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Objective:

• Develop a first-principles noise modeling system 
for future UAM aircraft with varied configurations

• Produce noise database for notional UAM 
configurations for hover, transition, cruise

• Identify configuration changes and operational 
strategies that minimize acoustic impacts

Project Benefits:
• Initial capability to analyze UAM acoustics
• Understanding of UAM noise characteristics
• Identification of noise reduction opportunities
• Low noise design tool for the UAM industry
• Initial UAM noise data for input to Advanced 

Acoustic Model, which can provide input to AEDT

Research Approach:

• Build on success of helicopter noise prediction 
system developed under ASCENT Projects 6 & 38: 
• Couple flight simulation, aerodynamic modeling (CDI's 

CHARM), and PSU-WOPWOP

• Tailor approach to unique characteristics of UAM 
by modeling flight dynamics of distributed electric 
propulsion vehicles including multiple propellers 
and rotors with PSU-DEPSim

• Develop low noise UAM trim strategies

Major Accomplishments (since last meeting):
• Analysis of departure maneuver for lift-plus-

cruise eVTOL
– Aircraft transitioning from hover to cruise while 

gaining altitude

• Time-varying broadband noise implementation 
in system made more robust
– Validating prior to external release

• Conducted literature review of turbulence 
ingestion noise models to implement in system

Future Work / Schedule:
• Implement models of broadband ingestion noise 

generated by aerodynamic interactions



2

Presentation Outline

• Motivation

• Noise during transition maneuver
– Dealing with over-actuated controls
– Demonstration of impact of trajectory on acoustic impact

• Time-varying broadband noise

• Summary:
– Accomplishments
– Future work
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Motivation

• Noise is widely recognized as one of the foremost barriers to 
development and public acceptance of UAM operations

• Information about acoustic characteristics of UAM is needed:
– To design quiet configurations
– To understand how to operate UAM quietly
– To inform the approach to noise certification
– To understand the impact on communities

• Development of robust noise prediction system:
– PSUDEPSim: flight simulation code for DEP aircraft
– CHARM: aeromechanics modeling code by CDI
– PSU-WOPWOP: acoustic propagation solver

• DEPSim/PSU-WOPWOP system enables systematic investigation of 
UAM configurations, flight physics, and noise emission

• System allows investigating:
－ Fundamental noise mechanisms of 

novel variable rotational speed rotors

－ Nature of multi-rotor noise

－ Trim strategies of compound aircraft 
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Aircraft models analyzed

• PSU Reference Aircraft 1
– Weight = 1000 lbf
– Notional geometry

• PSU Reference Aircraft 2
– Weight = 7000 lbf
– Based on public information 

available on Beta Alia 
aircraft

• Both aircraft have
– 4 lift rotors
– 1 cruise pusher propeller
– 1 wing for active lift 

(and propulsion)

PSU Reference Aircraft 1

Beta Alia (source: evtol.com)

PSU Reference Aircraft 2
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PSU Reference Aircraft 2: unique 
design

• Lift rotors are canted: 
– Rotor lateral cant 3°
– Front rotors longitudinal cant 6°

• Rotor cant is known to improve controllability in transition
– Lateral cant improves yaw control authority and stability
– Longitudinal cant provides a component of lift rotor thrust in the flight 

direction during transition

• Impact of rotor cant on noise has not been studied yet

Lateral cant

Longitudinal  cant
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Low-noise lessons learned

• Thrust on lift rotors (Rot 1 – 4) 
should be kept as low as possible
– Helps reduce the required thrust to 

balance aircraft weight during 
transition

– Results in lower operational tip-Mach 
number (important for noise)

• Rotor blades operating in stall at 
low tip-Mach number have 
significant contribution to self-
noise
– Turbulent boundary layer scattering 

via the trailing edge
– Bad for performance/aerodynamics 

too

PSU Reference Aircraft 1
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Low-noise strategy: 
Lift + Cruise Design

• Highest wing lift as soon as 
possible

• Wing lift proportional to:
– Flight speed (~𝑉∞

2)
– Angle of attack (directly dependent 

on aircraft pitch)

