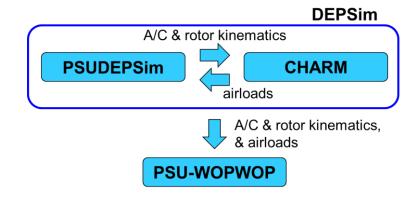
Project 49 Urban Air Mobility Noise Acduction Modeling Penn State P1: Kenneth S. Brentner PM: Rick Riley Cost Share Partner: Continuum Dynamics, Inc/Penn State	 Objective: Develop a first-principles noise modeling system for future UAM aircraft with varied configurations Produce noise database for notional UAM configurations for hover, transition, cruise Identify configuration changes and operational strategies that minimize acoustic impacts Project Benefits: Initial capability to analyze UAM acoustics Understanding of UAM noise characteristics Identification of noise reduction opportunities Low noise design tool for the UAM industry Initial UAM noise data for input to Advanced Acoustic Model, which can provide input to AEDT
 Research Approach: Build on success of helicopter noise prediction system developed under ASCENT Projects 6 & 38: Couple flight simulation, aerodynamic modeling (CDI's CHARM), and PSU-WOPWOP Tailor approach to unique characteristics of UAM by modeling flight dynamics of distributed electric propulsion vehicles including multiple propellers and rotors with PSU-DEPSim Develop low noise UAM trim strategies 	 Major Accomplishments (since last meeting): Analysis of departure maneuver for lift-pluscruise eVTOL

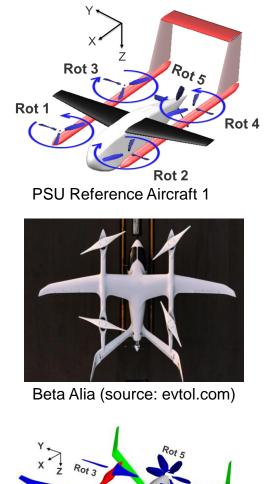
1

Presentation Outline



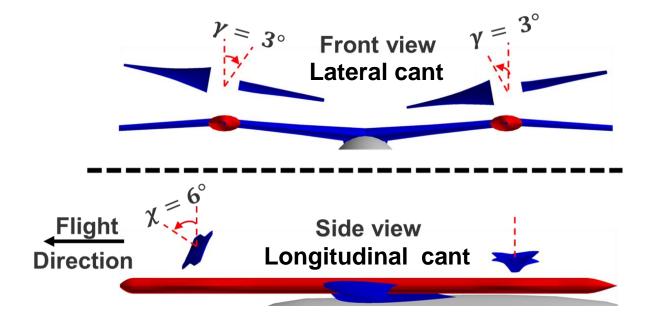
- Motivation
- Noise during transition maneuver
 - Dealing with over-actuated controls
 - Demonstration of impact of trajectory on acoustic impact
- Time-varying broadband noise
- Summary:
 - Accomplishments
 - Future work

Motivation

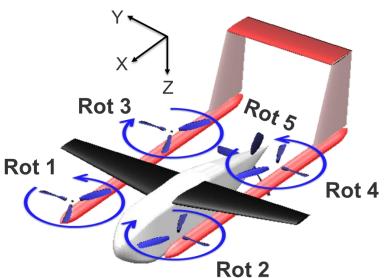

- Noise is widely recognized as one of the foremost barriers to development and public acceptance of UAM operations
- Information about acoustic characteristics of UAM is needed:
 - To design quiet configurations
 - To understand how to operate UAM quietly
 - To inform the approach to noise certification
 - To understand the impact on communities
- Development of robust noise prediction system:
 - PSUDEPSim: flight simulation code for DEP aircraft
 - CHARM: aeromechanics modeling code by CDI
 - PSU-WOPWOP: acoustic propagation solver
- DEPSim/PSU-WOPWOP system enables systematic investigation of UAM configurations, flight physics, and noise emission
- System allows investigating:
 - Fundamental noise mechanisms of novel variable rotational speed rotors
 - Nature of multi-rotor noise
 - Trim strategies of compound aircraft

Aircraft models analyzed

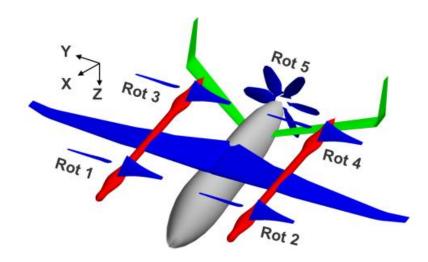
- PSU Reference Aircraft 1
 - Weight = 1000 lbf
 - Notional geometry
- PSU Reference Aircraft 2
 - Weight = 7000 lbf
 - Based on public information available on Beta Alia aircraft
- Both aircraft have
 - 4 lift rotors
 - 1 cruise pusher propeller
 - 1 wing for active lift (and propulsion)



PSU Reference Aircraft 2: unique design

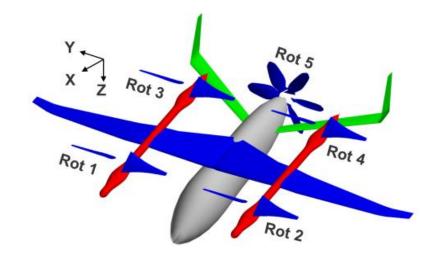

- Lift rotors are canted:
 - Rotor lateral cant 3°
 - Front rotors longitudinal cant 6°
- Rotor cant is known to improve controllability in transition
 - Lateral cant improves yaw control authority and stability
 - Longitudinal cant provides a component of lift rotor thrust in the flight direction during transition
- Impact of rotor cant on noise has not been studied yet

Low-noise lessons learned


- Thrust on lift rotors (Rot 1 4) should be kept as low as possible
 - Helps reduce the required thrust to balance aircraft weight during transition
 - Results in lower operational tip-Mach number (important for noise)
- Rotor blades operating in stall at low tip-Mach number have significant contribution to selfnoise
 - Turbulent boundary layer scattering via the trailing edge
 - Bad for performance/aerodynamics too

