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Objective:
• Reliable soot kinetics for complex polyaromatic 

hydrocarbons (PAHs) jet-fuel systems
• Develop a new model for nanoparticle inception
• Link kinetics and particle inception to growth models
• Apply models within large-eddy simulations (LES)

Project Benefits:
• Predictive model for aeroengine combustor emission
• New predictive inception and growth models for soot 

formation in PAHs dominated fuels using multi-scale 
analysis for coupling physics at disparate scales

• New CFD to simulate emission from turbulent flames 
using these multi-scale models

Major Accomplishments (as of April 2022):
• Reduced order model for soot inception and surface 

growth, Reduced kinetic mechanism for PAH species 
now being tested in LES 

• Free energy calculations of PAH dimer stability as 
function of temperature – towards nucleation model

• Coupling between surface growth model and LES being 
tested for couple analysis

• LEMLES-Method of Moment for canonical turbulent 
combustion to evaluate new models operational

Future Work / Schedule:
• Complete Assessment of PAH based soot kinetics
• Couple particle growth model with nucleation and 

inception-growth model for use in LES
• Reduced models testing for LES application
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Current :
• Improvements in global simplified soot model to match 

predictions with detailed model
• New ethylene (ROM) kinetic mechanisms (25 species) 

capturing PAH species important for soot formation (e.g., 
pyrene ) developed and is now being tested in LES

Kinetics of Soot formation (RTRC) 

Future :
• Assessment of PAH based reduced kinetics for 

Jet-A type fuels
• GT: Output for integration within LES
• UM: Input to Nucleation model 
• RTRC: Input to Aggregation model

Assessment of soot model in PSR

ROM: Reduced Order Model
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Particle Inception from Gas-phase Species 
(U. Mich.)
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Publication supported by ASCENT FAA:

Di Liddo, Saldinger, Jadidi, Elvati, Violi, Dworkin. Proc. Combust. Inst. 2022, Submitted
Saldinger, Raymond, Elvati, Violi Proc. Combust. Inst. 2022, Submitted 
Saldinger, Elvati, and Violi, Phys. Chem. Chem. Phys., 2021, 23, 4326.

Future :
• PAHs to be investigated under gas turbine 

conditions on dimer formation and stability
• Collision rates as a function of chemical and 

physical properties of PAHs for LES model use
• RTRC: Input of ROM kinetics 
• RTRC: Output to aggregation model 
• GT: Output to particle inception model for LES

Current :
• Identified PAHs characteristics that are critical to inception
• Molecular Dynamics (MD) simulations for free energy analysis to identify dimer stability
• Formation of aromatic dimers that lead to soot inception investigated

Particle Inception from Gas-phase Species
(U. Mich.)
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∆A = Free energy difference between monomer and dimer 
∆A > 0 represents dimers more stable than monomer

Stable dimers can potentially lead to 
initial soot nuclei.
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Post-inception growth of particles (RTRC)

Characteristic time [sec]

Gas Phase Kinetics 
(UTRC)

Species 
precursors

initial soot 
particles

Aggregation & 
surface growth 
Global models

Soot Formation in Aircraft Combustor

10-12 10--9 10--6 10--2

10-12

10-8

10-3

10-2

Characteristic length [m]

Local 
conditions 
(e.g., P & T)

LES
(Georgia Tech)

Molecular Dynamics 
Method

(University of Michigan)

Monte-Carlo
(RTRC)



7

Post-inception growth of particles (RTRC)
Current :
• Monte Carlo simulations for Aggregation to account for short range forces (e.g., VdW)
• Blended model for transition from reaction limited to transport limited growth developed
• Strategy to use the model to analyze LES data (GT) established (one-way coupled)

Future :
• “in-situ” (2-way) ability to simulate growth (surface growth and aggregation) as function 

of temporally varying ambient conditions (e.g., equivalence ratio, P, T in LES)
• RTRC: Input of ROM kinetics
• UM: Input of coupling with nucleation model
• GT: Output of models for LES

Growth from Fractal to Spherical 
Aggregates modeled
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Large-scale soot combustion in LES (GT)
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Current :
• PAH inception, condensation and surface growth implemented in the 6-MOMIC
• Linear-eddy Mixing (LEM)-6MOMIC chosen as baseline sub-model to study high-Re 

turbulent mixing-combustion with soot formation – ability to test different models 
• New ROM kinetics from RTRC being evaluated using LEM-MOMIC

Large-scale soot combustion in LES (GT)

Future :
• LEM-6MOMIC assessment in turbulent flames
• RTRC: Input of ROM kinetics with PAH 
• RTRC: Input of aggregation model
• UM:  Input of nucleation rate model 
• Multiple test beds for LES evaluation developed

• LEM-MOMIC as a turbulence-chemistry model
• 3D canonical premixed and non-premixed flames   
• 3D LES of single element liquid fueled direct 

injection (NASA-LDI) combustor PSR of rich ethylene-flames, 
Comparison against Vaughn1 data

1Vaughn, C.B. 1988, PhD thesis, Massachusetts Institute of Technology, Cambridge, MA
2Leung, K. M., Lindstedt, R. P., & Jones, W. P. (1991). Combustion and flame, 87(3-4), 289-305
3Kroneburg, A. , Combustion and Flame 121 (2000): 24-40.

Karpe et. al., 18th Int. Conf. on Numerical Combustion, 2022
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Example: One-way Coupling LES data on NASA-
LDI for Surface Growth Model  (GT-RTRC)
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Summary and Future Plans
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Target Application (Year 3): NASA high-pressure 9-point Spray LDI with Soot emission.

T (K)

Some data from NASA 
(GRC): Raju & Wey. 
AIAA-2020-2088.