• No rotor stall
– Lift rotor thrust control strategies 

need to be adapted for no stall
– Variable pitch, constant RPM
– Variable RPM, constant pitch

• Rotors larger than 6ft diameter 
not well controlled using 
variable RPM scheme
– Current aircraft rotor diameter is 12 ft

PSU Reference Aircraft 2
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Low-noise strategy: Lift + Cruise

• Transition maneuver: 
– Maneuver that goes from vertical 

flight to cruise
– Control of vehicle

• Variable pitch
• Constant RPM

– “Constant RPM” – RPM set at 
different setpoints throughout 
maneuver 
• Dependent on flight condition
• Advantage of electric motors

– Rotor designs are usually optimal 
for a small range of flight 
conditions

PSU Reference Aircraft 2
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Noise mitigation strategies

Multi-rotor aircraft design and availability of multiple lift rotor 
thrust control schemes allows a diverse approach in noise 
mitigation
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Parametric sweep strategy

• Goal: Minimize computational cost associated with 
finding setpoint schedule suitable for controllability, 
acoustics and performance

Initial guess of 
setpoint 

schedule using 
parameter 

sweep

Verification of 
setpoint 
schedule

Finalize trim 
for transition + 

additional 
control margin

Parameter 

sweep

Steady flight 

DEPSim

simulations

Transition 

simulation

Increasing computational cost
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Setpoint schedule: Initial guess

• Isolated lift rotor parametric sweep exploration space:
– Tip-Mach: 0.3 to 0.6
– Rotor collective pitch: −20° to 9°
– Velocity: 10, 20, 30, 40, 50, 60, 70 knots at 𝜃 = 8°

• Metrics evaluated: rotor thrust, power, stall
– Conditions with rotor stall rejected on account of noise
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Setpoint schedule: Initial guess

• Metrics evaluated: rotor thrust, power, stall
– Conditions with rotor stall rejected on account of noise
– Rotor thrust must be enough to balance aircraft weight

• Rotor thrust estimate = 
Aircraft weight −Wing lift

number of lift rotors

– Works well in predicting the range of rot 1 – 4 collective pitch angles for steady 
flight conditions
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Setpoint schedule: Initial guess

• Comparison of initial guess with DEPSim steady 
simulations

𝑣𝑓 (knots),

tip-Mach

10, 
0.55

40, 
0.55

70, 
0.35

Collective range 
from sweep (deg)

-2 to 4 -6 to 2 -6 to 4

DEPSim collective 
Rot 1,2,3,4

(deg)

1.8, 
1.5, 
2.6, 
2.3

-4.8, 
-3.9, 
1, 
0.2

0.6,    
-11, 
2.5,    
-2.8

This discrepancy has 

a reason. 
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Role of interaction in dynamics

• DEPSim controls aircraft roll disturbance using the difference in 
thrust between rotors on each side
– Rot 1 – Rot 2 thrust & Rot 3 – Rot 4 thrust
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Rolling Moment: 70 knots

• Break moment cycle by 
changing how the 
controller compensates for 
rolling moment
– Do not use rotors 1-2 

thrust differential for roll 
rejection!

• Steady flight simulation 
70 knots
– Controller starts without 

knowledge of interactions
– Interaction feedback 

starts around 5 seconds

• “CHARM Off” aero 
model has no 
aerodynamic 
interactions
– Magnitude of rolling 

moment is much lower

Roll moment vs Time
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Rolling Moment: 70 knots

• Same steady flight 
simulation

• Change in controller 
design 
– Rotor 1,2 no longer 

involved in roll 
rejection

• Notice large reduction in 
wing and rotors moments
– Improvement in 

controllability and 
performance

– No significant change 
in noise Roll moment vs Time
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Setpoint schedule: Initial guess

• Initial guess:
– Schedule 1 expected to work
– Schedule 2 used to verify whether schedule 1 is the lowest tip‐Mach 

number that maintains reasonable controllability
– 14 steady flight simulations

Velocity (knots) Schedule 1 Schedule 2

10 0.55 0.50

20 0.55 0.50

30 0.55 0.50

40 0.55 0.50

50 0.50 0.50

60 0.45 0.45

70 0.35 0.35
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Verifying setpoint schedule: 
Steady flight DEPSim

• Wing lift starts to 
increase significantly 
after 40 knots

• Note the dip in wing 
lift around 30 knots
– Due to wakes from the 

front two rotors
– Wakes creates 

downwash on wing 
– Downwash results in 

negative lift! 