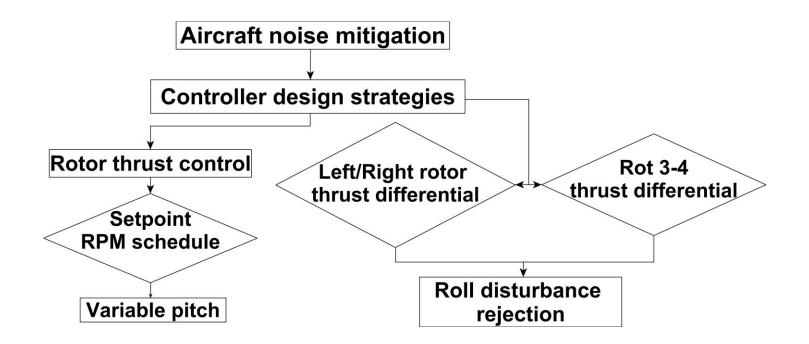
Low-noise strategy: Lift + Cruise Design

- Highest wing lift as soon as possible
- Wing lift proportional to:
 - Flight speed ($\sim V_{\infty}^2$)
 - Angle of attack (directly dependent on aircraft pitch)
- No rotor stall
 - Lift rotor thrust control strategies need to be adapted for no stall
 - Variable pitch, constant RPM
 - Variable RPM, constant pitch
- Rotors larger than 6ft diameter not well controlled using variable RPM scheme
 - Current aircraft rotor diameter is 12 ft



Low-noise strategy: Lift + Cruise

• Transition maneuver:


- Maneuver that goes from vertical flight to cruise
- Control of vehicle
 - Variable pitch
 - Constant RPM
- "Constant RPM" RPM set at different *setpoints* throughout maneuver
 - Dependent on flight condition
 - Advantage of electric motors
- Rotor designs are usually optimal for a small range of flight conditions

Noise mitigation strategies

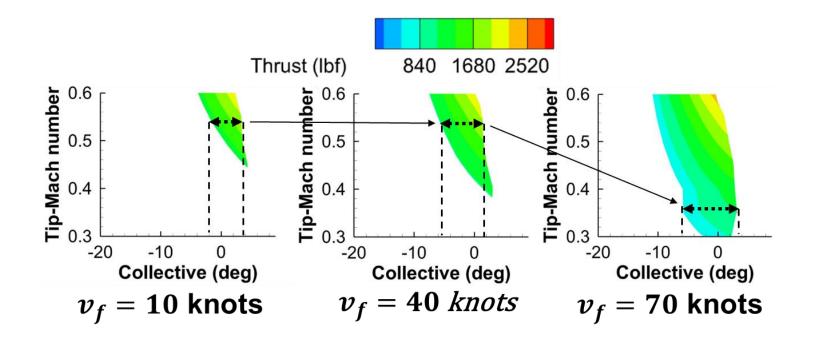
Multi-rotor aircraft design and availability of multiple lift rotor thrust control schemes allows a diverse approach in noise mitigation

Parametric sweep strategy

• Goal: Minimize computational cost associated with finding setpoint schedule suitable for controllability, acoustics and performance

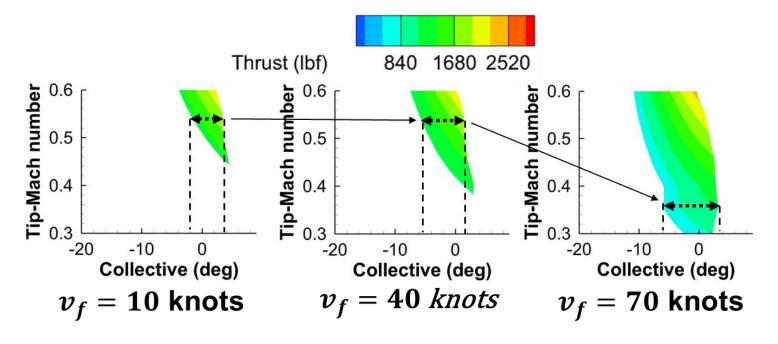
Increasing computational cost

Parameter sweep

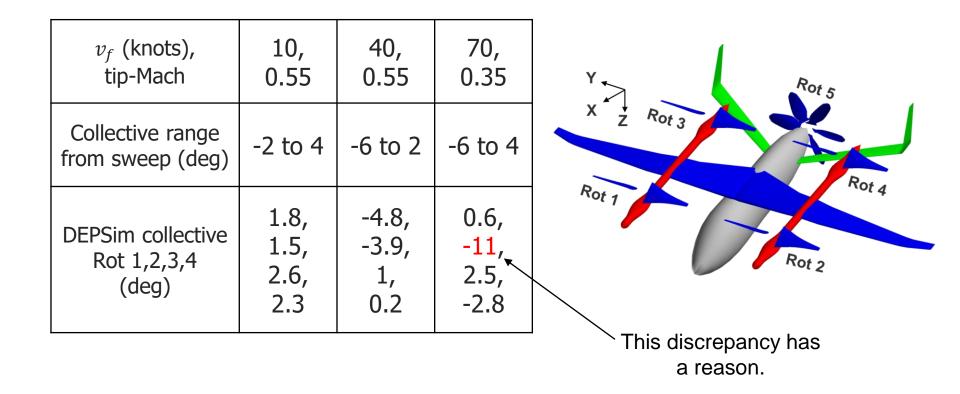

Initial guess of setpoint schedule using parameter sweep Steady flight DEPSim simulations

