correspond to situations in which the value of 𝐿!,#$%  may significantly differ based on the method of 
computation. 
 

Creating the Flight Schedule  

We created a flight schedule and stored it in a 3D array whose dimensions are (a) the number of time steps, (b) the total 
number of vehicles in the simulations, and (c) four data values. The last dimension, which has a size of 4, contains the (x, y, 
z) coordinates of the vehicle and the noise level at 100 ft. In the present study, the vehicle's noise level is not used since we 
only focus on distances. Here, we keep the number of 1-s-long time steps fixed to 3,600 (1 hr), but we vary the total number 
of vehicles departing within that flight window. 
 

Counting the Number of Nearby Flights 

To obtain a quantity that can be easily represented on a map, for each location on the grid, we counted the number of time 
steps in which the threshold number of vehicles was exceeded within the threshold distance. Both the threshold distance 
and the threshold number of vehicles were varied. 
 

Results 

We used Texas data as an example, where the locations and vehicle noise values are loosely based on the Noise Assessment 
for Wing Aviation [8], with two warehouses used as staging locations for the drones. Results are shown for the different 
threshold values in Figures 42–44. 
 

Observations and Conclusions 

In Figures 42–44, we observe the following: 

• As we increase the distance threshold, the number of time steps for which the condition is met increases: there are more 
situations in which vehicles are within a 500-ft radius of a grid point than situations in which they are located within 100 
ft. 

• As we increase the threshold number of vehicles, the number of time steps in which the condition is met decreases: 
there are fewer situations in which five vehicles are within a given distance of a grid point than situations in which only 
two vehicles are within this distance. 

• As the total number of vehicles simulated within the 1-hr time window increases, the number of time steps in which 
multiple vehicles can be found within a given distance of a grid point increases. As the vehicle concentration increases, 
it becomes easier to find situations in which multiple vehicles are simultaneously within a given distance of a grid point. 

• There are two main grid points for which many vehicles may be found simultaneously, corresponding to the two 
warehouses from which vehicles depart. 

These observations match our expectations: the zones of high traffic correspond to the neighborhoods of the staging 
locations. When the total number of vehicles remains relatively low, there are few situations in which two or more vehicles 
are found simultaneously near a grid point, and these situations occur only when the radius is set to 500 or 1,000 ft. These 
correspond to situations in which the sound levels would be relatively low because of the relatively high distance, and the 
noise would need to be summed for fewer than five vehicles. 
 
As the number of vehicles increases, such situations become more common, and more than five or more vehicles may be 
found within the threshold distances used in this study. However, such occurrences are relatively rare and are concentrated 
at locations from which the vehicles depart. For 1,000 vehicles departing within a 1-hr time window, we begin to observe 
ray-shaped zones, for which multiple vehicles may be present within a given distance. However, this level of traffic most 
likely exceeds realistic levels (a rate of 1,000 departures per hour corresponds to a departure every 3.6 s). Moreover, if such 
a high density of traffic was needed, more staging locations would most likely be used, therefore reducing the noise impact 
at each of the staging locations. 
 

 

 

 

 



 

	
Figure 42. Number of occurrences in which the number of vehicles simultaneously flying within a certain threshold 

distance of a location in the study area exceeds a threshold number of vehicles. Results are shown for the least 
dense scenario: 100 vehicles within a 1-hr time window. 

 

 

 

 



 

	
Figure 43. Number of occurrences in which the number of vehicles simultaneously flying within a certain threshold 

distance of a location in the study area exceeds a threshold number of vehicles. Results are shown for the least 
dense scenario: 500 vehicles within a 1-hr time window. 

 

 

 

 



 

	
Figure 44. Number of occurrences in which the number of vehicles simultaneously flying within a certain threshold 

distance of a location in the study area exceeds a threshold number of vehicles. Results are shown for the least dense 
scenario: 1,000 vehicles within a 1-hr time window. 