Velocity 
(knots)

10 20 30 40 50 60 70

Schedule 1 0.55 0.55 0.55 0.55 0.50 0.45 0.35

Schedule 2 0.50 0.50 0.50 0.50 0.50 0.45 0.35
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Departure maneuver

• Departure maneuver was simulated using Penn State eVTOL
Noise prediction system

– This maneuver makes the aircraft transition from rotorcraft mode 
(hover) to fixed-wing airplane mode (cruise)

• Three departure maneuvers: all start at hover, 50 ft altitude, 
and end at 110 knots, 1000 ft altitude, 20,000 ft downrange

– Level acceleration: Hover -> 0.1g low altitude level acceleration to 
110 knots (rotors off by 110 knots), then climb to 1000 ft at 1000ft/min

– Axial climb: Hover -> 1000ft/min climb to 1000 ft -> 0.1g level 
acceleration to 110 knots

– Continuous climb: Hover-> 0.1g level acceleration + 1000ft/min climb 
-> Rotors off at 110 knots -> Climb to 1000 ft in aircraft mode

• Higher bias schedule due to higher demands of thrust for continuous climb 
rate + level acceleration
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Departure maneuver: Trajectory

• Level acceleration: Man-1; Axial climb: Man-2; Continuous climb: Man-3
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Departure maneuver: Energy, Power

• Level acceleration: Man-1: Lowest energy, lowest peak power

• Axial climb: Man-2: Highest energy, second highest peak power

• Continuous climb: Man-3: Second highest energy, highest peak power
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Departure maneuver: Power, Stall

• Level acceleration: Lowest energy, lowest peak power

– Lift rotor power higher than pusher prop in level acceleration (it balances 
weight)

– Pusher prop increases during climb in aircraft mode

• Lift rotor blade stall: 10 – 30 %
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Departure maneuver: Noise

• Level acceleration: Lowest energy, lowest peak power
– Lift rotor stall: 10 – 30 %

• Stall is not playing a major role in noise
– Setpoint schedule works

• Noise levels high along trajectory (marked in black)

Total noise Total noise excluding stall from BPM
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Departure maneuver: Power, 
Stall

• Axial climb: Highest energy, second highest peak power

– High lift rotor power for majority of flight: Because its responsible for climb

– Spike in power is when the controller ramps rotor collective to have a short period 
of vertical acceleration to gain 1000 ft/min climb rate

• Lift rotor stall: 10 – 40 %
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Departure maneuver: Noise

• Axial climb: Highest energy, second highest peak power
– Lift rotor stall: 10 – 40 %

• Stall is not playing a major role in noise
– Setpoint schedule works

• Noise levels high throughout plane: aircraft is in rotorcraft mode for 
longest time

Total noise Total noise excluding stall from BPM
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Departure maneuver: Power, Stall

• Continuous climb: Second highest energy, highest peak power

– Climb + level acceleration leads to really high lift rotor power

– Note higher sustained cruise prop power as it is contributing to climb

• Lift rotor stall: 10 – 50 %

– Stalled for longer period of time
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Departure maneuver: Noise

• Continuous climb : Second highest energy, highest peak power
– Lift rotor stall: 10 – 50 %

• Stall is playing a major role in noise
– Recall: Setpoint schedule was not developed for climb

• Noise levels similar to level acceleration when stall is excluded:     
Low noise strategy is phasing off rotors as quickly as possible

Total noise Total noise excluding stall from BPM
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Time Variation of Broadband 
Noise
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Background and Motivation