Verification of setpoint schedule Transition simulation

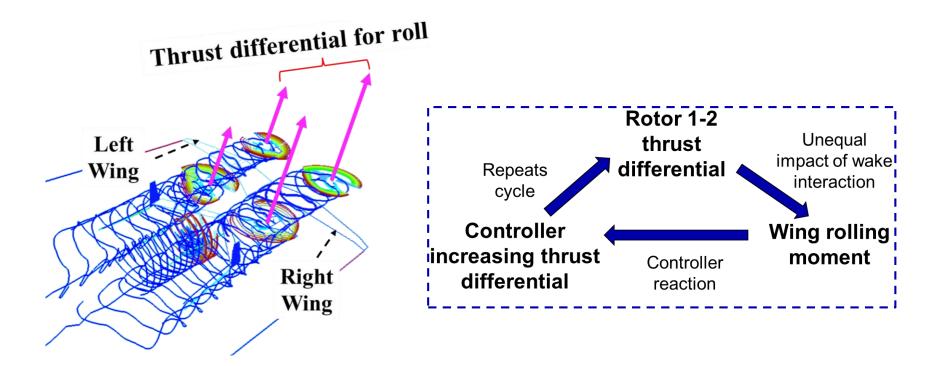
Finalize trim for transition + additional control margin



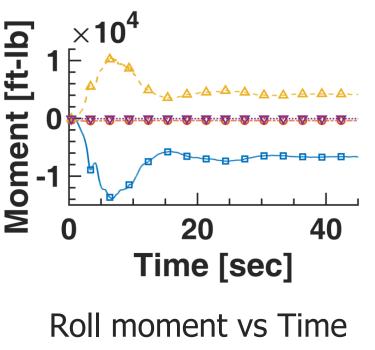
- Isolated lift rotor parametric sweep exploration space:
 - Tip-Mach: 0.3 to 0.6
 - Rotor collective pitch: -20° to 9°
 - Velocity: 10, 20, 30, 40, 50, 60, 70 knots at $\theta = 8^{\circ}$
- Metrics evaluated: rotor thrust, power, stall
 - Conditions with rotor stall rejected on account of noise



- Metrics evaluated: rotor thrust, power, stall
 - Conditions with rotor stall rejected on account of noise
 - Rotor thrust must be enough to balance aircraft weight
- Rotor thrust estimate = $\frac{\text{Aircraft weight Wing lift}}{\text{number of lift rotors}}$
 - Works well in predicting the range of rot 1 4 collective pitch angles for steady flight conditions


 Comparison of initial guess with DEPSim steady simulations

Role of interaction in dynamics



- DEPSim controls aircraft roll disturbance using the difference in thrust between rotors on each side
 - Rot 1 Rot 2 thrust & Rot 3 Rot 4 thrust

Rolling Moment: 70 knots

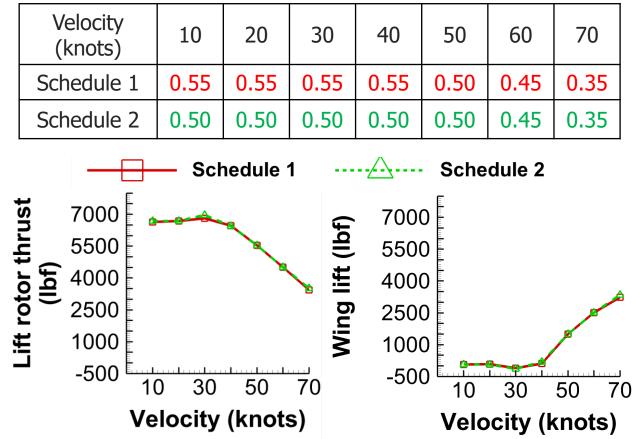
- Break moment cycle by changing how the controller compensates for rolling moment
 - Do not use rotors 1-2 thrust differential for roll rejection!
- Steady flight simulation 70 knots
 - Controller starts without knowledge of interactions
 - Interaction feedback starts around 5 seconds
- "CHARM Off" aero model has no aerodynamic interactions
 - Magnitude of rolling moment is much lower



Rolling Moment: 70 knots

- Same steady flight simulation
- Change in controller design
 - Rotor 1,2 no longer involved in roll rejection
- Notice large reduction in wing and rotors moments
 - Improvement in controllability and performance
 - No significant change in noise

Total Rotor Moment - CHARM On 😔 Total Rotor Moment - CHARM Off

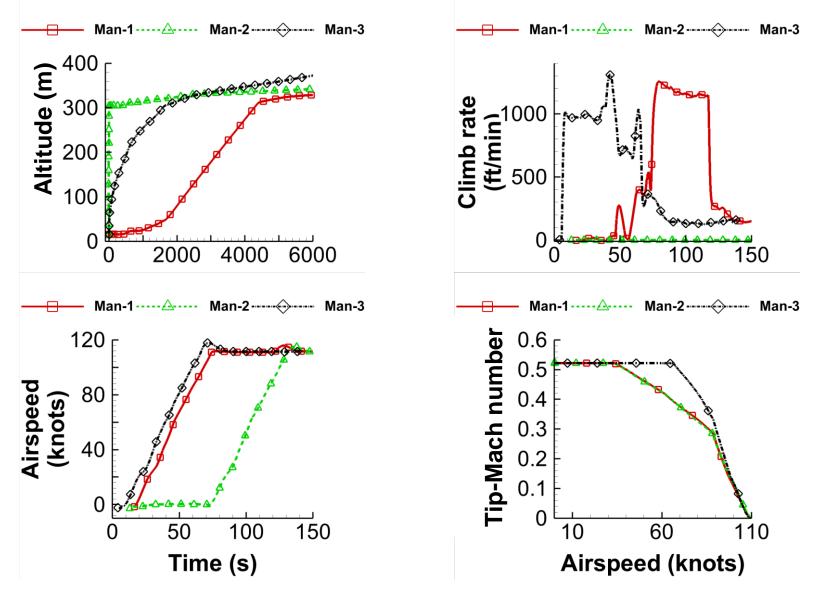

- Initial guess:
 - Schedule 1 expected to work
 - Schedule 2 used to verify whether schedule 1 is the lowest tip-Mach number that maintains reasonable controllability
 - 14 steady flight simulations

Velocity (knots)	Schedule 1	Schedule 2
10	0.55	0.50
20	0.55	0.50
30	0.55	0.50
40	0.55	0.50
50	0.50	0.50
60	0.45	0.45
70	0.35	0.35

