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Objective:
To evaluate: 
(1) the operational and economic feasibility of 

electrification strategies, and 
(2) the life-cycle GHG emissions and their 

associated impacts, relative to conventional 
petroleum-powered aircraft.

Today’s focus: 
Assessment of electricity-powered aviation with 
near-zero impact on climate and air-quality

Project Benefits:
Provide data and guidance on the most promising 
electrification approaches for aviation

Major Accomplishments (current period):
We analyzed potential designs for a narrowbody 
short-haul aviation system including: 
1. Fuels made from electricity
2. Post combustion emissions control (PCEC)
3. Contrail avoidance

Future Work / Schedule:
§ Additional assessment of production potentials 

for electrofuels
§ Infrastructure considerations for battery-electric 

aircraft

Comparative assessment of 
electrification strategies for 
aviation

Project 52

Energy and fuel 
demand
Calculate the fuel 
and energy demand 
for a market 
scenario

Fuel production 
and logistics
Model the production 
and logistics for 
aviation fuels

Aircraft & 
operations
Detailed model of 
aircraft design and 
operations
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Environmental & Cost Implications
Detailed analysis of financial and environmental 
implications (including climate costs and air quality 
costs)
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Zero-environmental-impact aviation to 
account for climate and air quality impacts

Motivation:
Current external cost of aviation fuel burn
per tonne of fuel (Jet-A), atmospheric impacts only Design an aviation 

system with near-
zero environmental 
impact, 
considering:
• Aviation 

CO2 climate 
impacts

• Aviation 
non-CO2
climate 
impacts

• Air pollution

Costs require 
detailed analysis!
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Source: Update for Grobler et al. (2019)
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Initial market study: short- and medium-
range market selected based on global fuel 
burn distribution

         

Mission focus for analysis

System with similar 
capabilities as the Boeing 
737-9 Max 
• Design range of 3000 nmi
• Capacity of 220 passengers

à System could cover 
missions which (pre-COVID) 
caused ~44% of fuel burn

Distribution of global fuel burn by mission 
length and aircraft capacity
Scheduled pax aviation only, year 2019

Preliminary
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CO2 contribution to climate impacts 
can be addressed via deployment of
low-carbon energy carriers

The production, transportation (of 
feedstock and final fuel) and 
combustion on board aircraft need to 
be low-carbon

Related to the 
carbon intensity of 
onboard energy 
carrier (fuel) and 

its production

Preliminary
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Pathways for low-carbon energy for 
the aviation sector: Battery-electric 
aircraft 
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Battery Battery-
electric

Value proposition: 
• No direct (in-flight) emissions
• Lifecycle emissions (close to) zero if electricity 

produced from renewable sources

Challenge:
Battery weight 

fundamentally limits 
application of battery-

electric systems for 
airliner-sized aircraft
MTOW and maximum 

range for an Airbus A320-
sized aircraft with different 

battery power densities

Source: Gnadt et al. (2019)
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Pathways for low-carbon energy for 
the aviation sector: electrofuels

Electrolysis
Fischer-
Tropsch

DAC

Electrolysis Liquefaction Cryo-storage LH2

PtL SAF
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Battery Battery 
Electric

Atmosphere

Synthetic fuel

Synfuel
combustion

Direct Air 
Capture

Atmospheric 
CO2 capture 
offsets CO2
emissions 
from fuel 
combustion

Biosphere

Atmosphere

Photo-
synthesis

Biofuel
combustion

For comparison: carbon cycle 
for biofuel
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Pathways for low-carbon energy for 
the aviation sector: overview

Electrolysis
Fischer-
Tropsch

DAC

Electrolysis Liquefaction Cryo-storage LH2

PtL SAF

HEFA SAFBiomass Oil 
extraction Hydrotreating Isomerization Fischer-

Tropsch
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For comparison:
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Energy costs likely to increase with 
electrofuels, but …

Comparison of energy cost under future technologies
LH2 and PtL for different electricity sources

HEFA 
FOG*

* n-th plant cost following ICAO Rules of Thumb
** CORSIA default LCA value

LCA for energy carriers
LH2 and PtL for different electr. Sources, 
future conditions

HEFA 
FOG 
(UCO)**

Preliminary
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Energy costs likely to increase with 
electrofuels, but lifecycle emissions reduced 
by 85% or more compared to Jet-A

Comparison of energy cost under future technologies
LH2 and PtL for different electricity sources