• Literature typically only analyzes broadband noise 
spectrum time-averaged over rotor revolution

• But spectrum varies within a rotor revolution, due to:
– Edgewise flight
– Aerodynamic interactions

• Time variation of broadband noise spectrum:
– Not only affects noise levels, but likely perception [1]
– Important for helicopters, but not well-understood
– Must investigate for UAM – especially interactions

[1] A. Christian, J. Caston, and E. Greenwood, VFS 75th Annual Forum, 2019
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Coding Status

• Past conference paper results [2, 3]:
– Time-varying predictions not for external release (prototype code)
– Did not post-process spectrum time history 

• Completed: Fully implemented robust time-varying 
broadband noise prediction in PSU-WOPWOP

• In progress: Validation prior to external release

[2] Z. F. T. Gan, K. S. Brentner, and E. Greenwood, VFS 9th Biennial Autonomous VTOL Technical Meeting, 2021.

[3] Z. F. T. Gan, K. S. Brentner, and E. Greenwood, 28th AIAA/CEAS Aeroacoustics Conference, 2022.
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Validation Approach

• Validation approach: Check if
1. Time-averaged BPM model implemented correctly: 

i.e., match BPM model predictions of other code(s)
2. Time-varying BPM predictions match experimental data

• Previous validation with flight test data [3]: 
modulation captured, but levels under-predicted

• Improved validation case: NASA ideally-twisted rotor
– NASA provided time-averaged noise predictions 

• Used to check implementation (Step #1)

– NASA provided noise measurements 
• Processing measured data to compare with time-varying PSU-

WOPWOP predictions (Step #2)

– Wind tunnel environment more controlled than outdoor flight test

[3] Z. F. T. Gan, K. S. Brentner, and E. Greenwood, 28th AIAA/CEAS Aeroacoustics Conference, 2022.
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Validation – Time-averaged spectrum

• Previously validated prior to 
implementing time-varying 
broadband noise prediction 
framework

• After implementing time-
varying broadband noise: 
– Time-averaging of spectrum 

time history does NOT 
significantly change results 
generated using previous 
PSU-WOPWOP versions
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Validation – Time-varying spectrum

• Predicted time-varying broadband noise

• Will compare with experimental data, currently being 
processed
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Validation – Spectrogram

• Processed experimental data into spectrogram
– Modulation sensitive to chosen time window length T
– Time-frequency trade-off for spectrograms: 

• Criteria: T << BPP (blade passage period)
• Result: Δf >> BPF (blade passage frequency)
• If Δf > bandwidth, cannot resolve frequencies below this band

20 kHz 1/3rd octave band 
(wider than lower frequency bands)

Wind turbine noise studies:

• Window length < 5% of BPP

Our study (BPP =  0.0027 s): 

• T = 0.000946 s  0.35 BPP

• T = 0.00189 s  0.7 BPP

• T = 0.00378 s  1.4 BPP

• T = 0.00757 s  2.8 BPP

T = 0.000946 s

T = 0.00189 s 

T = 0.00378 s

T = 0.00757 s
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Validation – Cyclostationary analysis

• Alternative solution to processing experimental data: 
Apply cyclostationary analysis:
– Class of statistical methods developed to study modulating signals
– Used to study time-varying wind turbine noise:

by creating time-frequency representations (TFR)

• TFR created by cyclostationary analysis:  
Offers advantages over spectrograms:
– More mathematically correct than stationarity:  

• Spectrogram assumes spectrum constant over chosen window

– Better time-frequency resolution: 
• Cyclostationary analysis: Δf ≤ BPF
• Spectrogram: Δf >> BPF

• In progress: creating TFR using cyclostationary analysis
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Turbulence Interaction Noise

• Motivation:
– Geometric configurations of UAM aircraft create many 

opportunities for aerodynamic interactions
– Only self-noise is modeled by BPM model
– Broadband noise underpredicted when only self-noise 

included: by past Project 49 work and literature

• Upstream turbulence ingested into rotor generates 
broadband noise
– Atmospheric
– Rotor and/or airframe wake ingestion
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Turbulence Interaction Noise