Verifying setpoint schedule: Steady flight DEPSim

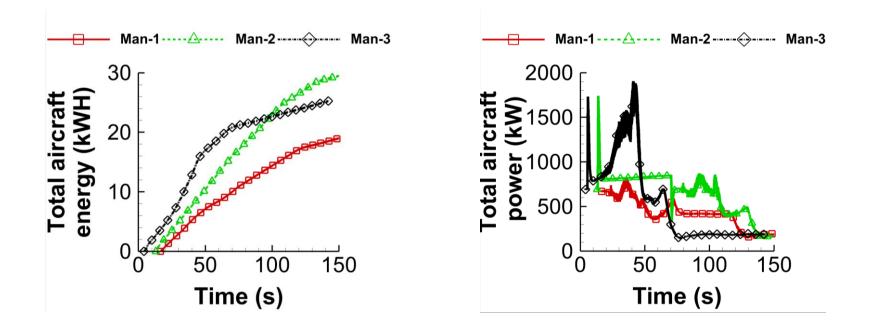
- Wing lift starts to increase significantly after 40 knots
- Note the dip in wing lift around 30 knots
 - Due to wakes from the front two rotors
 - Wakes creates downwash on wing
 - Downwash results in negative lift!

Departure maneuver

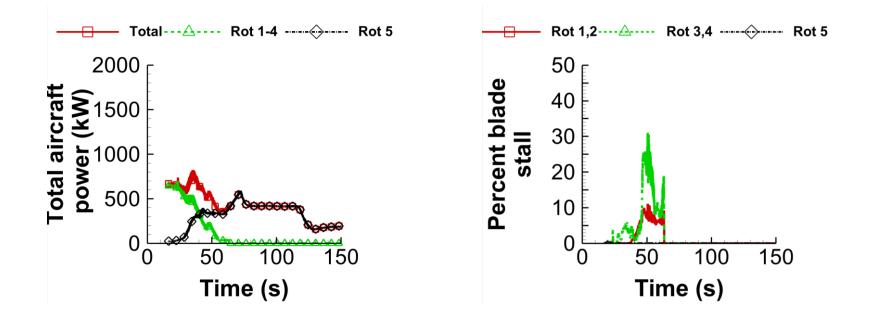


- Departure maneuver was simulated using Penn State eVTOL Noise prediction system
 - This maneuver makes the aircraft transition from rotorcraft mode (hover) to fixed-wing airplane mode (cruise)
- Three departure maneuvers: all start at hover, 50 ft altitude, and end at 110 knots, 1000 ft altitude, 20,000 ft downrange
 - Level acceleration: Hover -> 0.1g low altitude level acceleration to 110 knots (rotors off by 110 knots), then climb to 1000 ft at 1000ft/min
 - Axial climb: Hover -> 1000ft/min climb to 1000 ft -> 0.1g level acceleration to 110 knots
 - Continuous climb: Hover-> 0.1g level acceleration + 1000ft/min climb
 -> Rotors off at 110 knots -> Climb to 1000 ft in aircraft mode
 - Higher bias schedule due to higher demands of thrust for continuous climb rate + level acceleration

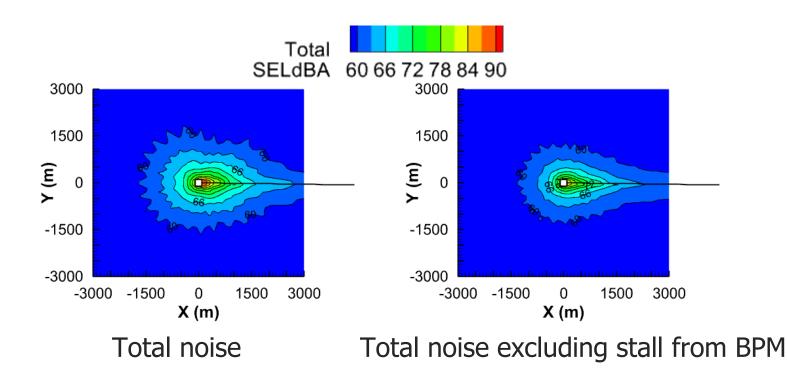
Departure maneuver: Trajectory


Level acceleration: Man-1; Axial climb: Man-2; Continuous climb: Man-3

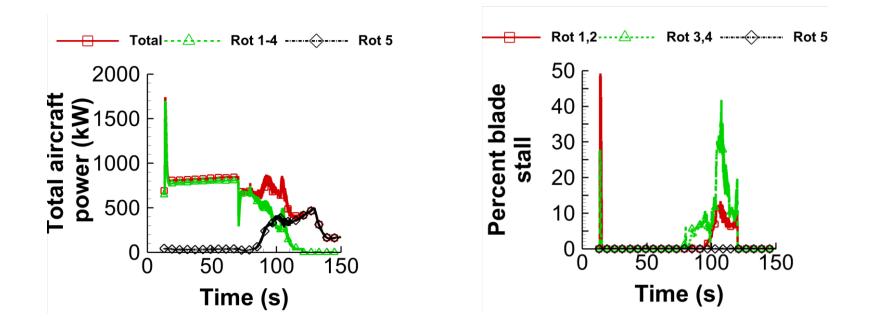
Departure maneuver: Energy, Power


- Level acceleration: Man-1: Lowest energy, lowest peak power
- Axial climb: Man-2: Highest energy, second highest peak power
- Continuous climb: Man-3: Second highest energy, highest peak power

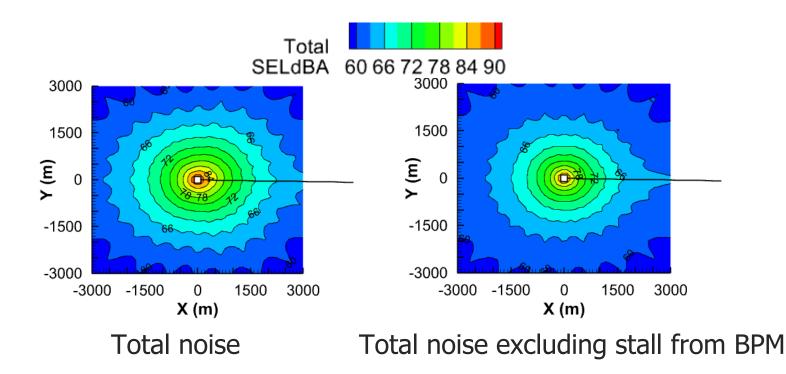
Departure maneuver: Power, Stall


- Level acceleration: Lowest energy, lowest peak power
 - Lift rotor power higher than pusher prop in level acceleration (it balances weight)
 - Pusher prop increases during climb in aircraft mode
- Lift rotor blade stall: 10 30 %