 

 

 

 



 

4.8. Uncertainty Propagation Leveraging GPU 

4.8.1. Motivation and Objective 

UAS operations are subject to multiple sources of variability, including the following: 

• Daily individual flight trajectories are dependent on orders/demand. 
• Staging locations may change day to day (e.g., when trucks are used for staging drones). 
• Operator strategies for trajectory planning may include noise dispersion and altitude constraints to minimize noise. 

Thus, UAS operations should be modeled as a stochastic process, as annual average day metrics do not capture daily changes. 
Instead of seeking deterministic measures of noise exposure, we aim to estimate the likelihood of exceedance for some 
threshold on any given day across the study area. In mathematical terms, we consider 𝑃(𝐿!,#$% ≥ 𝑋	𝑑𝐵𝐴), the probability that 
𝐿!,#$% will exceed 𝑋	𝑑𝐵𝐴.	Results are depicted as contours on a map of the study area, with the level 𝑋 being varied, therefore 
leading to different contour plots for each value of 𝑋. This study is the second attempt at a Monte-Carlo simulation, which 
takes advantage of the GPU speed-up. 

4.8.2. Setup 

The study area covers the urban region of 
Memphis, TN, representing a 60 x 60 mile 
square. Delivery drones may depart from 1 of 
41 warehouses, and delivery locations are 
uniformly sampled from residential locations 
within the study area. The resolution of the 
analysis grid is 1,056 cells in each direction: 
as a result, the sides of the square cells 
measure approximately 300 ft. In the 
considered operational scenario, 500 
deliveries are performed per day, and the 
simulation is repeated for 10,000 days. The 
only source of variability considered in this 
study is the day-to-day variability of the flights. 

 

Compared with the first Monte-Carlo study, the 
grid is approximately 4 times larger, and there 
are approximately 5 times more flights per 
day, resulting in an overall 20-fold-larger 
problem size. 

4.8.3. Results and Conclusions 

The results of this study are shown in Figure 
45. As discussed previously, each plot 
corresponds to a different noise exposure 
level threshold: 10, 20, 30, or 40 dBA. 
Warehouses are shown as red dots. We observe 
that the high-probability area shrinks as the 
threshold increases, consistent with 
expectations. The geographical areas with a 
high probability of exceeding 40 dBA are 
concentrated near the staging locations. 
 
The full Monte-Carlo simulation was 
completed in approximately 7 hr by using 50 
GPUs from Georgia Tech’s PACE cluster. Each 
run takes approximately 2 min to complete. 
This runtime is orders of magnitude shorter 

Figure 45. Results of the graphics processing unit (GPU) Monte-Carlo 
simulation. Contour plots denote the probability that 𝐿!,#$% exceeds a 

threshold level. Threshold levels were varied at 10, 20, 30, and 40 dBA.	

 

 

 

 



 

than the first Monte-Carlo attempt that was run on a CPU (hours instead of weeks), thus confirming the benefits achieved 
when running the noise engine on GPUs. 
 

Milestone 
The team delivered a recommendation for an updated GIS system to the FAA and members of the AEDT development team.  

Major Accomplishments 
The team presented an initial prototype of the UAS noise engine with an interactive display while running on a parallel 
computing cluster to the FAA. 

Publications 
None  

Outreach Efforts 
The team engaged in outreach and coordination with the ASSURE Center of Excellence team and their work at MSU. The team 
also collaborated with the Volpe Center and participated in the NASA UAM Noise Technical Working Groups. 

Awards 
None 

Student Involvement  
The Georgia Institute of Technology student team consists of three graduate research assistants. At the beginning of the 
project, all graduate research assistants engaged in the GIS background research. The team is now divided to tackle the 
different aspects and implementation of the noise engine, novel computational technology testing, and the creation of 
benchmark studies that serve as a test bed for testing the computational scaling of different approaches.  

Plans for Next Period 
In the next reporting period, we plan to complete the current work plan and perform more testing with emerging 
computational technologies on a defined sample problem. After further discussion with the FAA, the team will look to support 
the FAA in potential applications of the UAS noise engine and to transfer the UAS noise engine to the FAA.  
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