• Chosen model: Amiet’s leading edge noise model: 
time and frequency domain approaches:
– Frequency domain approach: 

• Input: turbulence velocity spectrum

• Next steps: implement in noise prediction system
– Integrate into existing time-varying broadband noise 

prediction framework used for BPM model for self-noise
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Summary

• Major Accomplishments:
– Analysis of departure maneuver for lift-plus-cruise eVTOL

• Aircraft transitioning from hover to cruise while gaining altitude

– Time-varying broadband noise implementation in system made 
more robust

– Conducted literature review of turbulence ingestion noise models 
to implement in system

• Future Work: 
– Validate time-varying broadband noise predictions by processing 

experimental data using cyclostationary analysis
– Implement models of broadband ingestion noise generated by 

aerodynamic interactions
– Include impact of aerodynamic interactions such as BVI, BWI etc.
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Questions?
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Extra draft slides (delete them 
from final)
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Role of interaction in dynamics

• DEPSim controls aircraft roll disturbance using the difference in 
thrust between rotors on each side
– Rot 1 – Rot 2 thrust & Rot 3 – Rot 4 thrust

Wake passing 

through wing

40 knots

Rotor 1-2 thrust 

differential

Wing rolling 

moment

Controller increasing 

thrust differential 

Unequal wake 

strengths

Controller 

reaction

Repeats cycle
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Role of interaction in dynamics

• DEPSim controls aircraft roll disturbance using the difference in 
thrust between rotors on each side
– Rot 1 – Rot 2 thrust & Rot 3 – Rot 4 thrust

Rotor 1-2 

thrust 

differential

Wing rolling 

moment

Controller 

increasing thrust 

differential 

Unequal 

impact of wake 

interaction

Controller 

reaction

Repeats 

cycle



44

Rolling Moment: 70 knots

• Break moment cycle by 
changing how the 
controller compensates for 
rolling moment
– Do not use rotors 1-2 

thrust differential for roll 
rejection!

• Steady flight simulation 
70 knots
– Controller starts without 

knowledge of interactions
– Interaction feedback 

starts around 5 seconds

Roll moment vs Time
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Rolling Moment: 70 knots

• Same steady flight 
simulation

• Change in controller 
design 
– Rotor 1,2 no longer 

involved in roll rejection

• Notice large reduction in 
wing and rotors moments
– Improvement in 

controllability and 
performance

– No significant change in 
noise

Roll moment vs Time
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Rolling Moment: 70 knots



47

Departure maneuver: Noise

• Level acceleration: Lowest energy, lowest peak power

– Lift rotor stall: 10 – 30 %

• Note difference in SEL levels when stall broadband noise is removed

– BPM is semi-empirical and we can separate components out!

Total noise
Total noise excluding 

stall from BPM
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Departure maneuver: Noise

• Axial climb: Highest energy, second highest peak power

– Lift rotor stall: 10 – 40 %

• Note difference in SEL levels when stall broadband noise is removed

– Design of blade matters!!!
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Departure maneuver: Noise

• Continuous climb : Second highest energy, Highest peak power

– Lift rotor stall: 10 – 50 %

• Note difference in SEL levels when stall broadband noise is removed

– Stall was contributing to significant noise!
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Departure maneuver: Noise

• Level acceleration: Lowest energy, lowest peak power

– Lift rotor stall: 10 – 30 %

• Stall is not playing a major role in noise

– Setpoint schedule works

Total noise Total noise excluding stall from BPM
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Departure maneuver: Noise

• Level acceleration: Lowest energy, lowest peak power

– Lift rotor stall: 10 – 30 %

• Stall is not playing a major role in noise

– Setpoint schedule works

Total noise Total noise excluding stall from BPM
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Departure maneuver: Noise

• Level acceleration: Lowest energy, lowest peak power

– Lift rotor stall: 10 – 30 %

• Stall is not playing a major role in noise

– Setpoint schedule works

Total noise Total noise excluding stall from BPM


