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Objective:
Improve low-order (LO) models for the prediction of 
fan broadband interaction noise by addressing gaps 
in existing methods using both computation and 
experimentation. The main gaps being considered 
are a LO model for the inflow to an exit guide vane.

Project Benefits:
Elimination of time-consuming, high-fidelity 
simulations or prototype development and testing in 
order to assess broadband noise levels created by 
high bypass turbofans.

Research Approach:

• Develop a surrogate model for a fan wake using  
machine learning. Create the necessary training 
data and compare different machine learning 
methods. Determine both the mean and 
turbulence wake profiles upstream of the exit 
guide vane using only rotor-based information. 

• Continue to test the current LO exit guide vane 
response method’s ability to predict the broadband 
noise.

Major Accomplishments (to date):
• Data set : 4 geoms (268 cases); new geoms built
• ML methods for mean flow wake, TKE, w

– SDT related geometries
– Single input tested but probably not main method of interest
– Multi output ML : CNN for each parameter completed 

• Acoustic prediction for all 268 cases & vane location
Future Work / Schedule: (Spring/Summer)
• ML 

– New geometries  -> complete larger data set
– Additional input parameters (tests); learn BL and forces maybe
– CNN for mean values : axial - radial view

• Acoustics
– Full scale prediction (pylon, propagation to field)
– Tip clearance and inflow asymmetry modeling
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Fan broadband noise background

• Low-order method computes the sound by just simulating the FEGV and represents the FEGV in a 
simplified fasion

• The FEGV inflow is needed

fan
FEGV

Largest broadband contributor in a fan stage 

is from rotor wake interaction with FEGV

(This also produces the tonal noise) 
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Low-order FEGV noise calc
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Flow input needed

RANS method (Pope)

Hub to tip: overall mean

Turbulent kinetic energy

Turbulent length scale
Liepmann turbulence 

spectrum  

Wave number 

One rotor passage

Mean flow data

(streamwise) 

Ave passage near mid

Only for tonal

Some LO 

methods

Turbulent length scale

Need K and w 

Getting inflow from CFD or experiment 

renders the entire prediction NOT low order
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Our project 

Main part: 

Create a surrogate model for the rotor wake flow (eliminating need for computation or experiment in 
order to define input for the low-order FEGV calculation) 

Use machine learning (ML)

End goal: A ML based surrogate model that provides the mean flow, turbulence intensity, and length 
scale just upstream of the FEGV given the following inputs: fan geometry, RPM, mass flow, duct 
geometry and perhaps some other information

Secondary part: 

Test and improve the low-order FEGV response method:  full scale validation, relaxation of some 
assumptions

fan
FEGV
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Machine learning
We have considered 2 basic methods

single output & multi output

Define rotor geometry 

on %radial strips:

• chord, 

• stagger, 

• position of t.e.

• t.e. bdy layer 

thickness

• inflow/outflow angle

• force vector

State RPM, mass flow

Provide flow values on portion of 

NxMxP grid in the gap region

• Streamwise velocity magnitude

• Axial, circumferential, radial

• TKE (k)

• Turbulent dissipation (e or w)

Predict flow values on 

ordered grid points 

• Streamwise velocity mag

• TKE (k)

• Turbulent dissipation

The goal of both : 
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Database for the ML far

Example: SDT cold.  EXP data (digitized from NASA TM, fan alone performance)

• Use RANS (k-w), rotor alone simulations in rotor frame

• Geometries : based on NASA SDT 
– CAD (cold), 7808 RPM (hot), 11607 RPM (hot), 12657 RPM (hot)

• 7 RPM : 50%, 60%, 70%, 77.5%, 87.5%, 95%, 100%

• 7-10 mass flow rates at each RPM

• Total of 268 cases

50%

60%

70%

77.5%

87.5%

95%

100%
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Machine learning
We have considered 2 basic methods so far

Method 1: single output

Used splines, MARS, XGBOOST with decision tree, DNN

Tested necessary size of N x M x P (3D grid in gap)

Tested method for selecting which data to use for training/testing 

(i) Random selection out of N, M, P  (what %: 80% train, 20% test,..)

(ii) Leave out entire N (axial locations), leave out mass flow case, ...