HEFA 
FOG*

* n-th plant cost following ICAO Rules of Thumb
** CORSIA default LCA value

LCA for energy carriers
LH2 and PtL for different electr. Sources, 
future conditions

HEFA 
FOG 
(UCO)**

Compare to Jet-A CI: 89 gCO2e/MJ

Preliminary
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NOx emissions can be addressed 
through the design of the aircraft-
propulsion system

Function of 
high 

temperature 
combustion

The aircraft-propulsion 
system design needs to 

minimize / eliminate 
emissions of NOx

Preliminary
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Post-combustion emission control (PCEC) 
effective for NOx reduction; possible 
implementation with small core engines

• There is a move towards smaller, 
power-dense engine cores with 
lower mass flow rates

• Fraction of thrust produced by 
core compared to total thrust has 
reduced

• Implementation of PCEC “under 
wing” remains difficult due to the 
size of the device and associated 
drag; can be combined with 
turbo-electric architecture 

Small core, high power density 
engines open opportunities for 
emissions control

Solution in other sectors: 
Selective Catalytic Reduction (SCR) devices to 
reduce NOx emissions

NOx + O2
Reducing 

agent Catalyst N2 + H2O
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Notional implementation of PCEC 
on a turbo-electric aircraft

Performance metrics

NOx reduction (deNOx) 95%

Increase in mission fuel 
burn* 0.5%

Catalyst mass 
(per engine) 91 kg

Reductant mass
(1500 km mission) 21 kg

Additional system mass
(pumps, storage tanks, 
etc.)

128 
kg

* due to catalyst, reductant and 
related systems.

Prashanth, P., Speth, R. L., Eastham, S. D., Sabnis, J. S., and Barrett, S. R. H. H. 
“Post-Combustion Emissions Control in Aero-Gas Turbine Engines.” Energy & Environmental Science, 
Vol. 14, No. 2, 2021, pp. 916–930. https://doi.org/10.1039/d0ee02362k.

Notional implementation for a narrowbody aircraft

https://doi.org/10.1039/d0ee02362k.
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Contribution of contrails to climate 
impacts can be reduced via operational 
contrail avoidance

Function of 
operation

Aircraft need operational 
capability to avoid 

persistent contrail forming 
regions

Conservative estimate:
Fleet level contrail length 
reduced by ~70% for ~1% 
increase in fleet averaged fuel 
burn based on a fleet level 
simulation study * 

* See ASCENT 78 for more detailed analyses

Preliminary
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Aircraft assessed using MIT’s TASOPT code; 
short haul (net)-zero impact LH2 aircraft 
with ~20% higher energy consumption 
compared to SAF

• LH2 powered aircraft requires ~20% more energy than a SAF aircraft for 
the same mission – heavy tanks, increased fuselage drag, reduced wing 
relief

• Fleet average reduction in NOx of ~96%

Zero Impact Aircraft 
powered by LH2

Zero Impact Aircraft 
powered by SAF• Physics-based design 

tool that combines 
structural, 
aerodynamic, and 
thermodynamic sub-
models to produce 
aircraft 
performance metrics.

• Relies on first-
principles approach 
when possible, rather 
than extrapolated fits 
from empirical data.

• Includes joint 
optimization of 
airframe, propulsion, 
and operations.

Conceptualization of 
the aircraft system 
based on TASOPT

Outputs for 220pax, 3000nmi range class aircraft 

Preliminary
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Results: ZIA concept reduces net 
societal cost (fuel (incl. CCS) + 
environment) of aviation by ~43-55%, 
while accounting for higher fuel costs

Uncertainty analysis reveals overlapping cost 
estimates. No clear conclusion which ZIA 
system creates largest societal benefit.

- 2.4%

- 55%

- 43%
- 50%

Preliminary
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Takeaways 

Ø Consider (at least) climate and air quality when discussing a zero-
environmental-impact aviation system

Ø Need a system-level approach to engineer a viable system – fuel 
production, aircraft-propulsion design, and operation

Ø Fuels: A net-zero system does not seem to necessitate switching fuel to 
(L)H2; benefits seem achievable with SAF (both PtL and biomass-based); 
identification of potential additional benefits of LH2 require further analysis.

Ø Zero-impact air transportation is not necessarily prohibitively expensive 
(operating cost increase on the order of 5-25%) but provides societal net 
benefits

Preliminary