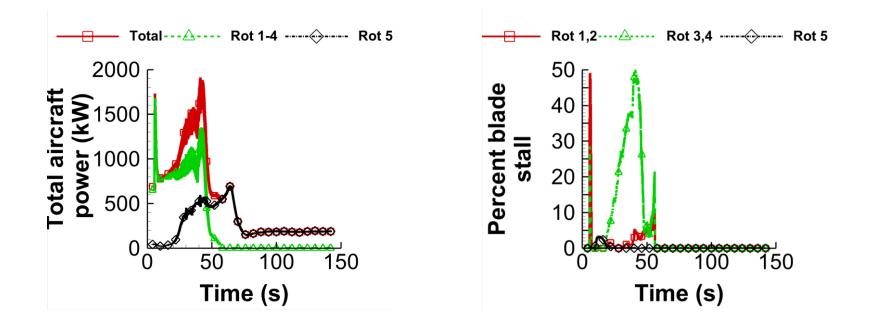
Departure maneuver: Noise


- Level acceleration: Lowest energy, lowest peak power
 - Lift rotor stall: 10 30 %
- Stall is not playing a major role in noise
 - Setpoint schedule works
- Noise levels high along trajectory (marked in black)

Departure maneuver: Power, Stall

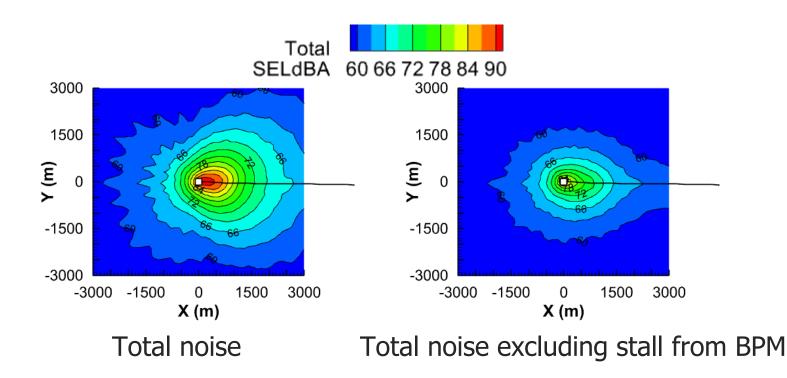

- Axial climb: Highest energy, second highest peak power
 - High lift rotor power for majority of flight: Because its responsible for climb
 - Spike in power is when the controller ramps rotor collective to have a short period of vertical acceleration to gain 1000 ft/min climb rate
- Lift rotor stall: 10 40 %

Departure maneuver: Noise


- Axial climb: Highest energy, second highest peak power
 Lift rotor stall: 10 40 %
- Stall is not playing a major role in noise
 - Setpoint schedule works
- Noise levels high throughout plane: aircraft is in rotorcraft mode for longest time

Departure maneuver: Power, Stall

- Continuous climb: Second highest energy, highest peak power
 - Climb + level acceleration leads to really high lift rotor power
 - Note higher sustained cruise prop power as it is contributing to climb
- Lift rotor stall: 10 50 %
 - Stalled for longer period of time



Departure maneuver: Noise

- Continuous climb : Second highest energy, highest peak power
 Lift rotor stall: 10 50 %
- Stall is playing a major role in noise

 Recall: Setpoint schedule was not developed for climb
- Noise levels similar to level acceleration when stall is excluded: Low noise strategy is phasing off rotors as quickly as possible

Time Variation of Broadband Noise

Background and Motivation

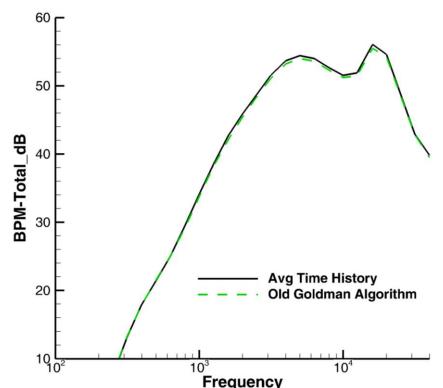
- Literature typically only analyzes broadband noise spectrum time-averaged over rotor revolution
- But spectrum varies within a rotor revolution, due to:
 - Edgewise flight
 - Aerodynamic interactions
- Time variation of broadband noise spectrum:
 - Not only affects noise levels, but likely perception [1]
 - Important for helicopters, but not well-understood
 - Must investigate for UAM especially interactions

[1] A. Christian, J. Caston, and E. Greenwood, VFS 75th Annual Forum, 2019

Coding Status

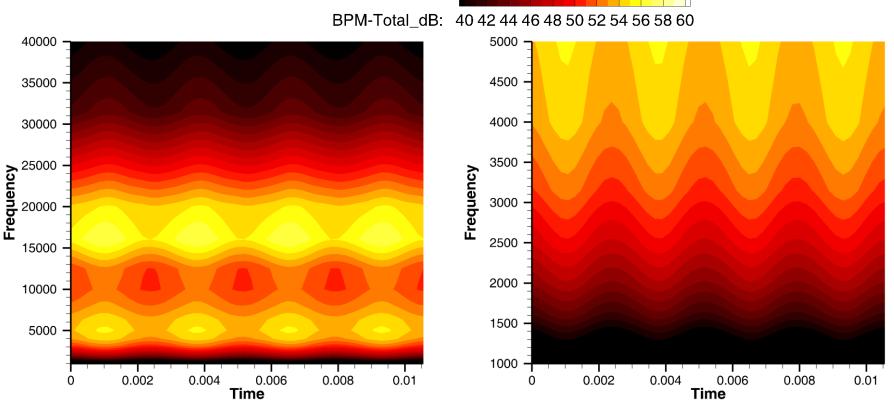
- Past conference paper results [2, 3]:
 - Time-varying predictions **not** for external release (prototype code)
 - Did not post-process spectrum time history
- **Completed**: Fully implemented robust time-varying broadband noise prediction in PSU-WOPWOP
- **In progress**: Validation prior to external release

[2] Z. F. T. Gan, K. S. Brentner, and E. Greenwood, VFS 9th Biennial Autonomous VTOL Technical Meeting, 2021.
[3] Z. F. T. Gan, K. S. Brentner, and E. Greenwood, 28th AIAA/CEAS Aeroacoustics Conference, 2022.