Can get very good predictions of test cases when rotor geometries are similar

Noted that for mean flow average passage, overall mean had to be subtracted and learned separately
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ML method I
Example: streamwise velocity, XGBOOST

When leave out some entire mass flow cases 

Streamwise velocity shape is fine, magnitude is not so good

Streamwise velocity

w

Turbulence dissipation 

parameter is fine (mass flow not 

an important parameter!)
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Machine learning method II

Method 2: multi output

Use all rotor information as one input (no radial slicing)

Learn axial cut “image” as one output 

Each rotor and its 

information is a 

single input

0% -> percent theta -> 100%

Each point downstream is

learned separately

Inputs at each radial 

location are separate

Flow parameter on

entire axial slice is

learned

single-output

multi-output
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Each rotor and its 

information is a 

single input

0% -> percent theta -> 100%

Each point downstream is

learned separately

Inputs at each radial 

location are separate

Flow parameter on

entire axial slice is

learned

single-output

multi-output

Machine learning method II

Method 2: multi output

Use all rotor information as one input (no radial slicing)

Learn axial cut “image” as one output 

ML: Decoder part of Convolution Neural Network

Rotor geometry

• chord, 

• stagger, 

• position of t.e.

• t.e. bdy layer thickness

For each strip, combined into one vector

+ RPM, mass flow, axial location

28

50
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ML method II

CNN, TKE, random selection of axial slices to use for training and testing

• Input: 199 

28 * (r_te, th_te, x_te, lowBLnor, upBLNor, chord, stagger) + 

omega + massFlow + x

• k: 2 - 29

• i: 1 - 30

TOHot geom, 12657 rpm, 94.8 lbm/s, i = 30

Used 80% of axial slices for training
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ML method II

CNN, TKE
CNN architecture

CNN model parameters
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ML method II

CNN, Mean flow, random selection of axial slices to use for training and testing

CBHot geom, 7594 rpm, 76 lbs/s, i = 30
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Wake deficit hidden 

under mean. ML doesn’t 

work well. 

Subtract off overall 

mean
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Final ML comment

Multi output method provides correlation in circumferential and radial directions which is desirable

Method working well

Rotor geometries all very similar  

Each variable requires a different CNN architecture (overall mean, wake deficit, TKE, w)

Broadband only requires overall average values.  Leads to interest in considering different flow view. 

In wind turbine ML they consider correlation of axial and radial 

circumferential not required (averaged) 

Will try this approach in future : must deal with annular shape difference in axial direction

Z. Ti et.al., Wake modeling of wind turbines using machine learning. Applied Energy. 257:1-17, 2020
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Broadband fan acoustics

268 cases run :  Use them to explore acoustics 

50%

60%

70%

77.5%

87.5%

95%

100%

Integrated acoustic spectra 
(600Hz – 20kHz) 

Trend does not follow total 
pressure ratio or efficiency. 

Noise increases with 
increasing RPM

Optimal mass flow at given 
RPM
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Broadband fan acoustics
Placement of vane in fan-stage 

What if vane is moved to the midgap location

Tonal noise  : goes up with decreased gap 
distance 

Tones can be managed 

Broadband : little change! influenced by 2 things 

Vane inflow turbulence

Duct geometry

Experimental data taken midgap and just upstream of vane

Duct a bit larger at midgap

Influence of inflow

(map values onto original vane/duct size) 
Influence of duct size 

(use same inflow on two different ducts) 

Shifts – modes cut on earlier 

for larger duct.

Looks like higher noise at low 

frequency with mid-gap geom

Very slight different due to length

scale difference between two locations

Looks like lower noise at low 

frequency with mid-gap inflow
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Broadband fan acoustics
Testing prediction of full-scale:  FAA CLEEN 1 

Available cases:

• Approach, Cutback, and Sideline power conditions

• Free-stream: M = 0.01 (Ground test conditions)

Two challenges

Far-field BC

Far-field BC
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Broadband fan acoustics
Testing prediction of full-scale:  FAA CLEEN 1 

2) Must consider propagation 

in order to compare with field 

microphones

Test Stand Engine Data

• Far-field microphones
– 150ft. arc polar array
– Acoustic spectra at range of directivity angles

• Source Separated Data
– Fan Inlet Broadband
– Fan Aft Broadband
– Other noise sources
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Summary and future work

Wake parameter surrogate model

All initial findings show promise for this capability – will enable broadband noise as design consideration

Add further inputs to the ML : rotor force data (compare to current predictions that do not use this input)

Determine difference in ability to learn wake with and without boundary layer thickness as input 

If ML needs these parameters : test ability to learn them

Increase database, include larger differences in geometry and test ML predictions

Use ML to learn overall mean values using axial-radial view  (deal with length scale heuristic form)

Noise prediction (focus on low-order FEGV response)

Have analyzed influence of mass flow on noise and slight rotor geometry differences

Have begun study of effect of tip clearance 

Full scale test data (CLEEN I) being curated for use in validation study 

Considering inclusion of downstream pylon effect and propagation to the field mics

Will determine if low-order can be modified to handle asymmetry in inflow to stator caused by nonuniform 

inflow to the rotor
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Questions ?


