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Objective:
To identify, develop, and validate a parametric fan
noise module for a generic BLI propulsor based on 
the specifics of a configuration and design
Project Benefits:
• New capability for design engineers to 

determine the noise impact of new concepts
• Perform trades of fuel burn benefit versus noise 

at the conceptual level
• Reduce overall community noise by improving 

the accuracy of noise predictions for future 
advanced concepts

• Allowing vehicle designers to find the best 
opportunity for BLI technologies that offer fuel 
burn and noise benefits simultaneously

Research Approach: Numerical Experiments Major Accomplishments:
• Validation of fan noise module with NASA 

ANOPP and experimental data.
• Creation of integrated BLI geometry and designs
• Parametric sensitivities conducted to determine 

cases for high fidelity CAA cases
• Successfully conducted high fidelity CAA cases 

for several angle of attacks and fan speeds
• Creation of python based “Delta” module to 

include influence of BLI distortion on distortion 
prediction
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• Boundary Layer Ingestion (BLI) Concepts to Reduce 
Fuel Burn:  
– Ingest part of the boundary layer into the propulsor to 

improve propulsive efficiency
– Creates distortion at the fan face
– Problematic for operability and performance
– But what about the noise impact?

• Distortion has an impact on noise:
– Experiments have shown impact of inlet turbulence 

ingestion and aerodynamic distortion on noise
– Broadband and tonal impact
– Variability in directivity

• Some BLI noise modeling attempts have been made: 
– NASA Study Based on Analogous Empirical Data: 

• Clark, I. A., et al, “Aircraft System Noise Assessment 

of the NASA D8 Subsonic Transport Concept”

• Found 16 dB impact for ND8 configuration

– TU Delft study looked at the NOVA BLI 

Configuration using high fidelity CAA

• Qingqing Ye, Francesco Avallone, Daniele Ragni, Damiano 
Casalino, “Numerical analysis of fan noise for the NOVA 
boundary-layer ingestion configuration”

• +10 EPNdB impact of BLI

Project Motivation and Objectives

2D8 STARC-ABL

Project Purpose: To identify, develop, and validate a parametric fan noise module 
for a generic BLI propulsor based on the specifics of a configuration and design
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Project Technical Approach

Design Changes 

and RANS studies
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Reference configuration: 

• STARC-ABL aircraft 

• SDT Fan Geometry (Similar to TUD study)

Project has two key paths: 

• SDT Fan Noise Performance Modeling and Calibration (top) 

• BLI Design and Parametric Noise Impact Generation (bottom)
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Calibration of Baseline ANOPP 
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ANOPP v. SDT Wind Tunnel: Approach, 46°

SDT Exp Data from NASA Report GT GT Corrected

Result Comparisons:

• Digitized experimental data plots from NASA report that compares SDT data to ANOPP predictions (AIAA 
2008-299)

• Preliminary results show a similar difference between NASA ANOPP prediction / GT ANOPP predictions and 
experimental data

• Shift of +3.5dB (GT Corrected / Grey Curve) helps to better align data
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High Fidelity Simulation

Purpose: Validating simulation approach

• Geometry: Baseline Source Diagnostic Test (SDT)

– 22 Blades, 54 vane baseline radial  OGV

• Condition: Approach  (𝑀∞ = 0.10, 𝐴𝑜𝐴∞ = 0 °, 𝑅𝑃𝑀 = 7809)

• High fidelity simulation via Hybrid CAA approach

– Unsteady Aerodynamics via a LBM commercial solver
– FarField acoustics via FWH solver with permeable formulation

• Simulation:

– Mesh: 407 million voxels, Max Freq for CAA: ~ 7.1 kHz

SDT Fan CAA Approach

Directivity Results:

• Acoustics obtain at 21 sideline receivers (89.3 inch distance)

• Frequencies lower than 1.6 kHZ not considered 
(Experimental contamination)

• CAA results shown an average discrepancy of 2.1 dB respect 
to experiments

– Note previous simulations exhibit ~ 1.7 - 2.0 dB discrepancy 
respect to experiments

– Note discrepancy of ANOPP ~3.6 dB respect to experiments

OASPL Directivity

(*, **, ***)  Casalino et al, AIAA Journal, Vol 56, No 2.

ANOPP Comparison

CAA Comparison
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Comparison of CAA/ANOPP with 
Baseline SDT

Spectral Results:

• Spectral acoustics obtained at 45° and 135°, 
– Scaled to match 1-ft lossless basis used in NASA results

• Applicable frequency range between 1.6 – 8 kHz 
– Due to provided SDT data and permeable simulation 

limitations

• Results show an average discrepancy of ~3.5 dB
– Comparable to ~2 dB discrepancy shown by NASA 

ANOPP model

• Peak discrepancy at 3150 Hz due to blade passing 
frequency effects at 2860 Hz
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Integrated Tail-cone Thruster Design 
and Geometry

• Similar sized vehicle to the Boeing 737-8

• Included wing and vertical tail in geometry
– Known from literature to affect ingested distortion 

• Scaled fan based on SDT geometry: 
– Fixed tip speed and specific corrected flow (Wc / A)
– Scaled to power of the STARC-ABL design (Welstead and 

Felder)

• Highlight and throat areas increased based on 
results from steady state RANS CFD
– Blockage effects from ingested boundary layer caused shocks 

in the inlet for original design

• Aft section adapted from SDT geometry and 
manually tailored to provide reasonable exit flows

• Geometry does not include structural 
considerations, guide vanes, etc.

