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Techno-economic 

Analysis (TEA)

Objective:
Evaluate the opportunities associated with novel 
approaches for integrating hydrogen production and 
Power-to-Liquid (PtL) concepts into SAF production 
systems, including specifically lifecycle GHG 
emissions benefits and cost impacts. 

Project Benefits:
1. Analysis of current and future SAF and PtL

pathways: pros & cons, co-location potential
2. Provide a harmonized model to compare GHGs 

and costs of novel & existing pathways while 
capturing uncertainty and variability 

3. Derive recommendations for future SAF/PtL
R&D: how to best combine C, H, and conversion 
tech for lowest cost and GHG emissions

Research Approach: Major Accomplishments (to date):

Defined electricity-based SAF pathways

Identified novel conversion pathways with 
renewable hydrogen use

Set up stochastic LCA and TEA framework for 
pathway analysis

Future Work / Schedule:
 Critical assessment of H2 production, new C & 

energy sources with SAF
 LCA and TEA model development & adjustment
 gCO2e/MJ, $/L of current/future SAF/PtL
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Life-Cycle Analysis of 

GHG emissions (LCA)

New & Existing SAF/PtL

Pathways

Conduct well/field-to-wake 

(WTW) LCA of GHG 

emissions per unit fuel 

energy [gCO2e/MJ]

Apply discounted cash 

flow analysis to compute 

the minimum selling price 

of the fuel.

Assess & identify pathways

to: integrate H2 prod., ($ 

reduction), new C, H sources 

with existing SAF facilities 
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Energy carrier vectors for aviation 
– a typology
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Mapping electricity use in SAF production 
– a significant opportunity space.

Electricity sources

• (Dedicated) carbon-free 

sources

• Grid

Hydrogen Source

Carbon intensity

SMR

0

BECCS

Electrolysis 

with carbon-

free electricity

Biomass gasification

Electrolysis 

with current 

U.S. grid

Notional ordering, not to scale

SMR + CCS

Typically the defining 

element of PtL pathway

Carbon Source

• Biomass (direct extraction)

• (Industrial) Waste CO2

• Direct Air Capture

Conversion Process

• RWGS + FT

• Co-electrolysis + FT

• Methanol synthesis + conversion

• CO2-to-Alcohol-to-jet

• …

Jet Fuel

Co-products

+

“Common” PtL pathway

BUT: A large number of pathway designs exists and a large number of potential “hybrid” designs

PtL fuels are a class of synthetic drop-in hydrocarbon fuels, which use electricity as a major input 

“feedstock”, especially for H2 production, CO2 extraction, and/or conversion into fuels.

1
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Motivation 

Results from ASCENT 1

Conducted TEA for six SAF production

Technologies: (1) Fischer-Tropsch, (2)

Fast pyrolysis (3) Alcohol-to-Jet, (4)

Aqueous phase reforming, (5) Direct

Sugar to hydrocarbons (DSHC), (6)

Hydro-processed Esters and Fatty Acids

(HEFA).

HEFA: 1150 - 1430 $/MT

Others: 2050-5190 $/MT

HEFA: 0.86 - 0.91

Others: 0.09-0.23 

Conversion Cost  ($ / ton feedstock)MFSP Yield 

HEFA:   208-210

Others: 164-406

Maximizing C conversion Efficiency is critical to produce cheap SAF. 
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Motivation 

O removal mechanism is also critical for SAFs production
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Novel conversion pathways with H22 H2

Identify Carbon, Hydrogen and Energy sources (New Potential

Feedstocks) as well as fuel conversion processes to enhance

economics and carbon intensity of the SAF.

Compare the environmental footprint and economic sustainability

indicators of the most promising approaches with current SAF as well

as conventional Power-to-Liquid pathways.

Objectives
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Novel conversion pathways with H22 H2

Review of new Pathways to Produce Hydrogen

Goal: Write a Literature review on emerging hydrogen

production technologies and technoeconomic analysis

of each of them.