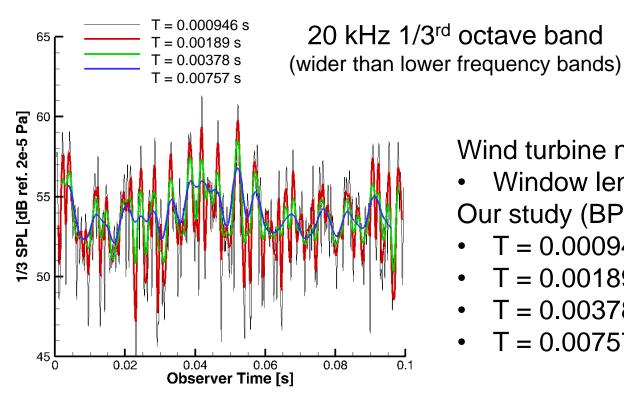

Validation Approach

- Validation approach: Check if
 - 1. Time-**averaged** BPM model implemented correctly: i.e., match BPM model predictions of other code(s)
 - 2. Time-**varying** BPM predictions match experimental data
- Previous validation with flight test data [3]: modulation captured, but levels under-predicted
- Improved validation case: NASA ideally-twisted rotor
 - NASA provided time-averaged noise predictions
 - Used to check implementation (Step #1)
 - NASA provided noise measurements
 - Processing measured data to compare with time-varying PSU-WOPWOP predictions (Step #2)
 - Wind tunnel environment more controlled than outdoor flight test

Validation – Time-averaged spectrum


- Previously validated prior to implementing time-varying broadband noise prediction framework
- After implementing timevarying broadband noise:
 - Time-averaging of spectrum time history does NOT significantly change results generated using previous PSU-WOPWOP versions

Validation – Time-varying spectrum


- Predicted time-varying broadband noise
- Will compare with experimental data, currently being processed

Validation – Spectrogram

- Processed experimental data into spectrogram •
 - Modulation sensitive to chosen time window length T
 - Time-frequency trade-off for spectrograms:
 - Criteria: T << BPP (blade passage period)
 - Result: $\Delta f >> BPF$ (blade passage frequency)
 - If Δf > bandwidth, cannot resolve frequencies below this band

Wind turbine noise studies:

- Window length < 5% of BPP Our study (BPP = 0.0027 s):
- $T = 0.000946 \text{ s} \rightarrow 0.35 \text{ BPP}$
- T = 0.00189 s → 0.7 BPP
- T = 0.00378 s → 1.4 BPP
- $T = 0.00757 \text{ s} \rightarrow 2.8 \text{ BPP}$

Validation – Cyclostationary analysis

- Alternative solution to processing experimental data: Apply cyclostationary analysis:
 - Class of statistical methods developed to study modulating signals
 - Used to study time-varying wind turbine noise: by creating time-frequency representations (TFR)
- TFR created by cyclostationary analysis: Offers advantages over spectrograms:
 - More mathematically correct than stationarity:
 - Spectrogram assumes spectrum constant over chosen window
 - Better time-frequency resolution:
 - Cyclostationary analysis: $\Delta f \leq BPF$
 - Spectrogram: Δf >> BPF
- In progress: creating TFR using cyclostationary analysis

Turbulence Interaction Noise

- Motivation:
 - Geometric configurations of UAM aircraft create many opportunities for aerodynamic interactions
 - Only self-noise is modeled by BPM model
 - Broadband noise underpredicted when only self-noise included: by past Project 49 work and literature
- Upstream turbulence ingested into rotor generates
 broadband noise
 - Atmospheric
 - Rotor and/or airframe wake ingestion

Turbulence Interaction Noise

- Chosen model: Amiet's leading edge noise model: time and frequency domain approaches:
 - Frequency domain approach:
 - Input: turbulence velocity spectrum
- Next steps: implement in noise prediction system
 - Integrate into existing time-varying broadband noise prediction framework used for BPM model for self-noise

Summary

- Major Accomplishments:
 - Analysis of departure maneuver for lift-plus-cruise eVTOL
 - Aircraft transitioning from hover to cruise while gaining altitude
 - Time-varying broadband noise implementation in system made more robust
 - Conducted literature review of turbulence ingestion noise models to implement in system
- Future Work:
 - Validate time-varying broadband noise predictions by processing experimental data using cyclostationary analysis
 - Implement models of broadband ingestion noise generated by aerodynamic interactions
 - Include impact of aerodynamic interactions such as BVI, BWI etc.