Stronger lower lip suction

Shock at throat

Thick BL post 

shock; 

unacceptable 

tip distortion

Lower throat Mach number

Approximate 

Values

Original 

Nacelle

Modified 

Nacelle

Peak upper throat 

Mach number
1.27 1.14

Peak lower throat 

Mach number
1.18 0.90
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Design Space Analysis

• Mach number & altitude are negligibly different for 
certification noise points

• Fan radius perturbations explored, and no clear 
major change in distortion levels was observed in 
valid range of geometry scaling

• Fan RPM and angle of attack (AoA) had largest 
influence on observed distortion levels

• Sampling plan (green symbols)  focus on feasible 
operational space of fan

• Variables and ranges reflect real world operational 
envelope for noise certification points

High Fidelity Simulation Progress

RPM

AoA

Simulation Effort: Hybrid CAA

• Unsteady Aero simulation by a LBM commercial 
solver

– Mesh: 1054 millions voxels 

• Far-field aeroacoustics by a FW-H solver with 
permeable formulation

– Max Res Freq. ~ 5.0 kHz
– Flow data for CAA collected over 10 rotor revolutions

Mach Flowfield

Vortical Structures
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Φ

Integrated Results

CAA Spatial Recording

• Emitted noise captured by hemispherical set of 
microphones

• Chosen radius, 10 m, limits effects of airframe noise

• Microphone placement centered about fan location 

• Direct upstream and downstream microphones 
removed due to model inaccuracies in jet flow 
regions

ANOPP Spatial Model

• ANOPP SDT fan model recorded using same hemispherical 
setup 

• Model integrated into ANOPP2 for rapid low-fidelity result 
generation, easily run series of cases at once

• Data collected over 3 RPM variations

• Identical spatial layout model allows for change in PNL level 
calculation between methods at each node

TOP VIEW

REAR VIEW

*All Results and Conclusions are Preliminary
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Spatial Results
CAA Results

• Results successfully collected for 5 of the 7 cases –
Highest angle of attack cases required 4-5x 
simulation run times (out of budget)

• 5th case data set at highest RPM still being assessed 
– Shows somewhat dissimilar trends to data for the 
4 on this slide

• Results show regions of increased noise aft of the 
fan

• Clear increasing OASPL trend with rotor speed

• However, not clear OASPL trend with AoA

• Discernable regions of inlet and aft fan noises 
shown at higher RPM

ANOPP Results

• Results show clear regions of increased noise 
in the forward and aft sections of the fan

• Clear increasing OASPL trend with rotor 
speed

• No change in values due to AoA
– Angle of attack does not change results as ANOPP 

does not calculate flow effects, therefore changes 
in flow orientation have no effect

Contours at radius = 10 meters

*All Results and Conclusions are Preliminary
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Model Creation Overview
Python ANOPP2 Module
• Spatial data from ANOPP + CAA provides dB deltas for series of RPM/AoA cases

• Data series used to fit interpolation model and is stored in python dictionary

• User input desired RPM and AoA into python script which uses ANOPP2 to generate baseline results

• Baseline results are corrected using the interpolation model

ANOPP2 

Baseline Model

CAA Model

ΔdB

Per microphone
Design of 

Experiments

Microphone 

Placements

Individual microphone 

interpolation

Python-based delta dB 

hemisphere model

ANOPP2: 

Observer structure with 

Calibrated OASPL results

Python: 

Microphone coordinates + 

Calibrated OASPL results

User Input:

RPM + AoA

Model Creation

Python

Model

Usage

ANOPP2 

Baseline Model
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Conclusions
Results Comparison

• Observed CAA noise increase from estimated ANOPP PNL for BLI tail-cone thruster

• Impact from RPM increase stronger than that due to AoA increase

• Higher RPMs and AoAs require larger deltas

• Strongest corrections tend to happen near exhaust – Similar trend to prior TU Delft Nova BLI study

• Notable corrections for inlet fan noise around theta = 60 at lower RPM

Θ

Φ

*All Results and Conclusions are Preliminary

AoA: 6 RPM: 4417
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Final Steps:

• Plan to use module for sample whole aircraft noise 
assessment

• Documentation of module developed 

• Publish findings and approach

Next Steps and Questions
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Spatial Results

CAA Results

• Results show regions of increased noise aft 
of the fan

• Clear increasing OASPL trend with rotor 
speed

• However, not clear OASPL trend with AoA

• Discernable regions of inlet and aft fan 
noises shown at higher RPM

ANOPP Results

• Results show clear regions of increased noise 
in the forward and aft sections of the fan

• Clear increasing OASPL trend with rotor 
speed

• No change in values due to AoA
– Angle of attack does not change results as ANOPP 

does not calculate flow effects, therefore changes 
in flow orientation have no effect

Contours at radius = 10 meters

*All Results and Conclusions are Preliminary


