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Research Approach:

This study is comprised of the following:

• Identification of Open Rotor noise-sensitive design 
parameters

• Parametric geometry model development
• Simulation campaign for acoustics validation
• Parametric sensitivity study (not yet funded)

Major Accomplishments (to date):

• Identification of open rotor design variables – from 
previous studies – classified in groups: rotor, pylon 
installation and airframe integration. 

• Development of a parametric open rotor geometry
• Simulation validation in progress

Future Work / Schedule:

• Further validations 
• Computer simulation campaign
• Parametric study if funded
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Objective:

• There is a major challenge in meeting  noise  targets   
while simultaneously meeting other design  constraints. 

• The open rotor concept has promising fuel benefits, but 
there is a need to quantify the impact of design  
parameters on open rotor noise.

• A study of design parameter sensitivity to CROR system 
noise responses will be conducted in order to identify 
impactful design parameters.

Project Benefits:

The study of CROR design parameter sensitivity will 
identify trends that can aid further research and provide 
insight to design tradeoffs
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Validation Plan

q Validation cases are taken from NASA/GE 
experiments on F31A31 CROR (*)

§ Focus on no pylon configuration with 
NTO pitch settings

q Validation data from two sources

A. NASA reports on F31/A31
B. GE data on F31/A31 (proprietary)

q Focus on the upper-half of the RPM range

§ RPM : 5551 – 6436 (corrected speed)

q First phase of validation focus on  AoA = 0º

§ Currently undergoing

q Second phase focuses on non-zero AoA

§ Defined at 2nd highest rotor speed, 6301 RPMc

§ Future work

[*]  Sree, D., “Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach 
Conditions”, Technical Report I, NASA/CR – 2015-218716, 2015

Nominal Take-Off  (NTO) no pylon
NASA Experimental Campaign (*)
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CAA Simulation

Simulation 

q Unsteady aerodynamics based on a Lattice 
Boltzmann commercial solver (PowerFlow)

§ Mach = 0.20
§ Discretization size  ~  600 -900 Million 

voxels
§ Smallest resolution = 0.125 - 0.250 mm

§ At blade tips , and blade LE & TE
§ Time step  : 1.7×10!" 𝑠𝑒𝑐𝑠
§ Computational cost : 

§ ~10,000 core-hours / revolution

q Simulation run for 12 - 15 rotor revolutions in 
order to collect flow data for aeroacoustics 
analysis

• Assessment of our set-up for the Lattice Boltzmann method (LBM) simulation for Open Rotor case
How do our predictions compare to experimental data?

Validation cases

• Experiments on F31A31 12x10 open rotor in the low 
speed wind tunnel (LSWT) at NASA [†]

• One case: 
ü Mach = 0.20
ü Blade angles: 40.1 (front rotor) & 40.8 (aft rotor) 

[*]  Nark et al., “Isolated Open Rotor Noise Prediction Assessment Using the F31A31 Historical Blade Set”, AIAA paper 2016-1271
[†]  Far-Field Acoustic Power Level and Performance Analyses of F31/A31 Open Rotor Model at Simulated Scaled Takeoff, Nominal Takeoff, and Approach Condition

[*]
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Aerodynamic Calibration

Calibration Procedure

• Minimize weighted 𝑙# - norm of thrust discrepancies (both front 
and aft rotors) with respect to pitch settings

𝛽!∗, 𝛽#∗ = argmin 𝐿 𝛽! , 𝛽#

𝐿 = 𝑤$∆ %

• Note simultaneous minimization of thrust and torque metrics is not 
possible – cost function leads to different pitch settings

q Interested in noise driven by loading, which is thrust dependent 
q Matching thrust seen as necessary condition to place confidence 

in acoustic predictions
§ Note such condition might not be sufficient for matching 

acoustics measurements
q CAA predictions are compared to experiments at matched aero 

performance conditions
§ Not attempting to bring directly CAA predictions close to 

experimental values (loading conditions might be different)

Thrust

Cost Functions Isocontours: !𝑳
(Illustration)

𝜷𝒇𝒘𝒅

𝜷𝒂𝒇𝒕

Torque

𝜷𝒇𝒘𝒅

𝜷𝒂𝒇𝒕
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Aero Performance Comparison

Thrust

• Low discrepancy is ensured 
due to pitch calibration 

Torque Ratio

• Torque ratio has small 
discrepancy values

Discrepancy
(between different  Simulations & NASA exps.)

Trends
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Calibration Effects on Acoustics Overall Metrics

q Overall sound pressure level (OASPL) exhibit very small variation between calibrated and nominal, ~ 0.05 dB

§ Calibrated case is 0.05 dB higher (OASPL RMSE)
§ Note that thrust in calibrated pitch setting is a bit higher 

ü Nominal pitch underpredicted thrust

q Overal power level (OPWL) variation between nominal & calibrated pitch is about 0.3 dB.

q However, changes are more noticeable at spectra level 

Noise Discrepancy 

OASPL & OPWL discrepancy
(between CAA & NASA exps.)

OASPL  directivity
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Noise Discrepancy (cont.)

• First stage of validation focuses on cases at zero angle of attack (AoA = 0)

OASPL Directivity
(CAA predictions)

REMARKS

q Discrepancies among cases range 
between 1.6 - 2.75  dB, approximately

q Largest discrepancy is at the lowest rotor 
speed

q Currently increasing resolution at lowest 
rotor speed to confirm if discrepancy 
remains the same
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ACOUSTIC POWER LEVEL

q Trends with RPM consistent with that of NASA experiments

q Discrepancies smaller for highest RPM

q Note calculations carried out with 18 receivers (for consistency with NASA experiments)

§ Adding more receivers (higher resolution), which is attainable with simulations, may slightly 
change OASPL & OPWL values

Noise Discrepancy (cont.)

OPWL Discrepancy
(between  CAA & NASA exps.)

OPWL Trends
(CAA predictions vs. NASA exps.)
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Remarks and Next Steps
Remarks:

q LBM simulations were carried out for 12x10 F31A31 open rotor
q Numerical prediction show the following agreement:

§ In OASPL, 1.60 – 2.75 dB with experiments 
§ In OPWL,  0.50 – 2.80 dB with experiments
§ Level of discrepancy seems comparable with previous numerical 

simulations from NASA

Next Steps

q Validations at nominal pitch settings for comparisons with 
calibrated pitch settings

q Validation at non-zero angle of attack ( AoA ≠ 0 º)