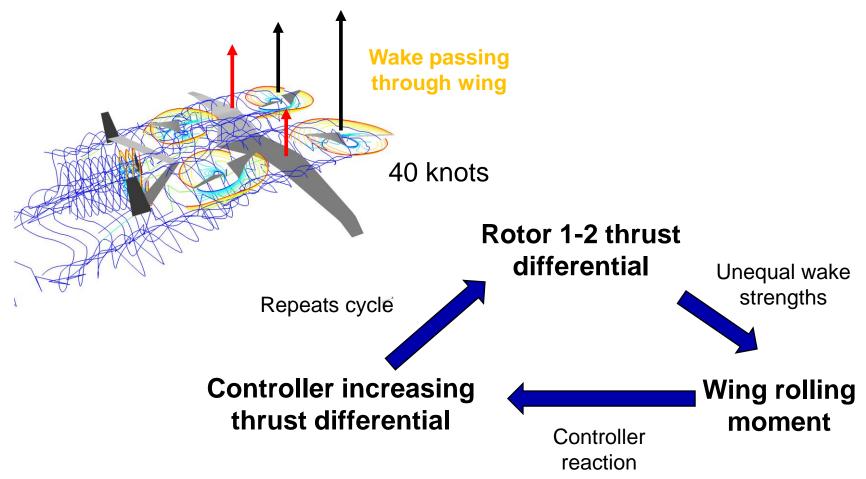
References

- A. Christian, J. Caston, and E. Greenwood and F. H. Schmitz, "Regarding the Perceptual Significance and Characterization of Broadband Components of Helicopter Source Noise," Vertical Flight Society 75th Annual Forum & Technology Display, Philadelphia, Pennsylvania, May 13–16, 2019.
- Z. F. T. Gan, K. S. Brentner, and E. Greenwood and F. H. Schmitz, "Time Variation of Rotor Broadband Noise," Vertical Flight Society 9th Biennial Autonomous VTOL Technical Meeting, Virtual, January 26–28, 2021.
- Z. F. T. Gan, K. S. Brentner, and E. Greenwood and F. H. Schmitz, "Time Variation of Helicopter Rotor Broadband Noise," 28th AIAA/CEAS Aeroacoustics Conference, Southampton, UK, June 14-17, 2022.

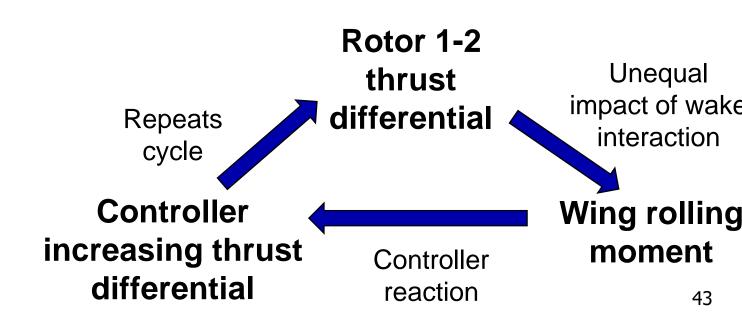
Contributors

- •PI: Kenneth S. Brentner, Penn State University (PSU)
- •Co-PIs:
 - •Eric Greenwood and Joseph F. Horn (PSU)
 - •Daniel A. Wachspress and Mrunali Botre (CDI)
- •Graduate Research Assistants: Ze Feng Gan and Bhaskar Mukherjee (PSU)
- •Industrial Partners: Continuum Dynamics, Inc. (CDI)

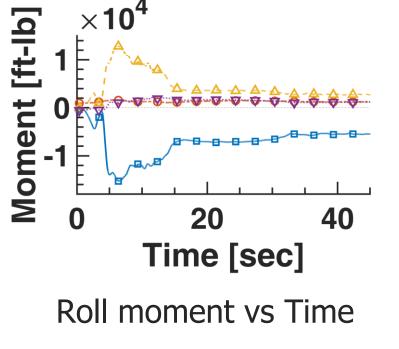
Questions?


Extra draft slides (delete them from final)

Role of interaction in dynamics


- DEPSim controls aircraft roll disturbance using the difference in thrust between rotors on each side
 - Rot 1 Rot 2 thrust & Rot 3 Rot 4 thrust

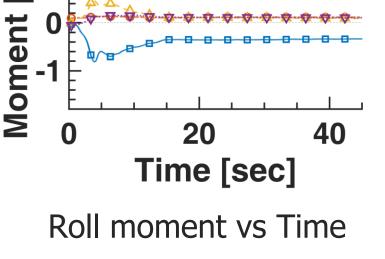
Role of interaction in dynamics


- DEPSim controls aircraft roll disturbance using the difference in thrust between rotors on each side
 - Rot 1 Rot 2 thrust & Rot 3 Rot 4 thrust

Rolling Moment: 70 knots

- Break moment cycle by changing how the controller compensates for rolling moment
 - Do not use rotors 1-2 thrust differential for roll rejection!
- Steady flight simulation 70 knots
 - Controller starts without knowledge of interactions
 - Interaction feedback starts around 5 seconds

Total Rotor Moment 🕣 Cruise Prop Moment

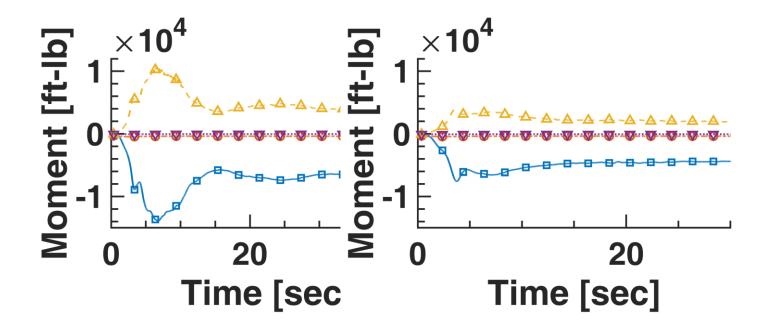

Rolling Moment: 70 knots

- Same steady flight simulation
- Change in controller design
 - Rotor 1,2 no longer involved in roll rejection
- Notice large reduction in wing and rotors moments
 - Improvement in controllability and performance
 - No significant change in noise

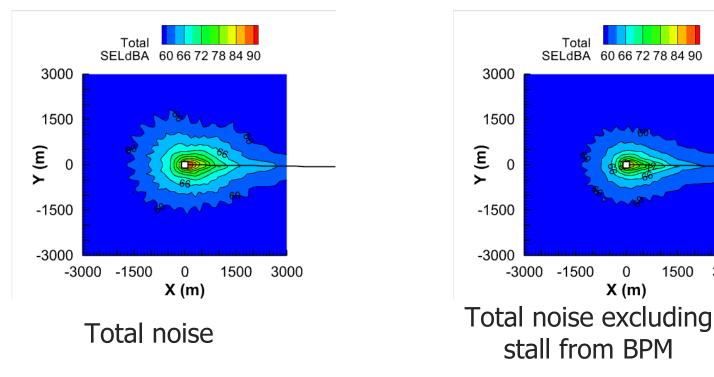
Total Rotor Moment 🕣 Cruise Prop Moment

×10⁴

[ft-lb]