1. Steam Reforming (Low pressure, high pressure) 

2. Dry Reforming 

3. Auto-thermal Reforming

4. Methane Partial Oxidation

5. Thermal decomposition of hydrocarbons

6. Gasification of carbonaceous materials (biomass, 
coal, bitumen, MSW) with steam, CO2 and O2

7. Water Electrolysis (low and high temperature)

8. CO2 Electrolysis

Steam Reforming

Section of a H2 plant that may not be 

relevant when producing SAF

H2

CO2

CO + H2

CH4
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Review of new Pathways to Produce Hydrogen

Steam Reforming

Methane Partial Oxidation

Auto-thermal Reforming

High temperature Electrolysis

Great Opportunities for technology integration. Bi-weekly meeting with 

panel of experts from PNNL and WSU to identify potential Synergisms.

Very high energy efficiency and allows removal 

of O in the form of O2
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Conceptual Evolution of SAF Production 
Technologies 

SAF production technologies that use all the C contained in the biomass, that 

remove O in the form of O2 via electrolysis and that take advantage of the low 

price of CH4 as much as possible are likely to be the most successful  SAFs 

production technologies. 
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Conceptual Evolution of SAF Production 
Technologies 

This project will guide optimization of SAF production through providing quantitative data to 

support informed decision-making on the choice of SAF production pathways
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Synthesis of New SAF Concepts 

P-Graph and other combinatory analysis tools 

Biomass

Unit 

Operation 1 

CH4

Oxidant Agent

Unit 

Operation 2 

Unit 

Operation 3 
O2

Unit 

Operation 4 

SAF

Heat

Electricity

Expected benefits: This project will outline 
new pathways for SAF production. 

Generic Scheme of SAF production 
Technology 
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Need for stochastic LCA and TEA assessment 
for this project

• There may be uncertainties in lifecycle GHG emissions and minimum selling prices of jet fuel for 

existing, new, and combinations of SAF/PtL pathways, especially since they are not yet used at 

scale.

• Stochastic assessment will allow us to understand the range of possible GHG emissions and 

costs of novel pathways, given prevailing uncertainties,  thereby helping to identify opportunities 

and risks as well as guiding further R&D for pathway characterization.

3

Isaacs et al. (2021), Environmental Science & Technology. Environmental and Economic Performance of Hybrid Power-to-Liquid and 
Biomass-to-Liquid Fuel Production in the United States

145─270gCO2/MJ

(95% CI)
$2.90 ─ $3.90/L

(95% CI)
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Uncertainty vs. Variability: a framework3

Uncertainty

Refers to lack of data or an 

incomplete understanding of the 

factors that affect an outcome. 

More/better data could reduce 

uncertainty. (U.S. EPA, 2021). 

Biofuel facility cannot 

intentionally control variable. 

Example

Feedstock transport mode share 

split (truck/rail/barge)

Variability

Refers to inherent heterogeneity of 

diversity of data in an assessment. 

“A quantitative description of the 

range or spread of a set of values.” 

More/better data will not reduce 

variability (U.S. EPA, 2021). 

Variable can be intentionally 

controlled or differs regionally.

Example

Jet volume fraction in product slate

Sensitivity

Studying impact on dependent 

variable due to variability

Example

Impact on GHG emissions from 

differences in electricity carbon 

intensity

Environmental Protection Agency. (2021, December 13). Uncertainty and Variability. EPA. Retrieved March 9, 2022, from 

https://www.epa.gov/expobox/uncertainty-and-variability 

Primary focus in the 

context of analyzing novel 

unexplored technologies

To be captured as needed 

(e.g. for discussing 

different electricity inputs)
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LCA and TEA Modeling Approach3

Uncertain variable

Uniform, 
triangular, or 

other 
distribution

Monte 
Carlo 

≥1,000 runs

Check 
variance 

<0.1%

If variance ≥0.1%, increase # of runs  

95% CI GHG 
[gCO2e/MJ], 

MSP [$/L] 

Repeat for 
sensitivities

LCA*: Energy 
allocation

Elgowainy et al. 
(2012)

Existing 
CORSIA SAF

Existing PtL
Pathways

New PtL
Pathways

1

2

3

*not including ILUC

TEA: Discounted 
Cash Flow Rate of 
Return (DCFROR)
Pearlson et al. (2013)

Elgowainy, A. et al. (2012) Life Cycle Analysis of Alternative Aviation Fuels in GREET. Argonne National Laboratory, Argonne, IL, USA.

Pearlson, M., Wollersheim, C., & Hileman, J. (2013). A techno-economic review of hydroprocessed renewable esters and fatty acids for jet 

fuel production. Biofuels, Bioproducts and Biorefining, 7(1), 89–96. https://doi.org/10.1002/bbb.1378