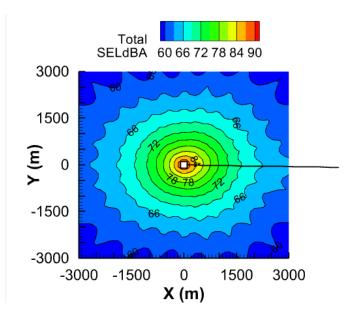


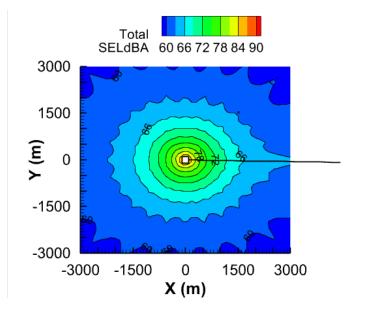
Rolling Moment: 70 knots



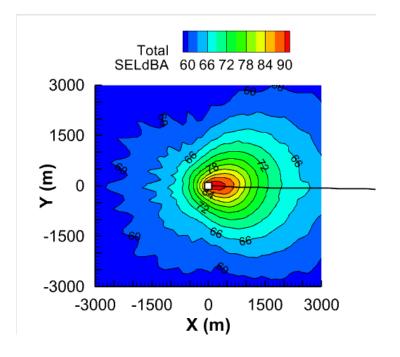
Total Rotor Moment - CHARM On 🕣 Total Rotor Moment - CHARM Off

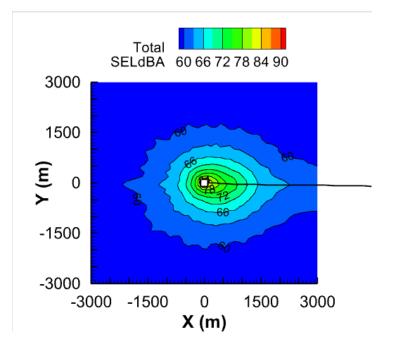
- **Level acceleration:** Lowest energy, lowest peak power ۲
 - Lift rotor stall: 10 30 %
- Note difference in SEL levels when stall broadband noise is removed •
 - BPM is semi-empirical and we can separate components out!

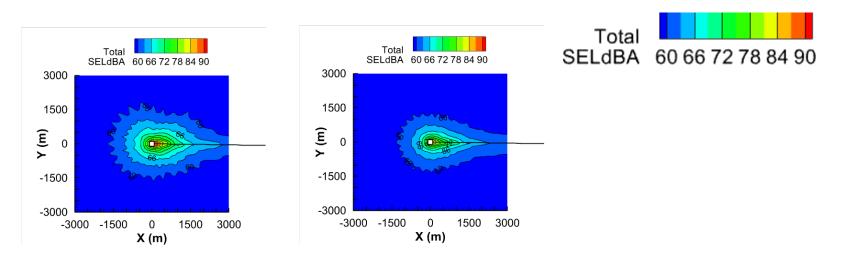



1500

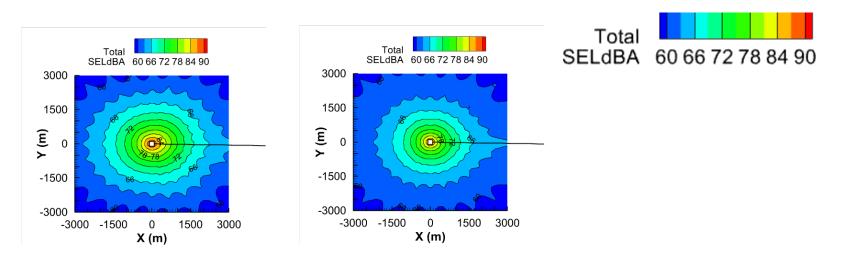
0 X (m) 3000


- Axial climb: Highest energy, second highest peak power
 - Lift rotor stall: 10 40 %
- Note difference in SEL levels when stall broadband noise is removed
 - Design of blade matters!!!




- **Continuous climb :** Second highest energy, Highest peak power
 - Lift rotor stall: 10 50 %
- Note difference in SEL levels when stall broadband noise is removed
 - Stall was contributing to significant noise!

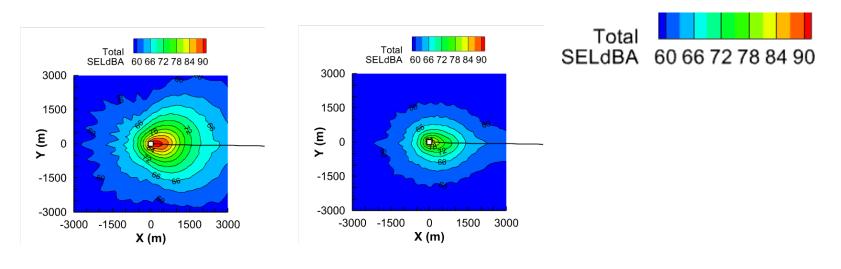
- Level acceleration: Lowest energy, lowest peak power
 - Lift rotor stall: 10 30 %
- Stall is not playing a major role in noise
 - Setpoint schedule works



Total noise

Total noise excluding stall from BPM

- Level acceleration: Lowest energy, lowest peak power
 - Lift rotor stall: 10 30 %
- Stall is not playing a major role in noise
 - Setpoint schedule works



Total noise

Total noise excluding stall from BPM

- Level acceleration: Lowest energy, lowest peak power
 - Lift rotor stall: 10 30 %
- Stall is not playing a major role in noise
 - Setpoint schedule works

Total noise

Total noise excluding stall from BPM